General Review Article

姜黄素及其类似物通过Nrf2通路对代谢综合征的保护作用

卷 31, 期 25, 2024

发表于: 12 July, 2023

页: [3966 - 3976] 页: 11

弟呕挨: 10.2174/0929867330666230510101150

价格: $65

摘要

代谢综合征(MetS)是指包括胰岛素抵抗、中枢性肥胖、动脉粥样硬化性血脂异常和高血压在内的一系列疾病。由于这些失调,如果不治疗,MetS可能会增加CVA、CVD和糖尿病的风险。正如世卫组织所描述的那样,心血管疾病是世界上导致死亡的主要原因,这促使研究人员调查其风险因素的管理,特别是MetS。据报道,自由基活性氧(ROS)的大量产生引起的氧化应激及其氧化还原状态的改变在MetS中起着重要的调节作用。因此,使用具有较高生物利用度的新型抗氧化剂是一种有效的治疗方法。姜黄素(一种二芳基七烷类多酚)被用作治疗包括心血管疾病和糖尿病在内的各种疾病的传统药物,其抗氧化特性的特点是,至少部分是通过激活Nrf2/ are信号通路介导的。Nrf2是一种转录因子,在调节内部防御系统和增加抗氧化水平以减少氧化损伤和细胞凋亡中起关键作用。姜黄素可增强Nrf2的表达和稳定性,从而提高Nrf2向细胞核的迁移速率,调节are基因的表达,从而保护细胞免受氧化应激的影响。本文综述了姜黄素及其衍生物通过Nrf2调控在糖尿病、高血压、血脂异常和肥胖等多种疾病中的分子作用。

关键词: 姜黄素,Nrf2通路,代谢综合征,糖尿病,高血压,肥胖。

[1]
Weinstock, R.S.; Drews, K.L.; Caprio, S.; Leibel, N.I.; McKay, S.V.; Zeitler, P.S. Metabolic syndrome is common and persistent in youth-onset type 2 diabetes: Results from the TODAY clinical trial. Obesity, 2015, 23(7), 1357-1361.
[http://dx.doi.org/10.1002/oby.21120] [PMID: 26047470]
[2]
Zhou, X.; Song, Y.; Zeng, C.; Zhang, H.; Lv, C.; Shi, M.; Qin, S. Molecular mechanism underlying the regulatory effect of vine tea on metabolic syndrome by targeting redox balance and gut microbiota. Front. Nutr., 2022, 9, 802015.
[http://dx.doi.org/10.3389/fnut.2022.802015] [PMID: 35252293]
[3]
Luyu, L.; Aixia, L.; Lulu, W.; Lin, X. Epidemiological investigation of metabolic syndrome in the elderly and study on preventive measures. J. Public Health, 2021, 6, 107-110.
[4]
Urakawa, H.; Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Morioka, K.; Maruyama, N.; Kitagawa, N.; Tanaka, T.; Hori, Y.; Nakatani, K.; Yano, Y.; Adachi, Y. Oxidative stress is associated with adiposity and insulin resistance in men. J. Clin. Endocrinol. Metab., 2003, 88(10), 4673-4676.
[http://dx.doi.org/10.1210/jc.2003-030202] [PMID: 14557439]
[5]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[6]
Evans, J.L.; Maddux, B.A.; Goldfine, I.D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal., 2005, 7(7-8), 1040-1052.
[http://dx.doi.org/10.1089/ars.2005.7.1040] [PMID: 15998259]
[7]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[8]
Liang, H.; He, K.; Li, T.; Cui, S.; Tang, M.; Kang, S.; Ma, W.; Song, L. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci. Rep., 2020, 10(1), 21416.
[http://dx.doi.org/10.1038/s41598-020-78379-y] [PMID: 33293561]
[9]
Zhang, Z.; Zhang, H.; Chen, S.; Xu, Y.; Yao, A.; Liao, Q.; Han, L.; Zou, Z.; Zhang, X. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway. Nutr. Res., 2017, 38, 27-33.
[http://dx.doi.org/10.1016/j.nutres.2017.01.003] [PMID: 28381351]
[10]
Chen, Y.; Luo, H.Q.; Sun, L.L.; Xu, M.T.; Yu, J.; Liu, L.L.; Zhang, J.Y.; Wang, Y.Q.; Wang, H.X.; Bao, X.F.; Meng, G.L. Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement. Int. J. Mol. Sci., 2018, 19(9), 2592.
[http://dx.doi.org/10.3390/ijms19092592] [PMID: 30200365]
[11]
Liu, T.T.; Zeng, Y.; Tang, K.; Chen, X.; Zhang, W.; Xu, X.L. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis, 2017, 262, 39-50.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.05.003] [PMID: 28500865]
[12]
He, J.; Zhang, J.; Dong, L.; Dang, X.; Wang, L.; Cheng, L.; Huang, Y. Dihydromyricetin attenuates metabolic syndrome and improves insulin sensitivity by upregulating insulin receptor substrate-1 (Y612) tyrosine phosphorylation in db/db mice. Diabetes Metab. Syndr. Obes., 2019, 12, 2237-2249.
[http://dx.doi.org/10.2147/DMSO.S218487] [PMID: 31802924]
[13]
Yang, L.; Zheng, C. Optimization of the technology of extracting dihydromyricetin from ampelopsis by orthogonal experimental design. Adv. Mat. Res., 2012, 550-553, 1709-1714.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.550-553.1709]
[14]
Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature, 2006, 444(7121), 881-887.
[http://dx.doi.org/10.1038/nature05488] [PMID: 17167477]
[15]
Després, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol., 2008, 28(6), 1039-1049.
[http://dx.doi.org/10.1161/ATVBAHA.107.159228] [PMID: 18356555]
[16]
Alkhulaifi, F.; Darkoh, C. Meal timing, meal frequency and metabolic syndrome. Nutrients, 2022, 14(9), 1719.
[http://dx.doi.org/10.3390/nu14091719] [PMID: 35565686]
[17]
Fathi Dizaji, B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab. Syndr., 2018, 12(5), 783-789.
[http://dx.doi.org/10.1016/j.dsx.2018.04.009] [PMID: 29673926]
[18]
Matsuzawa, Y.; Funahashi, T.; Nakamura, T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb., 2011, 18(8), 629-639.
[http://dx.doi.org/10.5551/jat.7922] [PMID: 21737960]
[19]
The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients. Metab. Syndr. Relat. Disord., 2019, 17(5), 296-302.
[http://dx.doi.org/10.1089/met.2019.0005] [PMID: 30932744]
[20]
Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci., 2022, 23(2), 786.
[http://dx.doi.org/10.3390/ijms23020786] [PMID: 35054972]
[21]
Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[22]
Kahn, S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia, 2003, 46(1), 3-19.
[http://dx.doi.org/10.1007/s00125-002-1009-0] [PMID: 12637977]
[23]
Griffin, M.E.; Marcucci, M.J.; Cline, G.W.; Bell, K.; Barucci, N.; Lee, D.; Goodyear, L.J.; Kraegen, E.W.; White, M.F.; Shulman, G.I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 1999, 48(6), 1270-1274.
[http://dx.doi.org/10.2337/diabetes.48.6.1270] [PMID: 10342815]
[24]
Boden, G.; Shulman, G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and β-cell dysfunction. Eur. J. Clin. Invest., 2002, 32(S3), 14-23.
[http://dx.doi.org/10.1046/j.1365-2362.32.s3.3.x] [PMID: 12028371]
[25]
Fröjdö, S.; Vidal, H.; Pirola, L. Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim. Biophys. Acta Mol. Basis Dis., 2009, 1792(2), 83-92.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.019] [PMID: 19041393]
[26]
Lewis, G.F.; Carpentier, A.C.; Pereira, S.; Hahn, M.; Giacca, A. Direct and indirect control of hepatic glucose production by insulin. Cell Metab., 2021, 33(4), 709-720.
[http://dx.doi.org/10.1016/j.cmet.2021.03.007] [PMID: 33765416]
[27]
Patel, P.; Abate, N. Body fat distribution and insulin resistance. Nutrients, 2013, 5(6), 2019-2027.
[http://dx.doi.org/10.3390/nu5062019] [PMID: 23739143]
[28]
Murakami, T.; Michelagnoli, S.; Longhi, R.; Gianfranceschi, G.; Pazzucconi, F.; Calabresi, L.; Sirtori, C.R.; Franceschini, G. Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler. Thromb. Vasc. Biol., 1995, 15(11), 1819-1828.
[http://dx.doi.org/10.1161/01.ATV.15.11.1819] [PMID: 7583561]
[29]
Sekizkardes, H.; Chung, S.T.; Chacko, S.; Haymond, M.W.; Startzell, M.; Walter, M.; Walter, P.J.; Lightbourne, M.; Brown, R.J. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J. Clin. Invest., 2020, 130(7), 3592-3602.
[http://dx.doi.org/10.1172/JCI135431] [PMID: 32191645]
[30]
Schillaci, G.; Pirro, M.; Vaudo, G.; Gemelli, F.; Marchesi, S.; Porcellati, C.; Mannarino, E. Prognostic value of the metabolic syndrome in essential hypertension. J. Am. Coll. Cardiol., 2004, 43(10), 1817-1822.
[http://dx.doi.org/10.1016/j.jacc.2003.12.049] [PMID: 15145106]
[31]
Pannier, B.; Thomas, F.; Bean, K.; Jégo, B.; Benetos, A.; Guize, L. The metabolic syndrome: Similar deleterious impact on all-cause mortality in hypertensive and normotensive subjects. J. Hypertens., 2008, 26(6), 1223-1228.
[http://dx.doi.org/10.1097/HJH.0b013e3282fd9936] [PMID: 18475161]
[32]
Esler, M.; Rumantir, M.; Wiesner, G.; Kaye, D.; Hastings, J.; Lambert, G. Sympathetic nervous system and insulin resistance: From obesity to diabetes. Am. J. Hypertens., 2001, 14(11), S304-S309.
[http://dx.doi.org/10.1016/S0895-7061(01)02236-1] [PMID: 11721888]
[33]
Mancia, G.; Bousquet, P.; Elghozi, J.L.; Esler, M.; Grassi, G.; Julius, S.; Reid, J.; Van Zwieten, P.A. The sympathetic nervous system and the metabolic syndrome. J. Hypertens., 2007, 25(5), 909-920.
[http://dx.doi.org/10.1097/HJH.0b013e328048d004] [PMID: 17414649]
[34]
Tziomalos, K.; Athyros, V.G.; Karagiannis, A.; Mikhailidis, D.P. Endothelial dysfunction in metabolic syndrome: Prevalence, pathogenesis and management. Nutr. Metab. Cardiovasc. Dis., 2010, 20(2), 140-146.
[http://dx.doi.org/10.1016/j.numecd.2009.08.006] [PMID: 19833491]
[35]
Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes, 2003, 52(12), 2882-2887.
[http://dx.doi.org/10.2337/diabetes.52.12.2882] [PMID: 14633847]
[36]
Zhang, Z.; Zhou, S.; Jiang, X.; Wang, Y.H.; Li, F.; Wang, Y.G.; Zheng, Y.; Cai, L. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Rev. Endocr. Metab. Disord., 2015, 16(1), 35-45.
[http://dx.doi.org/10.1007/s11154-014-9305-9] [PMID: 25540093]
[37]
Yang, J.; Suo, H.; Song, J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit. Rev. Food Sci. Nutr., 2021, 61(22), 3857-3875.
[http://dx.doi.org/10.1080/10408398.2020.1809344] [PMID: 32815398]
[38]
Tanase, D.M.; Apostol, A.G.; Costea, C.F.; Tarniceriu, C.C.; Tudorancea, I.; Maranduca, M.A.; Floria, M.; Serban, I.L. Oxidative stress in arterial hypertension (HTN): The nuclear factor erythroid factor 2-related factor 2 (Nrf2) pathway, implications and future perspectives. Pharmaceutics, 2022, 14(3), 534.
[http://dx.doi.org/10.3390/pharmaceutics14030534] [PMID: 35335911]
[39]
Ma, Y.F.; Wu, Z.H.; Gao, M.; Loor, J.J. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. J. Dairy Sci., 2018, 101(6), 5329-5344.
[http://dx.doi.org/10.3168/jds.2017-14128] [PMID: 29573798]
[40]
da Costa, R.M.; Rodrigues, D.; Pereira, C.A.; Silva, J.F.; Alves, J.V.; Lobato, N.S.; Tostes, R.C. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front. Pharmacol., 2019, 10, 382.
[http://dx.doi.org/10.3389/fphar.2019.00382] [PMID: 31031630]
[41]
Sykiotis, G.P.; Habeos, I.G.; Samuelson, A.V.; Bohmann, D. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(1), 41-48.
[http://dx.doi.org/10.1097/MCO.0b013e32834136f2] [PMID: 21102319]
[42]
Annie-Mathew, A.S.; Prem-Santhosh, S.; Jayasuriya, R.; Ganesh, G.; Ramkumar, K.M.; Sarada, D.V.L. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol. Res., 2021, 173, 105853.
[http://dx.doi.org/10.1016/j.phrs.2021.105853] [PMID: 34455076]
[43]
Xue, P.; Hou, Y.; Chen, Y.; Yang, B.; Fu, J.; Zheng, H.; Yarborough, K.; Woods, C.G.; Liu, D.; Yamamoto, M.; Zhang, Q.; Andersen, M.E.; Pi, J. Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes, 2013, 62(3), 845-854.
[http://dx.doi.org/10.2337/db12-0584] [PMID: 23238296]
[44]
Behl, T.; Kaur, I.; Sehgal, A.; Sharma, E.; Kumar, A.; Grover, M.; Bungau, S. Unfolding Nrf2 in diabetes mellitus. Mol. Biol. Rep., 2021, 48(1), 927-939.
[http://dx.doi.org/10.1007/s11033-020-06081-3] [PMID: 33389540]
[45]
David, J.A.; Rifkin, W.J.; Rabbani, P.S.; Ceradini, D.J. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J. Diabetes Res., 2017, 2017, 1-15.
[http://dx.doi.org/10.1155/2017/4826724] [PMID: 28913364]
[46]
Bhakkiyalakshmi, E.; Sireesh, D.; Rajaguru, P.; Paulmurugan, R.; Ramkumar, K.M. The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes. Pharmacol. Res., 2015, 91, 104-114.
[http://dx.doi.org/10.1016/j.phrs.2014.10.004] [PMID: 25447793]
[47]
Abdelsamia, E.M.; Khaleel, S.A.; Balah, A.; Abdel Baky, N.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother., 2019, 109, 2136-2144.
[http://dx.doi.org/10.1016/j.biopha.2018.11.064] [PMID: 30551471]
[48]
Samarghandian S, Borji A, Afshari R, Delkhosh MB, Gholami A. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicol. Mech. Methods. 2013, 23(6), 432-436.
[49]
He, H.J.; Wang, G.Y.; Gao, Y.; Ling, W.H.; Yu, Z.W.; Jin, T.R. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes, 2012, 3(5), 94-104.
[http://dx.doi.org/10.4239/wjd.v3.i5.94] [PMID: 22645638]
[50]
Shehzad, A.; Ha, T.; Subhan, F.; Lee, Y.S. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur. J. Nutr., 2011, 50(3), 151-161.
[http://dx.doi.org/10.1007/s00394-011-0188-1] [PMID: 21442412]
[51]
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles targeting STATs in cancer therapy. Cells. 2019, 8(10), 1158.
[52]
Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, C.J.; Foresti, R.; Alam, J.; Motterlini, R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J., 2003, 371(3), 887-895.
[http://dx.doi.org/10.1042/bj20021619] [PMID: 12570874]
[53]
Zeng, C.; Zhong, P.; Zhao, Y.; Kanchana, K.; Zhang, Y.; Khan, Z.A.; Chakrabarti, S.; Wu, L.; Wang, J.; Liang, G. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J. Mol. Cell. Cardiol., 2015, 79, 1-12.
[http://dx.doi.org/10.1016/j.yjmcc.2014.10.002] [PMID: 25444713]
[54]
Chartoumpekis, D.V.; Kensler, T.W. New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr. Diabetes Rev., 2013, 9(2), 137-145.
[PMID: 23363332]
[55]
Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: Molecular mechanisms. Molecules, 2021, 26(4), 985.
[http://dx.doi.org/10.3390/molecules26040985] [PMID: 33673390]
[56]
Tapia, E.; Virgilia, S.; Ortiz-Vega, K.M.; Zarco-Márquez, G. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxid Med Cell Longev, 2012, 2012, 269039.
[57]
Correa, F.; Buelna-Chontal, M.; Hernández-Reséndiz, S.; García-Niño, W.R.; Roldán, F.J.; Soto, V.; Silva-Palacios, A.; Amador, A.; Pedraza-Chaverrí, J.; Tapia, E.; Zazueta, C. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic. Biol. Med., 2013, 61, 119-129.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.017] [PMID: 23548636]
[58]
Tapia, E.; García-Arroyo, F.; Silverio, O.; Rodríguez-Alcocer, A.N.; Jiménez-Flores, A.B.; Cristobal, M.; Arellano, A.S.; Soto, V.; Osorio-Alonso, H.; Molina-Jijón, E.; Pedraza-Chaverri, J.; Sanchez-Lozada, L.G. Mycophenolate mofetil and curcumin provide comparable therapeutic benefit in experimental chronic kidney disease: Role of Nrf2-Keap1 and renal dopamine pathways. Free Radic. Res., 2016, 50(7), 781-792.
[http://dx.doi.org/10.1080/10715762.2016.1174776] [PMID: 27050624]
[59]
Grossman, E. Does increased oxidative stress cause hypertension? Diabetes Care, 2008, 31(S2), S185-S189.
[http://dx.doi.org/10.2337/dc08-s246] [PMID: 18227483]
[60]
de Champlain, J.; Wu, R.; Girouard, H.; Karas, M.; EL Midaoui, A.; Laplante, M.A.; Wu, L. Oxidative stress in hypertension. Clin. Exp. Hypertens., 2004, 26(7-8), 593-601.
[http://dx.doi.org/10.1081/CEH-200031904] [PMID: 15702613]
[61]
Howden, R. Nrf2 and cardiovascular defense. Oxid Med Cell Longev, 2013, 2013, 104308.
[62]
Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2007, 292(1), C82-C97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[63]
Chen, T.; Li, J.; Liu, L.; Fan, L.; Li, X.; Wang, Y.; Abraham, N.; Cao, J. Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int. J. Mol. Sci., 2013, 14(2), 2684-2706.
[http://dx.doi.org/10.3390/ijms14022684] [PMID: 23358254]
[64]
Sacerdoti, D.; Escalante, B.; Abraham, N.G.; McGiff, J.C.; Levere, R.D.; Schwartzman, M.L. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science, 1989, 243(4889), 388-390.
[http://dx.doi.org/10.1126/science.2492116] [PMID: 2492116]
[65]
Samarghandian S, Azimi-Nezhad M, Mehrad-Majd H, Mirhafez SR. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology. 2015; 96(3-4): 112-7.
[66]
Ryter, S.W.; Otterbein, L.E.; Morse, D.; Choi, A.M.K. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Mol. Cell. Biochem., 2002, 234/235(1), 249-263.
[http://dx.doi.org/10.1023/A:1015957026924] [PMID: 12162441]
[67]
Sacerdoti, D.; Despina, M.; Paola, P.; Silvia, G.; Angelo, G.; Massimo, B. Role of HO/CO in the control of peripheral circulation in humans. Int. J. Hypertens., 2012, 2012, 236180.
[68]
Morita, T.; Kourembanas, S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J. Clin. Invest., 1995, 96(6), 2676-2682.
[http://dx.doi.org/10.1172/JCI118334] [PMID: 8675634]
[69]
Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Curr. Mol. Med., 2020, 20(2), 116-133.
[http://dx.doi.org/10.2174/18755666MTAxyNTQkx] [PMID: 31622191]
[70]
Tapia, E.; Zatarain-Barrón, Z.L.; Hernández-Pando, R.; Zarco-Márquez, G.; Molina-Jijón, E.; Cristóbal-García, M.; Santamaría, J.; Pedraza-Chaverri, J. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine, 2013, 20(3-4), 359-366.
[http://dx.doi.org/10.1016/j.phymed.2012.11.014] [PMID: 23271001]
[71]
Rashid, K.; Sil, P.C. Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death. Biochim. Biophys. Acta, 2015, 1852(1), 70-82.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.007]
[72]
Feingold, K.R. Obesity and dyslipidemia. Endotext, 2020. Available from: https://www.ncbi.nlm.nih.gov/sites/books/NBK305895/
[73]
Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; Rahimi, H.R.; Ghalandari, M.; Ghaffari, M.S.; Yousefi, A.; Pouresmaeili, E.; Besharatlou, M.R.; Moohebati, M.; Ferns, G.A.; Esmaily, H.; Ghayour-Mobarhan, M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis., 2020, 19(1), 42.
[http://dx.doi.org/10.1186/s12944-020-01204-y] [PMID: 32178672]
[74]
Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res., 2022, 175, 106029.
[http://dx.doi.org/10.1016/j.phrs.2021.106029] [PMID: 34896248]
[75]
Huajing, K. Anti-dislipidemia effectiveness test of turmeric ethanol extract (Curcuma longa) in male Wistar mice given Propylthiouracil (PTU). Budapest Int. Res. Exact Sci. (BirEx) J., 2022, 4(1), 43-56.
[76]
Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med. 2015; 8(2):2465-2470.
[77]
Komang, N.; Laksmi, S. Continuing Continuing Development Professional Medical Development. 2014.
[78]
Shishodia, S.; Amin, H.M.; Lai, R.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol., 2005, 70(5), 700-713.
[http://dx.doi.org/10.1016/j.bcp.2005.04.043] [PMID: 16023083]
[79]
Pugazhenthi, S.; Akhov, L.; Selvaraj, G.; Wang, M.; Alam, J. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse β-cells. Am. J. Physiol. Endocrinol. Metab., 2007, 293(3), E645-E655.
[http://dx.doi.org/10.1152/ajpendo.00111.2007] [PMID: 17535857]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy