Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Medicinal Chemistry of Estrogen-related Receptor Alpha (ERRα) Inverse Agonists

Author(s): Haibin Zhang, Yongli Du*, Yong Zheng, Huiting Lv, Zhijia Yan, Ning Dong, Yaling Zhu and Jingkang Shen

Volume 23, Issue 20, 2023

Published on: 22 May, 2023

Page: [1952 - 1963] Pages: 12

DOI: 10.2174/1568026623666230515145822

Price: $65

Abstract

Estrogen-related receptor alpha (ERRα), a member of the nuclear receptor superfamily, is strongly expressed in breast cancer cells. Its overexpression is associated with poor prognosis in triple- negative Breast Cancer (TNBC). ERRα expression could be inhibited by the downregulation of upstream oncogenic growth factors mTOR, HER2, and PI3K. Low expression of ERRα could suppress the migration and angiogenesis of tumor cells by inhibiting the activity of its downstream signals VEGF and WNT11. Studies have confirmed that ERRα inverse agonists can inhibit ERRα expression to treat breast cancer. Inverse agonists of ERRα could disrupt the interactions of ERRα with its coactivators and inhibit tumor development. Existing ERRα inverse agonists have shown moderate efficacy in inhibiting the growth of breast cancer cells. Clinical inverse agonists of ERRα have not been found in the literature. This review focuses on the research progress and the structureactivity relationship of ERRα inverse agonists, providing guidance for the research and discovery of new anti-tumor compounds for TNBC.

Keywords: ERRalpha, ERRalpha inverse agonists, Breast cancer, TNBC, Signaling pathways, Inverse agonistic activity.

Graphical Abstract
[1]
Casaburi, I.; Chimento, A.; De Luca, A.; Nocito, M.; Sculco, S.; Avena, P.; Trotta, F.; Rago, V.; Sirianni, R.; Pezzi, V. Cholesterol as an endogenous ERRα agonist: A new perspective to cancer treatment. Front. Endocrinol., 2018, 9, 525.
[http://dx.doi.org/10.3389/fendo.2018.00525] [PMID: 30254608]
[2]
Huss, J.M.; Kopp, R.P.; Kelly, D.P. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J. Biol. Chem., 2002, 277(43), 40265-40274.
[http://dx.doi.org/10.1074/jbc.M206324200] [PMID: 12181319]
[3]
Seth, A.; Steel, J.H.; Nichol, D.; Pocock, V.; Kumaran, M.K.; Fritah, A.; Mobberley, M.; Ryder, T.A.; Rowlerson, A.; Scott, J.; Poutanen, M.; White, R.; Parker, M. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab., 2007, 6(3), 236-245.
[http://dx.doi.org/10.1016/j.cmet.2007.08.004] [PMID: 17767910]
[4]
Huang, W.; Chen, L.; Sun, P. ERRα expression in ovarian cancer and promotes ovarian cancer cells migration in vitro. Arch. Gynecol. Obstet., 2022, 305(6), 1525-1534.
[http://dx.doi.org/10.1007/s00404-021-06323-0] [PMID: 34797420]
[5]
Dings, M.P.G.; van der Zalm, A.P.; Bootsma, S.; van Maanen, T.F.J.; Waasdorp, C.; van den Ende, T.; Liu, D.; Bailey, P.; Koster, J.; Zwijnenburg, D.A.; Spek, C.A.; Klomp, J.P.G.; Oubrie, A.; Hooijer, G.K.J.; Meijer, S.L.; van Berge Henegouwen, M.I.; Hulshof, M.C.; Bergman, J.; Oyarce, C.; Medema, J.P.; van Laarhoven, H.W.M.; Bijlsma, M.F. Estrogen-related receptor alpha drives mitochondrial biogenesis and resistance to neoadjuvant chemoradiation in esophageal cancer. Cell Rep. Med., 2022, 3(11)100802
[http://dx.doi.org/10.1016/j.xcrm.2022.100802] [PMID: 36334593]
[6]
Wang, L.; Yang, M.; Guo, X.; Yang, Z.; Liu, S.; Ji, Y.; Jin, H. Estrogen‐related receptor‐α promotes gallbladder cancer development by enhancing the transcription of Nectin‐4. Cancer Sci., 2020, 111(5), 1514-1527.
[http://dx.doi.org/10.1111/cas.14344] [PMID: 32030850]
[7]
Manna, S.; Bostner, J.; Sun, Y.; Miller, L.D.; Alayev, A.; Schwartz, N.S.; Lager, E.; Fornander, T.; Nordenskjöld, B.; Yu, J.J.; Stål, O.; Holz, M.K. ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clin. Cancer Res., 2016, 22(6), 1421-1431.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0857] [PMID: 26542058]
[8]
Bernatchez, G.; Giroux, V.; Lassalle, T.; Carpentier, A.C.; Rivard, N.; Carrier, J.C. ERRα metabolic nuclear receptor controls growth of colon cancer cells. Carcinogenesis, 2013, 34(10), 2253-2261.
[http://dx.doi.org/10.1093/carcin/bgt180] [PMID: 23720198]
[9]
Watanabe, A.; Kinoshita, Y.; Hosokawa, K.; Mori, T.; Yamaguchi, T.; Honjo, H. Function of estrogen-related receptor alpha in human endometrial cancer. J. Clin. Endocrinol. Metab., 2006, 91(4), 1573-1577.
[http://dx.doi.org/10.1210/jc.2005-1990] [PMID: 16464951]
[10]
Deblois, G.; Giguère, V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat. Rev. Cancer, 2013, 13(1), 27-36.
[http://dx.doi.org/10.1038/nrc3396] [PMID: 23192231]
[11]
Suzuki, T.; Miki, Y.; Moriya, T.; Shimada, N.; Ishida, T.; Hirakawa, H.; Ohuchi, N.; Sasano, H. Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Res., 2004, 64(13), 4670-4676.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0250] [PMID: 15231680]
[12]
Danza, K.; Porcelli, L.; De Summa, S.; Di Fonte, R.; Pilato, B.; Lacalamita, R.; Serratì, S.; Azzariti, A.; Tommasi, S. The ERRα– VDR axis promotes calcitriol degradation and estrogen signaling in breast cancer cells, while VDR‐CYP24A1‐ERRα overexpression correlates with poor prognosis in patients with basal‐like breast cancer. Mol. Oncol., 2022, 16(4), 904-920.
[http://dx.doi.org/10.1002/1878-0261.13013] [PMID: 34003583]
[13]
Stein, R.A.; Chang, C.; Kazmin, D.A.; Way, J.; Schroeder, T.; Wergin, M.; Dewhirst, M.W.; McDonnell, D.P. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer. Cancer Res., 2008, 68(21), 8805-8812.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1594] [PMID: 18974123]
[14]
Stein, R.A.; Gaillard, S.; McDonnell, D.P. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells. J. Steroid Biochem. Mol. Biol., 2009, 114(1-2), 106-112.
[http://dx.doi.org/10.1016/j.jsbmb.2009.02.010] [PMID: 19429439]
[15]
Luo, J.; Sladek, R.; Carrier, J.; Bader, J.A.; Richard, D.; Giguère, V. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol. Cell. Biol., 2003, 23(22), 7947-7956.
[http://dx.doi.org/10.1128/MCB.23.22.7947-7956.2003] [PMID: 14585956]
[16]
Chang, C.; McDonnell, D.P. Molecular pathways: The metabolic regulator estrogen-related receptor α as a therapeutic target in cancer. Clin. Cancer Res., 2012, 18(22), 6089-6095.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3221] [PMID: 23019305]
[17]
Cunningham, J.T.; Rodgers, J.T.; Arlow, D.H.; Vazquez, F.; Mootha, V.K.; Puigserver, P. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature, 2007, 450(7170), 736-740.
[http://dx.doi.org/10.1038/nature06322] [PMID: 18046414]
[18]
Chang, C.; Kazmin, D.; Jasper, J.S.; Kunder, R.; Zuercher, W.J.; McDonnell, D.P. The metabolic regulator ERRα a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell, 2011, 20(4), 500-510.
[http://dx.doi.org/10.1016/j.ccr.2011.08.023] [PMID: 22014575]
[19]
Dwyer, M.A.; Joseph, J.D.; Wade, H.E.; Eaton, M.L.; Kunder, R.S.; Kazmin, D.; Chang, C.; McDonnell, D.P. WNT11 expression is induced by estrogen-related receptor alpha and beta-catenin and acts in an autocrine manner to increase cancer cell migration. Cancer Res., 2010, 70(22), 9298-9308.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0226] [PMID: 20870744]
[20]
Murray, J.; Huss, J.M. Estrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway. Am. J. Physiol. Cell Physiol., 2011, 301(3), C630-C645.
[http://dx.doi.org/10.1152/ajpcell.00033.2011] [PMID: 21562305]
[21]
Zhang, L.D.; Chen, L.; Zhang, M.; Qi, H.J.; Chen, L.; Chen, H.F.; Zhong, M.K.; Shi, X.J.; Li, Q.Y. Downregulation of ERRα inhibits angiogenesis in human umbilical vein endothelial cells through regulating VEGF production and PI3K/Akt/STAT3 signaling pathway. Eur. J. Pharmacol., 2015, 769, 167-176.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.014] [PMID: 26586335]
[22]
Park, S.; Chang, C.Y.; Safi, R.; Liu, X.; Baldi, R.; Jasper, J.S.; Anderson, G.R.; Liu, T.; Rathmell, J.C.; Dewhirst, M.W.; Wood, K.C.; Locasale, J.W.; McDonnell, D.P. ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep., 2016, 15(2), 323-335.
[http://dx.doi.org/10.1016/j.celrep.2016.03.026] [PMID: 27050525]
[23]
Li, X.; Zhang, K.; Hu, Y.; Luo, N. ERRα activates SHMT2 transcription to enhance the resistance of breast cancer to lapatinib via modulating the mitochondrial metabolic adaption. Biosci. Rep., 2020, 40(1)BSR20192465
[http://dx.doi.org/10.1042/BSR20192465] [PMID: 31894856]
[24]
Kallen, J.; Lattmann, R.; Beerli, R.; Blechschmidt, A.; Blommers, M.J.J.; Geiser, M.; Ottl, J.; Schlaeppi, J.M.; Strauss, A.; Fournier, B. Crystal structure of human estrogen-related receptor alpha in complex with a synthetic inverse agonist reveals its novel molecular mechanism. J. Biol. Chem., 2007, 282(32), 23231-23239.
[http://dx.doi.org/10.1074/jbc.M703337200] [PMID: 17556356]
[25]
Patch, R.J.; Searle, L.L.; Kim, A.J.; De, D.; Zhu, X.; Askari, H.B.; O’Neill, J.C.; Abad, M.C.; Rentzeperis, D.; Liu, J.; Kemmerer, M.; Lin, L.; Kasturi, J.; Geisler, J.G.; Lenhard, J.M.; Player, M.R.; Gaul, M.D. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J. Med. Chem., 2011, 54(3), 788-808.
[http://dx.doi.org/10.1021/jm101063h] [PMID: 21218783]
[26]
Busch, B.B.; Stevens, W.C., Jr; Martin, R.; Ordentlich, P.; Zhou, S.; Sapp, D.W.; Horlick, R.A.; Mohan, R. Identification of a selective inverse agonist for the orphan nuclear receptor estrogen-related receptor alpha. J. Med. Chem., 2004, 47(23), 5593-5596.
[http://dx.doi.org/10.1021/jm049334f] [PMID: 15509154]
[27]
Xu, S.; Zhuang, X.; Pan, X.; Zhang, Z.; Duan, L.; Liu, Y.; Zhang, L.; Ren, X.; Ding, K. 1-Phenyl-4-benzoyl-1H-1,2,3-triazoles as orally bioavailable transcriptional function suppressors of estrogen-related receptor α. J. Med. Chem., 2013, 56(11), 4631-4640.
[http://dx.doi.org/10.1021/jm4003928] [PMID: 23656512]
[28]
Du, Y.; Song, L.; Zhang, L.; Ling, H.; Zhang, Y.; Chen, H.; Qi, H.; Shi, X.; Li, Q. The discovery of novel, potent ERR-alpha inverse agonists for the treatment of triple negative breast cancer. Eur. J. Med. Chem., 2017, 136, 457-467.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.050] [PMID: 28525844]
[29]
Ning, Y.; Chen, H.; Du, Y.; Ling, H.; Zhang, L.; Chen, L.; Qi, H.; Shi, X.; Li, Q. A novel compound LingH2-10 inhibits the growth of triple negative breast cancer cells in vitro and in vivo as a selective inverse agonist of estrogen-related receptor alpha. Biomed. Pharmacother., 2017, 93, 913-922.
[30]
Gao, Z.; Wang, T.; Li, R.; Du, Y.; Lv, H.; Zhang, L.; Chen, H.; Shi, X.; Li, Q.; Shen, J. The discovery of a novel series of potential ERRα inverse agonists based on p-nitrobenzenesulfonamide template for triple-negative breast cancer in vivo. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 125-134.
[http://dx.doi.org/10.1080/14756366.2021.1995728] [PMID: 34894977]
[31]
Pan, Z.; Wang, K.; Wang, X.; Jia, Z.; Yang, Y.; Duan, Y.; Huang, L.; Wu, Z.X.; Zhang, J.; Ding, X. Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Mol. Cancer, 2022, 21(1), 77.
[http://dx.doi.org/10.1186/s12943-022-01547-3] [PMID: 35303882]
[32]
Brindisi, M.; Frattaruolo, L.; Fiorillo, M.; Dolce, V.; Sotgia, F.; Lisanti, M.P.; Cappello, A.R. New insights into cholesterol-mediated ERRα activation in breast cancer progression and pro-tumoral microenvironment orchestration. FEBS J., 2023, 290(6), 1481-1501.
[http://dx.doi.org/10.1111/febs.16651] [PMID: 36237175]
[33]
Ghanbari, F.; Mader, S.; Philip, A. Cholesterol as an endogenous ligand of ERRα promotes ERRα-mediated cellular proliferation and metabolic target gene expression in breast cancer cells. Cells, 2020, 9(8), 1765.
[http://dx.doi.org/10.3390/cells9081765] [PMID: 32717915]
[34]
Arany, Z.; Foo, S.Y.; Ma, Y.; Ruas, J.L.; Bommi-Reddy, A.; Girnun, G.; Cooper, M.; Laznik, D.; Chinsomboon, J.; Rangwala, S.M.; Baek, K.H.; Rosenzweig, A.; Spiegelman, B.M. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature, 2008, 451(7181), 1008-1012.
[http://dx.doi.org/10.1038/nature06613] [PMID: 18288196]
[35]
Auld, K.L.; Berasi, S.P.; Liu, Y.; Cain, M.; Zhang, Y.; Huard, C.; Fukayama, S.; Zhang, J.; Choe, S.; Zhong, W.; Bhat, B.M.; Bhat, R.A.; Brown, E.L.; Martinez, R.V. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling. J. Mol. Endocrinol., 2012, 48(2), 177-191.
[http://dx.doi.org/10.1530/JME-11-0140] [PMID: 22333182]
[36]
Zou, C.; Yu, S.; Xu, Z.; Wu, D.; Ng, C.F.; Yao, X.; Yew, D.T.; Vanacker, J.M.; Chan, F.L. ERRα augments HIF ‐1 signalling by directly interacting with HIF ‐1 α in normoxic and hypoxic prostate cancer cells. J. Pathol., 2014, 233(1), 61-73.
[http://dx.doi.org/10.1002/path.4329] [PMID: 24425001]
[37]
Lu, Y.H.; Li, Q.Y.; Chen, L.; Shi, X.J. [XCT790 inhibits rat vascular smooth muscle cells proliferation through down-regulating the expression of estrogen-related receptor alpha Yao Xue Xue Bao, 2014, 49(2), 190-197.
[PMID: 24761608]
[38]
Liu, S.; Liang, H.; Yang, Z.; Cai, C.; Wu, Z.; Wu, X.; Dong, P.; Li, M.; Zheng, L.; Gong, W. Gemcitabine and XCT790, an ERRα inverse agonist, display a synergistic anticancer effect in pancreatic cancer. Int. J. Med. Sci., 2022, 19(2), 286-298.
[http://dx.doi.org/10.7150/ijms.68404] [PMID: 35165514]
[39]
Kallen, J.; Schlaeppi, J.M.; Bitsch, F.; Filipuzzi, I.; Schilb, A.; Riou, V.; Graham, A.; Strauss, A.; Geiser, M.; Fournier, B. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor alpha (ERRalpha): Crystal structure of ERRalpha ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1alpha. J. Biol. Chem., 2004, 279(47), 49330-49337.
[http://dx.doi.org/10.1074/jbc.M407999200] [PMID: 15337744]
[40]
Peng, L.; Zhang, Z.; Lei, C.; Li, S.; Zhang, Z.; Ren, X.; Chang, Y.; Zhang, Y.; Xu, Y.; Ding, K. Identification of new small-molecule inducers of estrogen-related receptor α (ERRα) degradation. ACS Med. Chem. Lett., 2019, 10(5), 767-772.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00025] [PMID: 31097997]
[41]
Karnati, K.R.; Wang, Y.; Du, Y. Exploring the binding mode and thermodynamics of inverse agonists against estrogen-related receptor alpha. RSC Advances, 2020, 10(28), 16659-16668.
[http://dx.doi.org/10.1039/C9RA10697A] [PMID: 35498853]
[42]
Bondeson, D.P.; Mares, A.; Smith, I.E.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; Zinn, N.; Grandi, P.; Shimamura, S.; Bergamini, G.; Faelth-Savitski, M.; Bantscheff, M.; Cox, C.; Gordon, D.A.; Willard, R.R.; Flanagan, J.J.; Casillas, L.N.; Votta, B.J.; den Besten, W.; Famm, K.; Kruidenier, L.; Carter, P.S.; Harling, J.D.; Churcher, I.; Crews, C.M. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol., 2015, 11(8), 611-617.
[http://dx.doi.org/10.1038/nchembio.1858]
[43]
Patch, R.J.; Huang, H.; Patel, S.; Cheung, W.; Xu, G.; Zhao, B.P.; Beauchamp, D.A.; Rentzeperis, D.; Geisler, J.G.; Askari, H.B.; Liu, J.; Kasturi, J.; Towers, M.; Gaul, M.D.; Player, M.R.; Towers, M.; Gaul, M.D.; Player, M.R. Indazole-based ligands for estrogen-related receptor α as potential anti-diabetic agents. Eur. J. Med. Chem., 2017, 138, 830-853.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.015] [PMID: 28735214]
[44]
Gao, Z.; Du, Y.; Sheng, X.; Shen, J. Molecular Dynamics Simulations Based on 1-Phenyl-4-Benzoyl-1-Hydro-Triazole ERRα. Inverse Agonists. Int. J. Mol. Sci., 2021, 22(7), 3724.
[http://dx.doi.org/10.3390/ijms22073724] [PMID: 33918423]
[45]
Schoepke, E.; Billon, C.; Haynes, K.M.; Avdagic, A.; Sitaula, S.; Sanders, R.; Adeyemi, C.M.; Walker, J.K.; Burris, T.P. A Selective ERRα/γ Inverse Agonist, SLU-PP-1072, Inhibits the Warburg Effect and Induces Apoptosis in Prostate Cancer Cells. ACS Chem. Biol., 2020, 15(9), 2338-2345.
[http://dx.doi.org/10.1021/acschembio.0c00670] [PMID: 32897058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy