Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Systematic Review Article

Biomarkers of Growth Faltering and Neurodevelopmental Delay in Children who are HIV-Exposed but Uninfected: A Systematic Review

Author(s): Reshma Sirajee, Jason Brophy, Andrea L. Conroy, Sophie Namasopo, Robert O. Opoka, Urvi Rai, Sarah Forgie, Bukola O. Salami and Michael T. Hawkes*

Volume 21, Issue 3, 2023

Published on: 20 July, 2023

Page: [172 - 184] Pages: 13

DOI: 10.2174/1570162X21666230505152846

Price: $65

Abstract

Introduction: Children who are HIV-exposed but uninfected (CHEU) are at risk of linear growth faltering and neurodevelopmental delay. Circulating biomarkers associated with these adverse outcomes may elucidate pathways of injury.

Objective: To identify biomarkers associated with growth faltering and neurodevelopmental delay in CHEU.

Methods: We performed a systematic review of electronic databases MEDLINE (1946-April 2021), EMBASE (1974-April 2021), Scopus (2004-April 2021), and PubMed (1985-April 2021), following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO, registration number CRD42021238363).

Results: We found seven studies associating biomarker abnormalities and growth outcomes in CHEUs and two studies on biomarker abnormalities and neurodevelopmental delay. Biomarker abnormalities associated with growth restriction were: C-reactive protein (CRP), tumour necrosis factor (TNF), interferon-gamma (IFN-γ), interleukin (IL)-12p70, IFN-γ-induced protein-10 (CXCL10/IP-10), lipopolysaccharide binding protein (LBP), insulin-like growth factor-1 (IGF-1), and IGF-binding protein-1 (IGFBP-1). Biomarkers associated with motor, language, and cognitive delay were CRP, IFN-γ, IL-1β, -2, -4, -6, -10, -12p70, neutrophil gelatinase-associated lipocalin (NGAL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and matrix metalloproteinase- 9 (MMP-9).

Conclusion: Elevated markers of inflammation (acute phase reactants, pro-inflammatory cytokines, chemokines) and intestinal microbial translocation are associated with growth faltering. Elevated markers of inflammation are associated with adverse neurodevelopment.

Keywords: HIV, child, inflammation, growth, neurodevelopment, CHEU.

Graphical Abstract
[1]
Slogrove AL, Powis KM, Johnson LF, Stover J, Mahy M. Estimates of the global population of children who are HIV-exposed and uninfected, 2000–18: A modelling study. Lancet Glob Health 2020; 8(1): e67-75.
[http://dx.doi.org/10.1016/S2214-109X(19)30448-6] [PMID: 31791800]
[2]
Ejigu Y, Magnus JH, Sundby J, Magnus MC. Differences in growth of hiv-exposed uninfected infants in ethiopia according to timing of in-utero antiretroviral therapy exposure. Pediatr Infect Dis J 2020; 39(8): 730-6.
[http://dx.doi.org/10.1097/INF.0000000000002678] [PMID: 32516280]
[3]
Paintsil E, Andiman WA. Update on successes and challenges regarding mother-to-child transmission of HIV. Curr Opin Pediatr 2009; 21(1): 94-101.
[http://dx.doi.org/10.1097/MOP.0b013e32831ec353] [PMID: 19242245]
[4]
Muyunda B, Musonda P, Mee P, Todd J, Michelo C. Effectiveness of lifelong ART (Option B+) in the prevention of mother-to-child transmission of HIV programme in Zambia: Observations based on routinely collected health data. Front Public Health 2020; 7: 401.
[http://dx.doi.org/10.3389/fpubh.2019.00401] [PMID: 32010656]
[5]
Machiavelli A, Duarte RTD, Pires MMS, Zárate-Bladés CR, Pinto AR. The impact of in utero HIV exposure on gut microbiota, inflammation, and microbial translocation. Gut Microbes 2019; 10(5): 599-614.
[http://dx.doi.org/10.1080/19490976.2018.1560768] [PMID: 30657007]
[6]
Sudfeld CR, Lei Q, Chinyanga Y, et al. Linear growth faltering among HIV-exposed uninfected children. J Acquir Immune Defic Syndr 2016; 73(2): 182-9.
[http://dx.doi.org/10.1097/QAI.0000000000001034] [PMID: 27116046]
[7]
Nicholson L, Chisenga M, Siame J, Kasonka L, Filteau S. Growth and health outcomes at school age in HIV-exposed, uninfected Zambian children: Follow-up of two cohorts studied in infancy. BMC Pediatr 2015; 15(1): 66.
[http://dx.doi.org/10.1186/s12887-015-0386-8] [PMID: 26048411]
[8]
Evans C, Humphrey JH, Ntozini R, Prendergast AJ. HIV-exposed uninfected infants in zimbabwe: Insights into health outcomes in the pre-antiretroviral therapy era. Front Immunol 2016; 7: 190.
[http://dx.doi.org/10.3389/fimmu.2016.00190] [PMID: 27375613]
[9]
Omoni AO, Ntozini R, Evans C, et al. Child growth according to maternal and child HIV status in Zimbabwe. Pediatr Infect Dis J 2017; 36(9): 869-76.
[http://dx.doi.org/10.1097/INF.0000000000001574] [PMID: 28198792]
[10]
Wedderburn CJ, Evans C, Yeung S, Gibb DM, Donald KA, Prendergast AJ. Growth and neurodevelopment of HIV-exposed uninfected children: A conceptual framework. Curr HIV/AIDS Rep 2019; 16(6): 501-13.
[http://dx.doi.org/10.1007/s11904-019-00459-0] [PMID: 31732866]
[11]
Upadhyay RP, Naik G, Choudhary TS, et al. Cognitive and motor outcomes in children born low birth weight: A systematic review and meta-analysis of studies from South Asia. BMC Pediatr 2019; 19(1): 35.
[http://dx.doi.org/10.1186/s12887-019-1408-8] [PMID: 30696415]
[12]
Sudfeld CR, Charles McCoy D, Danaei G, et al. Linear growth and child development in low- and middle-income countries: A meta-analysis. Pediatrics 2015; 135(5): e1266-75.
[http://dx.doi.org/10.1542/peds.2014-3111] [PMID: 25847806]
[13]
Whitehead N, Potterton J, Coovadia A. The neurodevelopment of HIV-infected infants on HAART compared to HIV-exposed but uninfected infants. AIDS Care 2014; 26(4): 497-504.
[http://dx.doi.org/10.1080/09540121.2013.841828] [PMID: 24125015]
[14]
Georgiadis A, Penny ME. Child undernutrition: opportunities beyond the first 1000 days. Lancet Public Health 2017; 2(9): e399.
[http://dx.doi.org/10.1016/S2468-2667(17)30154-8] [PMID: 29253410]
[15]
Christian P, Murray-Kolb LE, Tielsch JM, Katz J, LeClerq SC, Khatry SK. Associations between preterm birth, small-for-gestational age, and neonatal morbidity and cognitive function among school-age children in Nepal. BMC Pediatr 2014; 14(1): 58.
[http://dx.doi.org/10.1186/1471-2431-14-58] [PMID: 24575933]
[16]
Hamadani JD, Tofail F, Huda SN, et al. Cognitive deficit and poverty in the first 5 years of childhood in Bangladesh. Pediatrics 2014; 134(4): e1001-8.
[http://dx.doi.org/10.1542/peds.2014-0694] [PMID: 25266433]
[17]
Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013; 382(9890): 427-51.
[http://dx.doi.org/10.1016/S0140-6736(13)60937-X] [PMID: 23746772]
[18]
Kattula D, Sarkar R, Sivarathinaswamy P, et al. The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India. BMJ Open 2014; 4(7): e005404.
[http://dx.doi.org/10.1136/bmjopen-2014-005404] [PMID: 25056979]
[19]
Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx 2004; 1(2): 182-8.
[http://dx.doi.org/10.1602/neurorx.1.2.182] [PMID: 15717018]
[20]
Gearhart TL, Montelaro RC, Schurdak ME, et al. Selection of a potential diagnostic biomarker for HIV infection from a random library of non-biological synthetic peptoid oligomers. J Immunol Methods 2016; 435: 85-9.
[http://dx.doi.org/10.1016/j.jim.2016.05.001] [PMID: 27182050]
[21]
DeBoer MD, Scharf RJ, Leite AM, et al. Systemic inflammation, growth factors, and linear growth in the setting of infection and malnutrition. Nutrition 2017; 33: 248-53.
[http://dx.doi.org/10.1016/j.nut.2016.06.013] [PMID: 27712965]
[22]
le Roux SM, Donald KA, Brittain K, et al. Neurodevelopment of breastfed HIV-exposed uninfected and HIV-unexposed children in South Africa. AIDS 2018; 32(13): 1781-91.
[http://dx.doi.org/10.1097/QAD.0000000000001872] [PMID: 29794831]
[23]
Dirajlal-Fargo S, Mussi-Pinhata MM, Weinberg A, et al. HIV-exposed-uninfected infants have increased inflammation and monocyte activation. AIDS 2019; 33(5): 845-53.
[http://dx.doi.org/10.1097/QAD.0000000000002128] [PMID: 30649056]
[24]
Baroncelli S, Galluzzo CM, Liotta G, et al. Immune activation and microbial translocation markers in HIV-exposed uninfected malawian infants in the first year of life. J Trop Pediatr 2019; 65(6): 617-25.
[http://dx.doi.org/10.1093/tropej/fmz022] [PMID: 31006009]
[25]
Evans C, Chasekwa B, Rukobo S, et al. Inflammation, cytomegalovirus and the growth hormone axis in HIV-exposed uninfected Zimbabwean infants. AIDS 2020; 34(14): 2045-50.
[http://dx.doi.org/10.1097/QAD.0000000000002646] [PMID: 32773472]
[26]
Kessler M, Kaul A, Santos-Malavé C, Borkowsky W, Kessler J, Shah B. Growth patterns in pubertal HIV-infected adolescents and their correlation with cytokines, IGF-1, IGFBP-1, and IGFBP-3. J Pediatr Endocrinol Metab 2013; 26(7-8): 639-44.
[http://dx.doi.org/10.1515/jpem-2011-0464] [PMID: 23612635]
[27]
Wilkinson AL, Pedersen SH, Urassa M, et al. Maternal systemic or cord blood inflammation is associated with birth anthropometry in a Tanzanian prospective cohort. Trop Med Int Health 2017; 22(1): 52-62.
[http://dx.doi.org/10.1111/tmi.12799] [PMID: 27761979]
[28]
Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu Rev Immunol 2012; 30(1): 149-73.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075001] [PMID: 22224779]
[29]
Cirillo F, Lazzeroni P, Sartori C, Street M. Inflammatory diseases and growth: Effects on the GH–IGF axis and on growth plate. Int J Mol Sci 2017; 18(9): 1878.
[http://dx.doi.org/10.3390/ijms18091878] [PMID: 28858208]
[30]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 2021; 88: 105906.
[http://dx.doi.org/10.1016/j.ijsu.2021.105906] [PMID: 33789826]
[31]
Covidence. Available from: www.covidence.org
[32]
Chantry CJ, Frederick MM, Meyer WA III, et al. Endocrine abnormalities and impaired growth in human immunodeficiency virus-infected children. Pediatr Infect Dis J 2007; 26(1): 53-60.
[http://dx.doi.org/10.1097/01.inf.0000247131.76584.af] [PMID: 17195707]
[33]
Jain S, Gautam V, Naseem S. Acute-phase proteins: As diagnostic tool. J Pharm Bioallied Sci 2011; 3(1): 118-27.
[http://dx.doi.org/10.4103/0975-7406.76489] [PMID: 21430962]
[34]
Klim SM, Amerstorfer F, Gruber G, et al. Fibrinogen – A practical and cost efficient biomarker for detecting periprosthetic joint infection. Sci Rep 2018; 8(1): 8802.
[http://dx.doi.org/10.1038/s41598-018-27198-3] [PMID: 29892047]
[35]
Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008; 29(11): 1275-88.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[36]
Tau G, Rothman P. Biologic functions of the IFN-gamma receptors. Allergy 1999; 54(12): 1233-51.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00099.x] [PMID: 10688427]
[37]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10): a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[38]
Ma X, Yan W, Zheng H, et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000 Res 2015; 4: 1465.
[http://dx.doi.org/10.12688/f1000research.7010.1] [PMID: 26918147]
[39]
Hamza T, Barnett JB, Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci 2010; 11(3): 789-806.
[http://dx.doi.org/10.3390/ijms11030789] [PMID: 20479986]
[40]
Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: Potent immunoregulators and potential therapeutic targets-an updated view. Mediators Inflamm 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/165974] [PMID: 23853427]
[41]
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018; 281(1): 8-27.
[http://dx.doi.org/10.1111/imr.12621] [PMID: 29247995]
[42]
Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep 2007; 8(12): 1142-8.
[http://dx.doi.org/10.1038/sj.embor.7401099] [PMID: 18059313]
[43]
Egea L, Hirata Y, Kagnoff MFGM-CSF. A role in immune and inflammatory reactions in the intestine. Expert Rev Gastroenterol Hepatol 2010; 4(6): 723-31.
[http://dx.doi.org/10.1586/egh.10.73] [PMID: 21108592]
[44]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[45]
Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: A cytokine to remember. J Immunol 2012; 189(9): 4213-9.
[http://dx.doi.org/10.4049/jimmunol.1202246] [PMID: 23087426]
[46]
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32(1): 23-63.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i1.30] [PMID: 22428854]
[47]
Liu M, Guo S, Hibbert JM, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22(3): 121-30.
[http://dx.doi.org/10.1016/j.cytogfr.2011.06.001] [PMID: 21802343]
[48]
Devarajan P. Neutrophil gelatinase-associated lipocalin: A promising biomarker for human acute kidney injury. Biomarkers Med 2010; 4(2): 265-80.
[http://dx.doi.org/10.2217/bmm.10.12] [PMID: 20406069]
[49]
Shive CL, Jiang W, Anthony DD, Lederman MM. Soluble CD14 is a nonspecific marker of monocyte activation. AIDS 2015; 29(10): 1263-5.
[http://dx.doi.org/10.1097/QAD.0000000000000735] [PMID: 26035325]
[50]
Yablecovitch D, Kopylov U, Lahat A, et al. Serum MMP-9: a novel biomarker for prediction of clinical relapse in patients with quiescent Crohn’s disease, a post hoc analysis. Therap Adv Gastroenterol 2019; 12.
[http://dx.doi.org/10.1177/1756284819881590] [PMID: 31636712]
[51]
Laron Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol Pathol 2001; 54(5): 311-6.
[http://dx.doi.org/10.1136/mp.54.5.311] [PMID: 11577173]
[52]
Allard JB, Duan C. IGF-binding proteins: Why do they exist and why are there so many? Front Endocrinol (Lausanne) 2018; 9: 117.
[http://dx.doi.org/10.3389/fendo.2018.00117] [PMID: 29686648]
[53]
Blum WF, Albertsson-Wikland K, Rosberg S, Ranke MB. Serum levels of insulin-like growth factor I (IGF-I) and IGF binding protein 3 reflect spontaneous growth hormone secretion. J Clin Endocrinol Metab 1993; 76(6): 1610-6.
[PMID: 7684744]
[54]
Schumann RR. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol 1992; 143(1): 11-5.
[http://dx.doi.org/10.1016/0923-2494(92)80074-U] [PMID: 1373512]
[55]
Lau E, Marques C, Pestana D, et al. The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutr Metab (Lond) 2016; 13(1): 31.
[http://dx.doi.org/10.1186/s12986-016-0089-7] [PMID: 27134637]
[56]
Sevenoaks T, Wedderburn CJ, Donald KA, et al. Association of maternal and infant inflammation with neurodevelopment in HIV-exposed uninfected children in a South African birth cohort. Brain Behav Immun 2021; 91: 65-73.
[http://dx.doi.org/10.1016/j.bbi.2020.08.021] [PMID: 32860940]
[57]
Kapetanovic S, Griner R, Zeldow B, et al. Biomarkers and neurodevelopment in perinatally HIV-infected or exposed youth. AIDS 2014; 28(3): 355-64.
[http://dx.doi.org/10.1097/QAD.0000000000000072] [PMID: 24670521]
[58]
Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012; 24(3): 69-71.
[PMID: 23638278]
[59]
Jalbert E, Williamson KM, Kroehl ME, et al. HIV-exposed uninfected infants have increased regulatory T cells that correlate with decreased t cell function. Front Immunol 2019; 10: 595.
[http://dx.doi.org/10.3389/fimmu.2019.00595] [PMID: 30972079]
[60]
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018; 9: 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[61]
Dobbs KR, Embury P, Vulule J, et al. Monocyte dysregulation and systemic inflammation during pediatric Falciparum malaria. JCI Insight 2017; 2(18): e95352.
[http://dx.doi.org/10.1172/jci.insight.95352] [PMID: 28931756]
[62]
Longwe H, Phiri KS, Mbeye NM, Gondwe T, Mandala WL, Jambo KC. Delayed acquisition of Plasmodium falciparum antigen-specific CD4+ T cell responses in HIV-exposed uninfected Malawian children receiving daily cotrimoxazole prophylaxis. Malar J 2016; 15(1): 264.
[http://dx.doi.org/10.1186/s12936-016-1318-2] [PMID: 27165269]
[63]
Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 2019; 20(21): 5376.
[http://dx.doi.org/10.3390/ijms20215376] [PMID: 31671729]
[64]
Castelino DN, Avabratha KS. C-reactive protein levels in children with uncomplicated malaria. Int J Contemp Pediatrics 2017; 4(2): 573-6.
[http://dx.doi.org/10.18203/2349-3291.ijcp20170712]
[65]
Kumar V, Neelannavar R. Study of serum levels of CRP and procalcitonin as early marker of sepsis in children with sepsis above neonatal age group. Int J Contemp Pediatrics 2019; 6(2): 411-5.
[http://dx.doi.org/10.18203/2349-3291.ijcp20190037]
[66]
Prendergast AJ, Chasekwa B, Rukobo S, et al. Intestinal damage and inflammatory biomarkers in human immunodeficiency virus (HIV)–exposed and HIV-infected Zimbabwean infants. J Infect Dis 2017; 216(6): 651-61.
[http://dx.doi.org/10.1093/infdis/jix367] [PMID: 28934432]
[67]
Evans C, Chasekwa B, Rukobo S, et al. Cytomegalovirus acquisition and inflammation in human immunodeficiency virus-exposed uninfected Zimbabwean infants. J Infect Dis 2017; 215(5): 698-702.
[PMID: 28011912]
[68]
Lohman-Payne B, Gabriel B, Park S, et al. HIV‐exposed uninfected infants: elevated cord blood Interleukin 8 (IL‐8) is significantly associated with maternal HIV infection and systemic IL‐8 in a Kenyan cohort. Clin Transl Med 2018; 7(1): 26.
[http://dx.doi.org/10.1186/s40169-018-0206-5] [PMID: 30198049]
[69]
Miyamoto M, Gouvêa AFTB, Ono E, Succi RCM, Pahwa S, Moraes-Pinto MI. Immune development in HIV-exposed uninfected children born to HIV-infected women. Rev Inst Med Trop São Paulo 2017; 59(0): e30.
[http://dx.doi.org/10.1590/s1678-9946201759030] [PMID: 28591258]
[70]
Evans C, Jones CE, Prendergast AJ. HIV-exposed, uninfected infants: new global challenges in the era of paediatric HIV elimination. Lancet Infect Dis 2016; 16(6): e92-e107.
[http://dx.doi.org/10.1016/S1473-3099(16)00055-4] [PMID: 27049574]
[71]
Street ME, Volta C, Ziveri MA, Viani I, Bernasconi S. Markers of insulin sensitivity in placentas and cord serum of intrauterine growth-restricted newborns. Clin Endocrinol (Oxf) 2009; 71(3): 394-9.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03533.x] [PMID: 19226262]
[72]
Nazzari S, Fearon P, Rice F, et al. Beyond the HPA-axis: Exploring maternal prenatal influences on birth outcomes and stress reactivity. Psychoneuroendocrinology 2019; 101: 253-62.
[http://dx.doi.org/10.1016/j.psyneuen.2018.11.018] [PMID: 30497017]
[73]
Denson LA, McDonald SA, Das A, et al. Early elevation in interleukin-6 is associated with reduced growth in extremely low birth weight infants. Am J Perinatol 2017; 34(3): 240-7.
[PMID: 27455401]
[74]
Prendergast AJ, Rukobo S, Chasekwa B, et al. Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS One 2014; 9(2): e86928.
[http://dx.doi.org/10.1371/journal.pone.0086928] [PMID: 24558364]
[75]
Kwenti TE. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med 2018; 9: 123-36.
[http://dx.doi.org/10.2147/RRTM.S154501] [PMID: 30100779]
[76]
Brentlinger PE, Behrens CB, Micek MA. Challenges in the concurrent management of malaria and HIV in pregnancy in sub-Saharan Africa. Lancet Infect Dis 2006; 6(2): 100-11.
[http://dx.doi.org/10.1016/S1473-3099(06)70383-8] [PMID: 16439330]
[77]
Cuestas E, Aguilera B, Cerutti M, Rizzotti A. Sustained neonatal inflammation is associated with poor growth in infants born very preterm during the first year of life. J Pediatr 2019; 205: 91-7.
[http://dx.doi.org/10.1016/j.jpeds.2018.09.032] [PMID: 30340934]
[78]
Bailey RC, Kamenga MC, Nsuami MJ, Nieburg P, St Louis ME. Growth of children according to maternal and child HIV, immunological and disease characteristics:A prospective cohort study in Kinshasa, Democratic Republic of Congo. Int J Epidemiol 1999; 28(3): 532-40.
[http://dx.doi.org/10.1093/ije/28.3.532] [PMID: 10405861]
[79]
Dirajlal-Fargo S, El-Kamari V, Weiner L, et al. Altered intestinal permeability and fungal translocation in Ugandan children with human immunodeficiency virus. Clin Infect Dis 2020; 70(11): 2413-22.
[http://dx.doi.org/10.1093/cid/ciz561] [PMID: 31260509]
[80]
Leviton A, Allred EN, Fichorova RN, Kuban KCK, Michael O’Shea T, Dammann O. Systemic inflammation on postnatal days 21 and 28 and indicators of brain dysfunction 2years later among children born before the 28th week of gestation. Early Hum Dev 2016; 93: 25-32.
[http://dx.doi.org/10.1016/j.earlhumdev.2015.11.004] [PMID: 26735345]
[81]
Kuban KCK, Joseph RM, O’Shea TM, et al. Circulating inflammatory-associated proteins in the first month of life and cognitive impairment at age 10 years in children born extremely preterm. J Pediatr 2017; 180: 116-123.e1.
[http://dx.doi.org/10.1016/j.jpeds.2016.09.054] [PMID: 27788929]
[82]
Jiang NM, Tofail F, Moonah SN, et al. Febrile illness and pro-inflammatory cytokines are associated with lower neurodevelopmental scores in Bangladeshi infants living in poverty. BMC Pediatr 2014; 14(1): 50.
[http://dx.doi.org/10.1186/1471-2431-14-50] [PMID: 24548288]
[83]
Jiang NM, Cowan M, Moonah SN, Petri WA Jr. The impact of systemic inflammation on neurodevelopment. Trends Mol Med 2018; 24(9): 794-804.
[http://dx.doi.org/10.1016/j.molmed.2018.06.008] [PMID: 30006148]
[84]
Yadav SK, et al. Brain microstructural changes support cognitive deficits in HIV uninfected children born to HIV infected mothers. Brain Behav Immun Health 2020; 2: 100039.
[85]
White M, Feucht UD, Duffley E, et al. Does in utero HIV exposure and the early nutritional environment influence infant development and immune outcomes? Findings from a pilot study in Pretoria, South Africa. Pilot Feasibility Stud 2020; 6(1): 192.
[http://dx.doi.org/10.1186/s40814-020-00725-8] [PMID: 33308322]
[86]
Goldman J, Becker ML, Jones B, Clements M, Leeder JS. Development of biomarkers to optimize pediatric patient management: What makes children different? Biomarkers Med 2011; 5(6): 781-94.
[http://dx.doi.org/10.2217/bmm.11.96] [PMID: 22103612]
[87]
Kim J, Cao XE, Finkelstein JL, Cárdenas WB, Erickson D, Mehta S. A two-colour multiplexed lateral flow immunoassay system to differentially detect human malaria species on a single test line. Malar J 2019; 18(1): 313.
[http://dx.doi.org/10.1186/s12936-019-2957-x] [PMID: 31533756]
[88]
Clark H, Coll-Seck AM, Banerjee A, et al. A future for the world’s children? A WHO–UNICEF–Lancet Commission. Lancet 2020; 395(10224): 605-58.
[http://dx.doi.org/10.1016/S0140-6736(19)32540-1] [PMID: 32085821]
[89]
Crane RJ, Berkley JA. Progress on growth faltering. Lancet Glob Health 2017; 5(2): e125-6.
[http://dx.doi.org/10.1016/S2214-109X(16)30357-6] [PMID: 28104171]
[90]
Gertler P, Heckman J, Pinto R, et al. Labor market returns to an early childhood stimulation intervention in Jamaica. Science 2014; 344(6187): 998-1001.
[http://dx.doi.org/10.1126/science.1251178] [PMID: 24876490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy