Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Investigation of the Dyeing Ability of Some Reactive Triazine Azo Dyes Containing Pyrazole Fragment

Author(s): Alaa Z. Omar*, Mohamed G. Mohamed, Ezzat A. Hamed and Mohamed A. El-Atawy*

Volume 21, Issue 3, 2024

Published on: 17 July, 2023

Page: [331 - 344] Pages: 14

DOI: 10.2174/1570179420666230505094803

Price: $65

Abstract

Background: A series of reactive disperse dyes bearing azo and cyanuric groups were synthesized, and their structures were established using spectral and elemental analyses.

Methods: The IR, 1H NMR, and DFT studies indicated that the prepared reactive disperse dyes predominately exist as hydrazone tautomers. The electronic absorption spectra in methanol were observed and compared to those computed using B3LYP/6-311G(d,p). The dyeing efficiency of the produced dispersed reactive dyes was examined on polyester, cotton, and polyester/cotton blended fabrics.

Results: The degree of exhaustion and the fastness properties of the dyed samples in terms of perspiration, washing, scorch and light fastness were assessed. It was found that reactive disperse dyes under investigation have a higher affinity for dyeing polyester textiles than cotton textiles.

Conclusion: Moreover, the reflectance and color strength of the synthesized dyes were measured and discussed.

Keywords: Reactive 1, 3, 5-triazine azodyes, pyrazole, fastness properties, polyester, cotton, blended fabrics, DFT.

Graphical Abstract
[1]
Valizadeh, H.; Shomali, A.; Nourshargh, S.; Mohammad-Rezaei, R. Carboxyl and nitrite functionalized graphene quantum dots as a highly active reagent and catalyst for rapid diazotization reaction and synthesis of azo-dyes under solvent-free conditions. Dyes Pigments, 2015, 113, 522-528.
[http://dx.doi.org/10.1016/j.dyepig.2014.09.023]
[2]
Gharanjig, K.; Arami, M.; Bahrami, H.; Movassagh, B.; Mahmoodi, N.M.; Rouhani, S. Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1,8-naphthalimide to polyester. Dyes Pigments, 2008, 76(3), 684-689.
[http://dx.doi.org/10.1016/j.dyepig.2007.01.024]
[3]
Qiu, J.; Xiao, J.; Tang, B.; Ju, B.; Zhang, S. Facile synthesis of novel disperse azo dyes with aromatic hydroxyl group. Dyes Pigments, 2019, 160, 524-529.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.052]
[4]
Fang, S.; Feng, G.; Guo, Y.; Chen, W.; Qian, H. Synthesis and application of urethane-containing azo disperse dyes on polyamide fabrics. Dyes Pigments, 2020, 176, 108225.
[http://dx.doi.org/10.1016/j.dyepig.2020.108225]
[5]
Rizk, H.F.; Ibrahim, S.A.; El-Borai, M.A. Synthesis, fastness properties, color assessment and antimicrobial activity of some azo reactive dyes having pyrazole moiety. Dyes Pigments, 2015, 112, 86-92.
[http://dx.doi.org/10.1016/j.dyepig.2014.06.026]
[6]
Omar, A.Z.; El-Rahman, M.A.; El-Sadany, S.K.; Hamed, E.A.; El-Atawy, M.A. Synthesis of novel bisazo disperse dyes: Spectroscopic characterization, DFT study and dyeing of polyester. Dyes Pigments, 2021, 196, 109831.
[http://dx.doi.org/10.1016/j.dyepig.2021.109831]
[7]
Tasli, P.T.; Atay, Ç.K.; Demirturk, T.; Tilki, T. Experimental and computational studies of newly synthesized azo dyes based materials. J. Mol. Struct., 2020, 1201, 127098.
[http://dx.doi.org/10.1016/j.molstruc.2019.127098]
[8]
Atay, Ç.K.; Kart, S.Ö.; Gökalp, M.; Tuğrul, Ö.; Tilki, T. Characterization and absorption properties of newly synthesized mono azo dyes: Experimental and theoretical approach. J. Mol. Struct., 2019, 1180, 251-259.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.108]
[9]
Sener, N.; Sener, I.; Yavuz, S.; Karci, F. Synthesis, absorption properties and biological evaluation of some novel disazo dyes derived from pyrazole derivatives. Asian J. Chem., 2015, 27(8), 3003-3012.
[http://dx.doi.org/10.14233/ajchem.2015.18769]
[10]
Yang, Q.; Wen, Y.; Zhong, A.; Xu, J.; Shao, S. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. New J. Chem., 2020, 44(38), 16265-16268.
[http://dx.doi.org/10.1039/D0NJ03286G]
[11]
Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar, E.; Yahyaei, H.; Kumar, R.; Khaleghian, M. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E,E)-azomethines in colored stretched poly (vinyl alcohol) matrix. J. Mol. Struct., 2018, 1157, 536-550.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.094]
[12]
Singha, K. Characterization of dyeing P/C blends fabric: a thermodynamic view. Int. J. Text. Sci., 2013, 2, 1-6.
[13]
Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 2020, 6(1), e03271.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03271] [PMID: 32042981]
[14]
Soleimanigorgani, A.; Taylor, J. Dyeing of nylon with reactive dyes. Part 1. The effect of changes in dye structure on the dyeing of nylon with reactive dyes. Dyes Pigments, 2006, 68(2-3), 109-117.
[http://dx.doi.org/10.1016/j.dyepig.2005.01.014]
[15]
Khatri, A.; Peerzada, M.H.; Mohsin, M.; White, M. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J. Clean. Prod., 2015, 87, 50-57.
[http://dx.doi.org/10.1016/j.jclepro.2014.09.017]
[16]
Al-Azmi, A.; John, E. Synthesis of 4-arylazo-2-(N -pyrazolylcarboxamido)thiophene disperse dyes for dyeing of polyester and their antibacterial evaluation. Text. Res. J., 2020, 90(23-24), 2795-2805.
[http://dx.doi.org/10.1177/0040517520931476]
[17]
Al-Obaidi, N.S.; Sattar, O.D.; Hadi, F.F.; Ali, A.S.; Zaki, B.T. Synthesis and characterization of some azo dyes derived from 4-aminoacetophenone, 1, 4 phenylene diamine and studying its dyeing performance and antibacterial activity. J. Biochem. Technol., 2018, 9, 33.
[18]
Tao, T.; Zhao, X.L.; Wang, Y.Y.; Qian, H.F.; Huang, W. 5-Hydroxy-1-phenyl-1H-pyrazole-3-carboxylic acid based heterocyclic dyes. Dyes Pigments, 2019, 166, 226-232.
[http://dx.doi.org/10.1016/j.dyepig.2019.03.046]
[19]
Maliyappa, M.R.; Keshavayya, J.; Mallikarjuna, N.M.; Pushpavathi, I. Novel substituted aniline based heterocyclic dispersed azo dyes coupling with 5-methyl-2-(6-methyl-1, 3-benzothiazol-2-yl)-2, 4-dihydro-3H-pyrazol-3-one: Synthesis, structural, computational and biological studies. J. Mol. Struct., 2020, 1205, 127576.
[http://dx.doi.org/10.1016/j.molstruc.2019.127576]
[20]
Oliveria, F.R.; De Oliveira, D.A.J.; Steffens, F.; do Nascimento, J.H.O.; e Silva, K.K.O.S.; Souto, A.P. Dyeing of cotton and polyester blended fabric previously cationized with synthetic and natural polyelectrolytes. Procedia Eng., 2017, 200, 309-316.
[http://dx.doi.org/10.1016/j.proeng.2017.07.044]
[21]
Omar, A.Z.; Mohamed, M.G.; Hamed, E.A.; El-atawy, M.A. Characterization, DFT calculations and dyeing performance on polyester fabrics of some azo disperse dyes containing pyrazole ring. J. Saudi Chem. Soc., 2023, 27(1), 101594.
[http://dx.doi.org/10.1016/j.jscs.2022.101594]
[22]
Ahmed, H.A.; El-Atawy, M.A.; Alamro, F.S.; Al-Kadhi, N.S.; Alhaddad, O.A.; Omar, A.Z. Mesomorphic, Computational substituted dyes. Molecules, 2022, 27(24), 8980.
[http://dx.doi.org/10.3390/molecules27248980] [PMID: 36558116]
[23]
Parmerter, S.M. The coupling of diazonium salts with aliphatic carbon atoms, organic reactions John Wiley and son, Inc.: New York, N.Y., 1959; pp. 1-142.
[24]
Al-Zaydi, K.M.; Khalil, H.H.; El-Faham, A.; Khattab, S.N. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity. Chem. Cent. J., 2017, 11(1), 39.
[http://dx.doi.org/10.1186/s13065-017-0267-3] [PMID: 29086830]
[25]
Zebbiche, Z.; Tekin, S.; Küçükbay, H.; Yüksel, F.; Boumoud, B. Synthesis and anticancer properties of novel hydrazone derivatives incorporating pyridine and isatin moieties. Arch. Pharm., 2021, 354(5), 2000377.
[http://dx.doi.org/10.1002/ardp.202000377] [PMID: 33368627]
[26]
Zebbiche, Z.; Şekerci, G.; Boulebd, H.; Küçükbay, F.; Tekin, S.; Tekin, Z.; Küçükbay, H.; Sandal, S.; Boumoud, B. Preparation, DFT calculations, docking studies, antioxidant, and anticancer properties of new pyrazole and pyridine derivatives. J. Biochem. Mol. Toxicol., 2022, 36(9), e23135.
[http://dx.doi.org/10.1002/jbt.23135] [PMID: 35670538]
[27]
Omar, A.Z.; Hamdy, E.; Hamed, E.A.; Hafez, E.; Abdelkhalek, A. The curative activity of some arylidene dihydropyrimidine hydrazone against Tobacco mosaic virus infestation. J. Saudi Chem. Soc., 2022, 26(4), 101504.
[http://dx.doi.org/10.1016/j.jscs.2022.101504]
[28]
Omar, A.Z.; Mosa, T.M.; El-sadany, S.K.; Hamed, E.A.; El-atawy, M. Novel piperazine based compounds as potential inhibitors for SARS-CoV-2 Protease Enzyme: Synthesis and molecular docking study. J. Mol. Struct., 2021, 1245, 131020.
[http://dx.doi.org/10.1016/j.molstruc.2021.131020] [PMID: 34248201]
[29]
Alamro, F.S.; Ahmed, H.A.; El-Atawy, M.A.; Al-Zahrani, S.A.; Omar, A.Z. Induced nematic phase of new synthesized laterally fluorinated azo/ester derivatives. Molecules, 2021, 26(15), 4546.
[http://dx.doi.org/10.3390/molecules26154546] [PMID: 34361699]
[30]
Satam, M.A.; Raut, R.K.; Sekar, N. Fluorescent azo disperse dyes from 3-(1,3-benzothiazol-2-yl)naphthalen-2-ol and comparison with 2-naphthol analogs. Dyes Pigments, 2013, 96(1), 92-103.
[http://dx.doi.org/10.1016/j.dyepig.2012.07.019]
[31]
Kaya, S.; Kariper, S.E.; Ungördü, A.; Kaya, C. Effect of some electron donor and electron acceptor groups on stability of complexes according to the principle of HSAB. J. New Res. Sci., 2014, 3, 1-1.
[32]
Wang, K.; He, X.; Rong, C.; Zhong, A.; Liu, S.; Zhao, D. On the origin and nature of internal methyl rotation barriers: An information-theoretic approach study. Theor. Chem. Acc., 2022, 141(11), 68.
[http://dx.doi.org/10.1007/s00214-022-02910-9]
[33]
Al-Zahrani, S.A.; Ahmed, H.A.; El-atawy, M.A.; Abu Al-Ola, K.A.; Omar, A.Z. Synthetic, Mesomorphic, and DFT investigations of new nematogenic polar naphthyl benzoate ester derivatives. Materials, 2021, 14(10), 2587.
[http://dx.doi.org/10.3390/ma14102587] [PMID: 34065725]
[34]
Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P.K. Chemical reactivity profiles of two selected poly-chlorinated biphenyls. J. Phys. Chem. A, 2003, 107(48), 10346-10352.
[http://dx.doi.org/10.1021/jp035620b]
[35]
Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, B. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett., 2000, 323(1-2), 59-70.
[http://dx.doi.org/10.1016/S0009-2614(00)00488-7]
[36]
Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Subramanian, V.; Chattaraj, P.K. Intermolecular reactivity through the generalized philicity concept. Chem. Phys. Lett., 2004, 394(4-6), 225-230.
[http://dx.doi.org/10.1016/j.cplett.2004.07.002]
[37]
Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. Toxicity analysis of 33‘44’5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr. Sci., 2004, 86, 535.
[38]
Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Sarkar, U.; Maiti, B.; Chattaraj, P. Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: A DFT approach. Internet Electron. J. Mol. Des, 2003, 2, 798-813.
[39]
Obi-Egbedi, N.O.; Obot, I.B.; El-Khaiary, M.I. Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. J. Mol. Struct., 2011, 1002(1-3), 86-96.
[http://dx.doi.org/10.1016/j.molstruc.2011.07.003]
[40]
Govindarasu, K.; Kavitha, E. Vibrational spectra, molecular structure, NBO, UV, NMR, first order hyperpolarizability, analysis of 4-Methoxy-4′-Nitrobiphenyl by density functional theory. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 122, 130-141.
[http://dx.doi.org/10.1016/j.saa.2013.10.122] [PMID: 24299985]
[41]
Omar, A.Z.; Mahmoud, M.N.; El-Sadany, S.K.; Hamed, E.A.; El-atawy, M.A. A combined experimental and DFT investigation of mono azo thiobarbituric acid based chalcone disperse dyes. Dyes Pigments, 2021, 185, 108887.
[http://dx.doi.org/10.1016/j.dyepig.2020.108887]
[42]
Martinez, S. Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater. Chem. Phys., 2003, 77(1), 97-102.
[http://dx.doi.org/10.1016/S0254-0584(01)00569-7]
[43]
Parthasarathi, R.; Subramanian, V.; Roy, D.R.; Chattaraj, P.K. Electrophilicity index as a possible descriptor of biological activity. Bioorg. Med. Chem., 2004, 12(21), 5533-5543.
[http://dx.doi.org/10.1016/j.bmc.2004.08.013] [PMID: 15465330]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy