Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Exploring the Potential Mechanism of Action of Ursolic Acid against Gastric Cancer and COVID-19 using Network Pharmacology and Bioinformatics Analysis

Author(s): Zhiyao Liu, Hailiang Huang*, Ying Yu, Yuqi Jia, Lingling Li, Xin Shi and Fangqi Wang

Volume 29, Issue 16, 2023

Published on: 24 May, 2023

Page: [1274 - 1292] Pages: 19

DOI: 10.2174/1381612829666230510124716

Price: $65

Abstract

Background: Patients with gastric cancer (GC) are more likely to be infected with 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the prognosis is worse. It is urgent to find effective treatment methods.

Objective: This study aimed to explore the potential targets and mechanism of ursolic acid (UA) on GC and COVID-19 by network pharmacology and bioinformatics analysis.

Methods: The online public database and weighted co-expression gene network analysis (WGCNA) were used to screen the clinical related targets of GC. COVID-19-related targets were retrieved from online public databases. Then, a clinicopathological analysis was performed on GC and COVID-19 intersection genes. Following that, the related targets of UA and the intersection targets of UA and GC/COVID-19 were screened. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome Analysis (KEGG) pathway enrichment analyses were performed on the intersection targets. Core targets were screened using a constructed protein-protein interaction network. Finally, molecular docking and molecular dynamics simulation (MDS) of UA and core targets were performed to verify the accuracy of the prediction results.

Results: A total of 347 GC/COVID-19-related genes were obtained. The clinical features of GC/COVID-19 patients were revealed using clinicopathological analysis. Three potential biomarkers (TRIM25, CD59, MAPK14) associated with the clinical prognosis of GC/COVID-19 were identified. A total of 32 intersection targets of UA and GC/COVID-19 were obtained. The intersection targets were primarily enriched in FoxO, PI3K/Akt, and ErbB signaling pathways. HSP90AA1, CTNNB1, MTOR, SIRT1, MAPK1, MAPK14, PARP1, MAP2K1, HSPA8, EZH2, PTPN11, and CDK2 were identified as core targets. Molecular docking revealed that UA strongly binds to its core targets. The MDS results revealed that UA stabilizes the protein-ligand complexes of PARP1, MAPK14, and ACE2.

Conclusion: This study found that in patients with gastric cancer and COVID-19, UA may bind to ACE2, regulate core targets such as PARP1 and MAPK14, and the PI3K/Akt signaling pathway, and participate in antiinflammatory, anti-oxidation, anti-virus, and immune regulation to exert therapeutic effects.

Keywords: COVID-19, gastric cancer, network pharmacology, ursolic acid, bioinformatics analysis, WGCNA.

[1]
WHO. director-general’s opening remarks at the media briefing on COVID-19-11 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19%2D%2D-11-march-2020
[2]
Zhang R, Wang Q, Yang J. Impact of liver functions by repurposed drugs for COVID-19 treatment. J Clin Transl Hepatol 2022; 10(4): 748-56.
[http://dx.doi.org/10.14218/JCTH.2021.00368] [PMID: 36062269]
[3]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[4]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[5]
Sonkar C, Kashyap D, Varshney N, Baral B, Jha HC. Impact of gastrointestinal symptoms in COVID-19: A molecular approach. SN Compr Clin Med 2020; 2(12): 2658-69.
[http://dx.doi.org/10.1007/s42399-020-00619-z] [PMID: 33169110]
[6]
Bakouny Z, Hawley JE, Choueiri TK, et al. COVID-19 and cancer: Current challenges and perspectives. Cancer Cell 2020; 38(5): 629-46.
[http://dx.doi.org/10.1016/j.ccell.2020.09.018] [PMID: 33049215]
[7]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[8]
Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol 2020; 18(3): 534-42.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[9]
Dai M, Liu D, Liu M, et al. Patients with cancer appear more vulnerable to SARS-CoV-2: A multicenter study during the COVID-19 outbreak. Cancer Discov 2020; 10(6): 783-91.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0422] [PMID: 32345594]
[10]
Wang G, Pan L, Zhao J, et al. Case fatality rate of the adult in-patients with COVID-19 and digestive system tumors. Medicine 2022; 101(25): e29364.
[http://dx.doi.org/10.1097/MD.0000000000029364] [PMID: 35758367]
[11]
Chen H, Li R, Zhang F, Yao Q, Guo Y. A scientometric visualization analysis for natural products on cancer research from 2008 to 2020. Front Pharmacol 2021; 12: 650141.
[http://dx.doi.org/10.3389/fphar.2021.650141] [PMID: 34421584]
[12]
Li H, Komori A, Li M, et al. Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2. J Mol Liq 2023; 374: 121253.
[http://dx.doi.org/10.1016/j.molliq.2023.121253] [PMID: 36694691]
[13]
Erdmann J, Kujaciński M, Wiciński M. Beneficial effects of ursolic acid and its derivatives-focus on potential biochemical mechanisms in cardiovascular conditions. Nutrients 2021; 13(11): 3900.
[http://dx.doi.org/10.3390/nu13113900] [PMID: 34836155]
[14]
Manayi A, Nikan M, Nobakht-Haghighi N, Abdollahi M. Advances in the anticancer value of the ursolic acid through nanodelivery. Curr Med Chem 2019; 25(37): 4866-75.
[http://dx.doi.org/10.2174/0929867324666170713102918] [PMID: 28707589]
[15]
Wan S, Huang C, Wang A, Zhu X. Ursolic acid improves the bacterial community mapping of the intestinal tract in liver fibrosis mice. PeerJ 2020; 8: e9050.
[http://dx.doi.org/10.7717/peerj.9050] [PMID: 32355580]
[16]
Alam M, Ali S, Ahmed S, et al. Therapeutic potential of ursolic acid in cancer and diabetic neuropathy diseases. Int J Mol Sci 2021; 22(22): 12162.
[http://dx.doi.org/10.3390/ijms222212162] [PMID: 34830043]
[17]
Ikeda Y, Murakami A, Ohigashi H. Ursolic acid: An anti- and pro-inflammatory triterpenoid. Mol Nutr Food Res 2008; 52(1): 26-42.
[http://dx.doi.org/10.1002/mnfr.200700389] [PMID: 18203131]
[18]
do Nascimento P, Lemos T, Bizerra A, et al. Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 2014; 19(1): 1317-27.
[http://dx.doi.org/10.3390/molecules19011317] [PMID: 24451251]
[19]
Kong L, Li S, Liao Q, et al. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res 2013; 98(1): 44-53.
[http://dx.doi.org/10.1016/j.antiviral.2013.02.003] [PMID: 23422646]
[20]
Ma WL, Chang N, Yu Y, et al. Ursolic acid silences CYP19A1/aromatase to suppress gastric cancer growth. Cancer Med 2022; 11(14): 2824-35.
[http://dx.doi.org/10.1002/cam4.4536] [PMID: 35545835]
[21]
Xiang F, Pan C, Kong Q, et al. Ursolic acid inhibits the proliferation of gastric cancer cells by targeting miR-133a. Oncol Res 2014; 22(5-6): 267-73.
[PMID: 26629938]
[22]
Kim ES, Moon A. Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells. Oncol Lett 2015; 9(2): 897-902.
[http://dx.doi.org/10.3892/ol.2014.2735] [PMID: 25621065]
[23]
Wei X, Lan Y, Nong Z, et al. Ursolic acid represses influenza A virus-triggered inflammation and oxidative stress in A549 cells by modulating the miR-34c-5p/TLR5 axis. Cytokine 2022; 157: 155947.
[http://dx.doi.org/10.1016/j.cyto.2022.155947] [PMID: 35780710]
[24]
Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J Biomol Struct Dyn 2022; 40(1): 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[25]
Lee YG, Kang KW, Hong W, et al. Potent antiviral activity of Agrimonia pilosa, Galla rhois, and their components against SARS-CoV-2. Bioorg Med Chem 2021; 45: 116329.
[http://dx.doi.org/10.1016/j.bmc.2021.116329] [PMID: 34329818]
[26]
Alhadrami HA, Sayed AM, Sharif AM, Azhar EI, Rateb ME. Olive-derived triterpenes suppress SARS CoV-2 main protease: A promising scaffold for future therapeutics. Molecules 2021; 26(9): 2654.
[http://dx.doi.org/10.3390/molecules26092654] [PMID: 34062737]
[27]
Chen X, Wan Y, Zhou T, Li J, Wei Y. Ursolic acid attenuates lipopolysaccharide-induced acute lung injury in a mouse model. Immunotherapy 2013; 5(1): 39-47.
[http://dx.doi.org/10.2217/imt.12.144] [PMID: 23256797]
[28]
Hu Z, Gu Z, Sun M, et al. Ursolic acid improves survival and attenuates lung injury in septic rats induced by cecal ligation and puncture. J Surg Res 2015; 194(2): 528-36.
[http://dx.doi.org/10.1016/j.jss.2014.10.027] [PMID: 25454976]
[29]
Al-kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GES. Ursolic acid and SARS-CoV-2 infection: A new horizon and perspective. Inflammopharmacology 2022; 30(5): 1493-501.
[http://dx.doi.org/10.1007/s10787-022-01038-3] [PMID: 35922738]
[30]
da Silva Ferreira D, Esperandim VR, Toldo MPA, Saraiva J, Cunha WR, de Albuquerque S. Trypanocidal activity and acute toxicity assessment of triterpene acids. Parasitol Res 2010; 106(4): 985-9.
[http://dx.doi.org/10.1007/s00436-010-1740-2] [PMID: 20140451]
[31]
Geerlofs L, He Z, Xiao S, Xiao ZC. Repeated dose (90 days) oral toxicity study of ursolic acid in Han-Wistar rats. Toxicol Rep 2020; 7: 610-23.
[http://dx.doi.org/10.1016/j.toxrep.2020.04.005] [PMID: 32435599]
[32]
Zhu Z, Qian Z, Yan Z, Zhao C, Wang H, Ying G. A phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors. Int J Nanomedicine 2013; 8: 129-36.
[http://dx.doi.org/10.2147/IJN.S38271] [PMID: 23319864]
[33]
Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, et al. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 2022; 356: 119042.
[http://dx.doi.org/10.1016/j.molliq.2022.119042]
[34]
Zhou Z, Chen B, Chen S, et al. Applications of network pharmacology in traditional Chinese medicine research. Evid Based Complement Alternat Med 2020; 2020: 1646905.
[http://dx.doi.org/10.1155/2020/1646905] [PMID: 32148533]
[35]
Marjani N, Dareini M, Asadzade-Lotfabad M, et al. Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence 2022; 37(2): 310-22.
[http://dx.doi.org/10.1002/bio.4173] [PMID: 34862709]
[36]
Samandar F, Amiri Tehranizadeh Z, Saberi MR, Chamani J. 1,2,3,4,6-Pentagalloyl glucose of Pistacia lentiscus can inhibit the replication and transcription processes and viral pathogenesis of SARS-CoV-2. Mol Cell Probes 2022; 65: 101847.
[http://dx.doi.org/10.1016/j.mcp.2022.101847] [PMID: 35843391]
[37]
Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol 2008; 443: 365-82.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19] [PMID: 18446297]
[38]
Hildebrand PW, Rose AS, Tiemann JKS. Bringing molecular dynamics simulation data into view. Trends Biochem Sci 2019; 44(11): 902-13.
[http://dx.doi.org/10.1016/j.tibs.2019.06.004] [PMID: 31301982]
[39]
Gao M, Kong W, Huang Z, Xie Z. Identification of key genes related to lung squamous cell carcinoma using bioinformatics analysis. Int J Mol Sci 2020; 21(8): 2994.
[http://dx.doi.org/10.3390/ijms21082994] [PMID: 32340320]
[40]
Qi W, Li R, Li L, Li S, Zhang H, Tian H. Identification of key genes associated with esophageal adenocarcinoma based on bioinformatics analysis. Ann Transl Med 2021; 9(23): 1711.
[http://dx.doi.org/10.21037/atm-21-4015] [PMID: 35071405]
[41]
Wu C, Huang ZH, Meng ZQ, et al. A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med 2021; 16(1): 121.
[http://dx.doi.org/10.1186/s13020-021-00534-y] [PMID: 34809653]
[42]
Safran M, Chalifa-Caspi V, Shmueli O, et al. Human gene-centric databases at the weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res 2003; 31(1): 142-6.
[http://dx.doi.org/10.1093/nar/gkg050] [PMID: 12519968]
[43]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[44]
Kim S, Chen J, Cheng T, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019; 47(D1): D1102-9.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[45]
UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-15.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[46]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9(1): 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[47]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[48]
Daina A, Michielin O, Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 2019; 47(W1): W357-64.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[49]
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007; 25(2): 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[50]
Xu HY, Zhang YQ, Liu ZM, et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2019; 47(D1): D976-82.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[51]
Davis AP, Grondin CJ, Johnson RJ, et al. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res 2021; 49(D1): D1138-43.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[52]
Huang H, Zhang G, Zhou Y, et al. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem 2018; 6: 138.
[http://dx.doi.org/10.3389/fchem.2018.00138] [PMID: 29868550]
[53]
Oliveros JC. An interactive tool for comparing lists with Venn Diagrams. 2007. Available from: http://bioinfogp.cnb.csic.es/tools/venny/index.html
[54]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[55]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[56]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[57]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[58]
Yuan C, Wang MH, Wang F, et al. Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci 2021; 270: 119105.
[http://dx.doi.org/10.1016/j.lfs.2021.119105] [PMID: 33497736]
[59]
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol 2020; 20(10): 615-32.
[http://dx.doi.org/10.1038/s41577-020-00434-6] [PMID: 32887954]
[60]
Ofuyatan O, Ighalo J, Olukanni D, Adeniyi A, Oluwafemi J. Implications of COVID-19 pandemic on energy and environment research in Nigeria. The United Nations and Sustainable Development Goals 2022; 91-101.
[http://dx.doi.org/10.1007/978-3-030-95971-5_8]
[61]
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol 2020; 21(3): 335-7.
[http://dx.doi.org/10.1016/S1470-2045(20)30096-6] [PMID: 32066541]
[62]
Rahimmanesh I, Shariati L, Dana N, Esmaeili Y, Vaseghi G, Haghjooy JS. Cancer occurrence as the upcoming complications of COVID-19. Front Mol Biosci 2022; 8: 813175.
[http://dx.doi.org/10.3389/fmolb.2021.813175] [PMID: 35155571]
[63]
Martin S, Kaeuffer C, Leyendecker P, et al. COVID -19 in patients with cancer: A retrospective study of 212 cases from a french SARS-CoV-2 cluster during the first wave of the COVID-19 pandemic. Oncologist 2021; 26(9): e1656-9.
[http://dx.doi.org/10.1002/onco.13831] [PMID: 34028132]
[64]
Loizides S, Papamichael D. Considerations and challenges in the management of the older patients with gastric cancer. Cancers 2022; 14(6): 1587.
[http://dx.doi.org/10.3390/cancers14061587] [PMID: 35326739]
[65]
Grimes JM, Grimes KV. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J Mol Cell Cardiol 2020; 144: 63-5.
[http://dx.doi.org/10.1016/j.yjmcc.2020.05.007] [PMID: 32422320]
[66]
Vere G, Alam MR, Farrar S, et al. Targeting the ubiquitylation and ISGylation machinery for the treatment of COVID-19. Biomolecules 2022; 12(2): 300.
[http://dx.doi.org/10.3390/biom12020300] [PMID: 35204803]
[67]
Zhang W, Li D, Xu B, et al. Serum peptidome profiles immune response of COVID-19 Vaccine administration. Front Immunol 2022; 13: 956369.
[http://dx.doi.org/10.3389/fimmu.2022.956369] [PMID: 36091008]
[68]
Baskol G, Özel M, Saracoglu H, et al. New avenues to explore in SARS-CoV-2 infection: Both TRIM25 and TRIM56 positively correlate with VEGF, GAS6, and sAXL in COVID-19 patients. Viral Immunol 2022; 35(10): 690-9.
[http://dx.doi.org/10.1089/vim.2022.0112] [PMID: 36450108]
[69]
Chen Z, Liu Q, Zhu Z, et al. Ursolic acid protects against proliferation and inflammatory response in lps-treated gastric tumour model and cells by inhibiting NLRP3 inflammasome activation. Cancer Manag Res 2020; 12: 8413-24.
[http://dx.doi.org/10.2147/CMAR.S264070] [PMID: 32982435]
[70]
Zhang H, Li X, Ding J, et al. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int J Pharm 2013; 441(1-2): 261-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.034] [PMID: 23194884]
[71]
Zong L, Cheng G, Zhao J, et al. Inhibitory effect of ursolic acid on the migration and invasion of doxorubicin-resistant breast cancer. Molecules 2022; 27(4): 1282.
[http://dx.doi.org/10.3390/molecules27041282] [PMID: 35209071]
[72]
Vardhan S, Sahoo SK. in silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med 2020; 124: 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[73]
Hussain H, Green IR, Ali I, et al. Ursolic acid derivatives for pharmaceutical use: A patent review (2012-2016). Expert Opin Ther Pat 2017; 27(9): 1061-72.
[http://dx.doi.org/10.1080/13543776.2017.1344219] [PMID: 28637397]
[74]
Yang Y, Li C, Liu N, et al. Ursolic acid alleviates heat stress-induced lung injury by regulating endoplasmic reticulum stress signaling in mice. J Nutr Biochem 2021; 89: 108557.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108557] [PMID: 33249187]
[75]
Yodkeeree S, Ooppachai C, Pompimon W, Limtrakul Dejkriengkraikul P. O-Methylbulbocapnine and dicentrine suppress lps-induced inflammatory response by blocking NF-κB and AP-1 activation through inhibiting MAPKs and Akt signaling in RAW264.7 macrophages. Biol Pharm Bull 2018; 41(8): 1219-27.
[http://dx.doi.org/10.1248/bpb.b18-00037] [PMID: 30068871]
[76]
Li F, Li J, Wang PH, et al. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim Biophys Acta Mol Basis Dis 2021; 1867(12): 166260.
[http://dx.doi.org/10.1016/j.bbadis.2021.166260] [PMID: 34461258]
[77]
Khezri MR. PI3K/AKT signaling pathway: A possible target for adjuvant therapy in COVID-19. Hum Cell 2021; 34(2): 700-1.
[http://dx.doi.org/10.1007/s13577-021-00484-5] [PMID: 33432441]
[78]
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898: 173983.
[http://dx.doi.org/10.1016/j.ejphar.2021.173983] [PMID: 33647255]
[79]
Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med 2016; 67(1): 11-28.
[http://dx.doi.org/10.1146/annurev-med-062913-051343] [PMID: 26473415]
[80]
Wu YJ, Wong BS, Yea SH, Lu CI, Weng SH. Sinularin induces apoptosis through mitochondria dysfunction and inactivation of the pI3K/Akt/mTOR pathway in gastric carcinoma cells. Mar Drugs 2016; 14(8): 142.
[http://dx.doi.org/10.3390/md14080142] [PMID: 27472346]
[81]
Xu L, Chen J, Jia L, Chen X, Awaleh Moumin F, Cai J. SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. J Cell Mol Med 2020; 24(24): 14392-404.
[http://dx.doi.org/10.1111/jcmm.16060] [PMID: 33145952]
[82]
Huang YF, Bai C, He F, Xie Y, Zhou H. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19). Pharmacol Res 2020; 158: 104939.
[http://dx.doi.org/10.1016/j.phrs.2020.104939] [PMID: 32445956]
[83]
Wyler E, Mösbauer K, Franke V, et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021; 24(3): 102151.
[http://dx.doi.org/10.1016/j.isci.2021.102151] [PMID: 33585804]
[84]
Lee JS, Han D, Kim SY, et al. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression. Proteomics 2021; 21(11-12): 2000278.
[http://dx.doi.org/10.1002/pmic.202000278] [PMID: 33945677]
[85]
Ma D, Liu S, Hu L, et al. Single-cell RNA sequencing identify SDCBP in ACE2-positive bronchial epithelial cells negatively correlates with COVID-19 severity. J Cell Mol Med 2021; 25(14): 7001-12.
[http://dx.doi.org/10.1111/jcmm.16714] [PMID: 34137173]
[86]
Eccles SA, Massey A, Raynaud FI, et al. NVP-AUY922: A novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 2008; 68(8): 2850-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5256] [PMID: 18413753]
[87]
Xi L, Xiao C, Bandsma RHJ, Naples M, Adeli K, Lewis GF. C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: Role of mitogen-activated protein kinases. Hepatology 2011; 53(1): 127-35.
[http://dx.doi.org/10.1002/hep.24011] [PMID: 20967757]
[88]
Li Y, Meng T, Hao N, et al. Immune regulation mechanism of Astragaloside IV on RAW264.7 cells through activating the NF-κB/MAPK signaling pathway. Int Immunopharmacol 2017; 49: 38-49.
[http://dx.doi.org/10.1016/j.intimp.2017.05.017] [PMID: 28550733]
[89]
Kumar S, Boehm J, Lee JC. p38 MAP kinases: Key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2(9): 717-26.
[http://dx.doi.org/10.1038/nrd1177] [PMID: 12951578]
[90]
Mesquita FP, Moreira-Nunes CA, da Silva EL, et al. MAPK14 (p38α) inhibition effects against metastatic gastric cancer cells: A potential biomarker and pharmacological target. Toxicol In Vitro 2020; 66: 104839.
[http://dx.doi.org/10.1016/j.tiv.2020.104839] [PMID: 32243890]
[91]
Fei B, Wu H. miR-378 inhibits progression of human gastric cancer MGC-803 cells by targeting MAPK1 in vitro. Oncol Res 2013; 20(12): 557-64.
[http://dx.doi.org/10.3727/096504013X13775486749254] [PMID: 24139413]
[92]
Hu L, Wu H, Wan X, et al. microRNA-585 suppresses tumor proliferation and migration in gastric cancer by directly targeting MAPK1. Biochem Biophys Res Commun 2018; 499(1): 52-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.116] [PMID: 29550487]
[93]
Liu Y, Zhang Y, Zhao Y, Gao D, Xing J, Liu H. High PARP-1 expression is associated with tumor invasion and poor prognosis in gastric cancer. Oncol Lett 2016; 12(5): 3825-35.
[http://dx.doi.org/10.3892/ol.2016.5169] [PMID: 27895737]
[94]
Wang X, Fu Z, Chen Y, Liu L. Fas expression is downregulated in gastric cancer. Mol Med Rep 2017; 15(2): 627-34.
[http://dx.doi.org/10.3892/mmr.2016.6037] [PMID: 28000850]
[95]
Park SH, Jang KY, Kim MJ, et al. Tumor suppressive effect of PARP1 and FOXO3A in gastric cancers and its clinical implications. Oncotarget 2015; 6(42): 44819-31.
[http://dx.doi.org/10.18632/oncotarget.6264] [PMID: 26540566]
[96]
Lampropoulou DI, Bala VM, Zerva E, et al. The potential role of the combined PARP-1 and VEGF inhibition in severe SARS-CoV-2 (COVID-19) infection. J Infect Dev Ctries 2022; 16(1): 101-11.
[http://dx.doi.org/10.3855/jidc.15386] [PMID: 35192527]
[97]
Omran HM, Almaliki MS. Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. J Infect Public Health 2020; 13(9): 1196-201.
[http://dx.doi.org/10.1016/j.jiph.2020.06.004] [PMID: 32534944]
[98]
Rajawat J, Chandra A. Role of poly(ADP-ribose) polymerase (PARP1) in viral infection and its implication in SARS-CoV-2 pathogenesis. Curr Drug Targets 2021; 22(13): 1477-84.
[http://dx.doi.org/10.2174/18735592MTEzsNDgfx] [PMID: 33494667]
[99]
Szabo C, Martins V, Liaudet L. Poly(ADP-Ribose) polymerase inhibition in acute lung injury. A reemerging concept. Am J Respir Cell Mol Biol 2020; 63(5): 571-90.
[http://dx.doi.org/10.1165/rcmb.2020-0188TR] [PMID: 32640172]
[100]
Maiese K. The mechanistic target of rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[http://dx.doi.org/10.2174/18755739MTA2sMTExy] [PMID: 32334502]
[101]
Zhang H, Huang H, Xu X, et al. LncRNA HCG11 promotes proliferation and migration in gastric cancer via targeting miR-1276/CTNNB1 and activating Wnt signaling pathway. Cancer Cell Int 2019; 19(1): 350.
[http://dx.doi.org/10.1186/s12935-019-1046-0] [PMID: 31889902]
[102]
Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99: 141-9.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[103]
Liu G, Pang Y, Zhang Y, Fu H, Xiong W, Zhang Y. GJB4 promotes gastric cancer cell proliferation and migration via Wnt/CTNNB1 pathway. OncoTargets Ther 2019; 12: 6745-55.
[http://dx.doi.org/10.2147/OTT.S205601] [PMID: 31692499]
[104]
Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, Buonaguro FM. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 2013; 102(2): 74-83.
[http://dx.doi.org/10.1016/j.ygeno.2013.04.001] [PMID: 23583669]
[105]
Vastrad B, Vastrad C, Tengli A. Bioinformatics analyses of significant genes, related pathways, and candidate diagnostic biomarkers and molecular targets in SARS-CoV-2/COVID-19. Gene Rep 2020; 21: 100956.
[http://dx.doi.org/10.1016/j.genrep.2020.100956] [PMID: 33553808]
[106]
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The current state of NAD + -dependent histone deacetylases (Sirtuins) as novel therapeutic targets. Med Res Rev 2018; 38(1): 147-200.
[http://dx.doi.org/10.1002/med.21436] [PMID: 28094444]
[107]
Zhang W, Liao K, Liu D. MiRNA-12129 suppresses cell proliferation and block cell cycle progression by targeting SIRT1 in GASTRIC cancer. Technol Cancer Res Treat 2020; 19.
[http://dx.doi.org/10.1177/1533033820928144] [PMID: 32508267]
[108]
Miller R, Wentzel AR, Richards GA. COVID-19: NAD+ deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Med Hypotheses 2020; 144: 110044.
[http://dx.doi.org/10.1016/j.mehy.2020.110044] [PMID: 32758884]
[109]
Bordoni V, Tartaglia E, Sacchi A, et al. The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. Int J Infect Dis 2021; 105: 49-53.
[http://dx.doi.org/10.1016/j.ijid.2021.02.019] [PMID: 33578018]
[110]
Yang Q, Wang B, Gao W, et al. SIRT1 is downregulated in gastric cancer and leads to G1-phase arrest via NF-κB/Cyclin D1 signaling. Mol Cancer Res 2013; 11(12): 1497-507.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0214] [PMID: 24107295]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy