Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

LncRNA GAS5 as an Inflammatory Regulator Acting through Pathway in Human Lupus

Author(s): Jianping Xiao and Deguang Wang*

Volume 29, Issue 16, 2023

Published on: 01 June, 2023

Page: [1293 - 1299] Pages: 7

DOI: 10.2174/1381612829666230517102205

open access plus

Abstract

Aim: To investigate the contribution of GAS5 in the pathogenesis of SLE.

Background: Systemic Lupus Erythematosus (SLE) is characterized by aberrant activity of the immune system, leading to variable clinical symptoms. The etiology of SLE is multifactor, and growing evidence has shown that long noncoding RNAs (lncRNAs) are related to human SLE. Recently, lncRNA growth arrest-specific transcript 5 (GAS5) has been reported to be associated with SLE. However, the mechanism between GAS5 and SLE is still unknown.

Objective: Find the specific mechanism of action of lncRNA GAS5 in SLE.

Methods: Collecting samples of the SLE patients, Cell culture and treatment, Plasmid construction, and transfection, Quantitative real-time PCR analysis, Enzyme-linked immunosorbent assay (ELISA), Cell viability analysis, Cell apoptosis analysis, Western blot.

Results: In this research, we investigated the contribution of GAS5 in the pathogenesis of SLE. We confirmed that, compared to healthy people, the expression of GAS5 was significantly decreased in peripheral monocytes of SLE patients. Subsequently, we found that GAS5 can inhibit the proliferation and promote the apoptosis of monocytes by over-expressing or knocking down the expression of GAS5. Additionally, the expression of GAS5 was suppressed by LPS. Silencing GAS5 significantly increased the expression of a group of chemokines and cytokines, including IL-1β, IL-6, and THFα, which were induced by LPS. Furthermore, it was identified the involvement of GAS5 in the TLR4-mediated inflammatory process was through affecting the activation of the MAPK signaling pathway.

Conclusion: In general, the decreased GAS5 expression may be a potential contributor to the elevated production of a great number of cytokines and chemokines in SLE patients. And our research suggests that GAS5 contributes a regulatory role in the pathogenesis of SLE, and may provide a potential target for therapeutic intervention.

Keywords: Long noncoding RNA, GAS5, systemic lupus erythematosus, MAPK pathway, cytokines, chemokines, monocytes.

[1]
Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med 2020; 172(11): ITC81-96.
[http://dx.doi.org/10.7326/AITC202006020] [PMID: 32479157]
[2]
Hagberg N, Rönnblom L. Systemic lupus erythematosus-a disease with a dysregulated type I interferon system. Scand J Immunol 2015; 82(3): 199-207.
[http://dx.doi.org/10.1111/sji.12330] [PMID: 26099519]
[3]
Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358(9): 929-39.
[http://dx.doi.org/10.1056/NEJMra071297] [PMID: 18305268]
[4]
Yu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat Rev Nephrol 2017; 13(8): 483-95.
[http://dx.doi.org/10.1038/nrneph.2017.85] [PMID: 28669995]
[5]
Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned. J Autoimmun 2016; 74: 161-75.
[http://dx.doi.org/10.1016/j.jaut.2016.08.001] [PMID: 27522116]
[6]
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature 2012; 489(7414): 101-8.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[7]
Ma N, Tie C, Yu B, Zhang W, Wan J. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging 2020; 12(3): 2897-920.
[http://dx.doi.org/10.18632/aging.102785] [PMID: 32035423]
[8]
Xue Z, Zhang Z, Liu H, et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ 2019; 26(1): 130-45.
[http://dx.doi.org/10.1038/s41418-018-0105-8] [PMID: 29666475]
[9]
Niu L, Lou F, Sun Y, et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv 2020; 6(21): eaaz2059.
[http://dx.doi.org/10.1126/sciadv.aaz2059] [PMID: 32671205]
[10]
Zeng J, Ma YX, Liu ZH, Zeng YL. LncRNA SNHG7 contributes to cell proliferation, invasion and prognosis of cervical cancer. Eur Rev Med Pharmacol Sci 2019; 23(21): 9277-85.
[PMID: 31773679]
[11]
Li Y, Li L, Wang Z, et al. LncMAP: Pan-cancer atlas of long noncoding RNA-mediated transcriptional network perturbations. Nucleic Acids Res 2018; 46(3): 1113-23.
[http://dx.doi.org/10.1093/nar/gkx1311] [PMID: 29325141]
[12]
Liu Y, Yin L, Chen C, Zhang X, Wang S. Long non-coding RNA GAS5 inhibits migration and invasion in gastric cancer via interacting with p53 protein. Dig Liver Dis 2020; 52(3): 331-8.
[http://dx.doi.org/10.1016/j.dld.2019.08.012] [PMID: 31530437]
[13]
Yang X, Meng L, Zhong Y, Hu F, Wang L, Wang M. The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging 2021; 13(2): 2864-84.
[http://dx.doi.org/10.18632/aging.202352] [PMID: 33418541]
[14]
Liu L, Pang X, Shang W, Xie H, Feng Y, Feng G. RETRACTED ARTICLE: Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle 2019; 18(3): 257-63.
[http://dx.doi.org/10.1080/15384101.2018.1475826] [PMID: 29895198]
[15]
Chen F, Li Y, Li M, Wang L. Long noncoding RNA GAS5 inhibits metastasis by targeting miR-182/ANGPTL1 in hepatocellular carcinoma. Am J Cancer Res 2019; 9(1): 108-21.
[PMID: 30755815]
[16]
Esguerra JLS, Ofori JK, Nagao M, et al. Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Mol Metab 2020; 32: 160-7.
[http://dx.doi.org/10.1016/j.molmet.2019.12.012] [PMID: 32029226]
[17]
Hochberg MC. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40(9): 1725.
[http://dx.doi.org/10.1002/art.1780400928] [PMID: 9324032]
[18]
Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol 2002; 29(2): 288-91.
[PMID: 11838846]
[19]
Xiao J, Wang J, Yuan L, Hao L, Wang D. Study on the mechanism and intervention strategy of sunitinib induced nephrotoxicity. Eur J Pharmacol 2019; 864: 172709.
[http://dx.doi.org/10.1016/j.ejphar.2019.172709] [PMID: 31586633]
[20]
Wu GC, Hu Y, Guan SY, Ye DQ, Pan HF. Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus. Biomolecules 2019; 9(6): 206.
[http://dx.doi.org/10.3390/biom9060206] [PMID: 31141998]
[21]
Leibler C, John S, Elsner RA, et al. Genetic dissection of TLR9 reveals complex regulatory and cryptic proinflammatory roles in mouse lupus. Nat Immunol 2022; 23(10): 1457-69.
[http://dx.doi.org/10.1038/s41590-022-01310-2] [PMID: 36151396]
[22]
Yokogawa M, Takaishi M, Nakajima K, et al. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic Lupus erythematosus. Arthritis Rheumatol 2014; 66(3): 694-706.
[http://dx.doi.org/10.1002/art.38298] [PMID: 24574230]
[23]
Waldner H. The role of innate immune responses in autoimmune disease development. Autoimmun Rev 2009; 8(5): 400-4.
[http://dx.doi.org/10.1016/j.autrev.2008.12.019] [PMID: 19162250]
[24]
Li Y, Lee PY, Reeves WH. Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch Immunol Ther Exp (Warsz) 2010; 58(5): 355-64.
[http://dx.doi.org/10.1007/s00005-010-0093-y] [PMID: 20676786]
[25]
Funauchi M, Ohno M, Minoda M, Horiuchi A. Abnormal expression of intercellular adhesion molecule-1 on peripheral blood mononuclear cells from patients with systemic lupus erythematosus. J Clin Lab Immunol 1993; 40(3): 115-24.
[PMID: 7877151]
[26]
Katsiari CG, Liossis SNC, Souliotis VL, Dimopoulos AM, Manoussakis MN, Sfikakis PP. Aberrant expression of the costimulatory molecule CD40 ligand on monocytes from patients with systemic lupus erythematosus. Clin Immunol 2002; 103(1): 54-62.
[http://dx.doi.org/10.1006/clim.2001.5172] [PMID: 11987985]
[27]
Kyttaris VC, Juang YT, Tsokos GC. Immune cells and cytokines in systemic lupus erythematosus: An update. Curr Opin Rheumatol 2005; 17(5): 518-22.
[http://dx.doi.org/10.1097/01.bor.0000170479.01451.ab] [PMID: 16093827]
[28]
Hagiwara E, Gourley MF, Lee S, Klinman DM. Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10: Interferon-γ–secreting cells in the peripheral blood. Arthritis Rheum 1996; 39(3): 379-85.
[http://dx.doi.org/10.1002/art.1780390305] [PMID: 8607886]
[29]
Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001; 44(6): 1313-9.
[http://dx.doi.org/10.1002/1529-0131(200106)44:6<1313::AID-ART223>3.0.CO;2-S] [PMID: 11407690]
[30]
Zhang J, Roschke V, Baker KP, et al. Cutting edge: A role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001; 166(1): 6-10.
[http://dx.doi.org/10.4049/jimmunol.166.1.6] [PMID: 11123269]
[31]
Li J, Wu GC, Zhang TP, et al. Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Sci Rep 2017; 7(1): 15119.
[http://dx.doi.org/10.1038/s41598-017-15156-4] [PMID: 29123179]
[32]
Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 2017; 13(11): 657-69.
[http://dx.doi.org/10.1038/nrrheum.2017.162] [PMID: 28978995]
[33]
Mills KHG. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 2011; 11(12): 807-22.
[http://dx.doi.org/10.1038/nri3095] [PMID: 22094985]
[34]
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223-7.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[35]
Zhang F, Wu L, Qian J, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun 2016; 75: 96-104.
[http://dx.doi.org/10.1016/j.jaut.2016.07.012] [PMID: 27481557]
[36]
Hao S, Shao Z. HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis. Int J Clin Exp Pathol 2015; 8(6): 7223-8.
[PMID: 26261618]
[37]
Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 2011; 25(24): 2573-8.
[http://dx.doi.org/10.1101/gad.178780.111] [PMID: 22155924]

© 2024 Bentham Science Publishers | Privacy Policy