Meta-Analysis

血脂异常患者必需微量元素:荟萃分析

卷 31, 期 23, 2024

发表于: 07 July, 2023

页: [3604 - 3623] 页: 20

弟呕挨: 10.2174/0929867330666230428161653

open access plus

摘要

背景:脂质代谢是一个复杂的过程,包括脂质摄取、转运、合成和降解。微量元素对维持人体正常脂质代谢至关重要。本研究探讨血清微量元素与脂质代谢的关系。 方法:在本研究中,我们回顾了有关体细胞锌、铁、钙、铜、铬、锰、硒水平变化与脂质代谢之间关系的文章。在本系统综述和配对分析中,检索了PubMed、Web of Science和中国知网(CNKI)等数据库,检索了1900年1月1日至2022年7月12日之间发表的关于这一关系的文章。meta分析使用Review Manager5.3 (Cochrane Collaboration)进行。 结果:血清锌与血脂异常之间未发现显著关联,而其他血清微量元素(铁、硒、铜、铬和锰)与高脂血症相关。 结论:本研究提示人体锌、铜、钙含量可能与脂质代谢有关。然而,关于脂质代谢和铁、锰的研究结果还没有定论。此外,脂质代谢紊乱与硒水平之间的关系还有待进一步研究。通过改变微量元素治疗脂质代谢疾病还有待进一步研究。

关键词: 硒,锌,铁,铜,铬,锰,镉,血脂异常。

[1]
Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci., 2015, 16(1), 924-949.
[http://dx.doi.org/10.3390/ijms16010924] [PMID: 25561239]
[2]
Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472.
[http://dx.doi.org/10.1007/s11154-019-09512-0] [PMID: 31707624]
[3]
Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab., 2012, 15(3), 279-291.
[http://dx.doi.org/10.1016/j.cmet.2011.12.018] [PMID: 22405066]
[4]
DeBose-Boyd, R.A. Significance and regulation of lipid metabolism. Semin. Cell Dev. Biol., 2018, 81, 97.
[http://dx.doi.org/10.1016/j.semcdb.2017.12.003] [PMID: 29246858]
[5]
Liu, K.; Czaja, M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ., 2013, 20(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2012.63] [PMID: 22595754]
[6]
de Kroon, A.I.P.M. Lipidomics in research on yeast membrane lipid homeostasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(8), 797-799.
[http://dx.doi.org/10.1016/j.bbalip.2017.02.007] [PMID: 28219720]
[7]
Furt, F.; Moreau, P. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int. J. Biochem. Cell Biol., 2009, 41(10), 1828-1836.
[http://dx.doi.org/10.1016/j.biocel.2009.02.005] [PMID: 19703652]
[8]
Parhofer, K.G. The treatment of disorders of lipid metabolism. Dtsch. Arztebl. Int., 2016, 113(15), 261-268.
[http://dx.doi.org/10.3238/arztebl.2016.0261] [PMID: 27151464]
[9]
Natesan, V.; Kim, S.J. Lipid metabolism, disorders and therapeutic drugs - review. Biomol. Ther., 2021, 29(6), 596-604.
[http://dx.doi.org/10.4062/biomolther.2021.122] [PMID: 34697272]
[10]
Vergès, B. Lipid disorders in type 1 diabetes. Diabetes Metab., 2009, 35(5), 353-360.
[http://dx.doi.org/10.1016/j.diabet.2009.04.004] [PMID: 19733492]
[11]
Vergès, B. Lipid modification in type 2 diabetes: The role of LDL and HDL. Fundam. Clin. Pharmacol., 2009, 23(6), 681-685.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00739.x] [PMID: 19650852]
[12]
Walldius, G.; de Faire, U.; Alfredsson, L.; Leander, K.; Westerholm, P.; Malmström, H.; Ivert, T.; Hammar, N. Long-term risk of a major cardiovascular event by apoB, apoA-1, and the apoB/apoA-1 ratio-Experience from the Swedish AMORIS cohort: A cohort study. PLoS Med., 2021, 18(12), e1003853.
[http://dx.doi.org/10.1371/journal.pmed.1003853] [PMID: 34851955]
[13]
Zambon, A.; Brown, B.G.; Deeb, S.S.; Brunzell, J.D. Genetics of apolipoprotein B and apolipoprotein AI and premature coronary artery disease. J. Intern. Med., 2006, 259(5), 473-480.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01645.x] [PMID: 16629853]
[14]
Georgieva, A.M.; van Greevenbroek, M.M.J.; Krauss, R.M.; Brouwers, M.C.G.J.; Vermeulen, V.M.M.J.; Robertus-Teunissen, M.G.; van der Kallen, C.J.H.; de Bruin, T.W.A. Subclasses of low-density lipoprotein and very low-density lipoprotein in familial combined hyperlipidemia: Relationship to multiple lipoprotein phenotype. Arterioscler. Thromb. Vasc. Biol., 2004, 24(4), 744-749.
[http://dx.doi.org/10.1161/01.ATV.0000119681.47218.a4] [PMID: 14751815]
[15]
Fraga, C.G.; Oteiza, P.I.; Keen, C.L. Trace elements and human health. Mol. Aspects Med., 2005, 26(4-5), 233-234.
[http://dx.doi.org/10.1016/j.mam.2005.07.014] [PMID: 16122783]
[16]
Zheng, W. Systemic impact of trace elements on human health and diseases: Nutrition, toxicity, and beyond. J. Trace Elem. Med. Biol., 2020, 62, 126634.
[http://dx.doi.org/10.1016/j.jtemb.2020.126634] [PMID: 32827865]
[17]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[18]
Huang, H.Y.; Caballero, B.; Chang, S.; Alberg, A.J.; Semba, R.D.; Schneyer, C.R.; Wilson, R.F.; Cheng, T.Y.; Vassy, J.; Prokopowicz, G.; Barnes, G.J., II; Bass, E.B. The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: A systematic review for a National Institutes of Health state-of-the-science conference. Ann. Intern. Med., 2006, 145(5), 372-385.
[http://dx.doi.org/10.7326/0003-4819-145-5-200609050-00135] [PMID: 16880453]
[19]
Maroney, M.J.; Hondal, R.J. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med., 2018, 127, 228-237.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.035] [PMID: 29588180]
[20]
Kramer, C.K.; Zinman, B.; Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(11), 758-769.
[http://dx.doi.org/10.7326/0003-4819-159-11-201312030-00008] [PMID: 24297192]
[21]
Shi, Y.; Zou, Y.; Shen, Z.; Xiong, Y.; Zhang, W.; Liu, C.; Chen, S. Trace elements, PPARs, and metabolic syndrome. Int. J. Mol. Sci., 2020, 21(7), 2612.
[http://dx.doi.org/10.3390/ijms21072612] [PMID: 32283758]
[22]
Li, Y.; Ma, Z.; Jiang, S.; Hu, W.; Li, T.; Di, S.; Wang, D.; Yang, Y. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog. Lipid Res., 2017, 66, 42-49.
[http://dx.doi.org/10.1016/j.plipres.2017.04.002] [PMID: 28392404]
[23]
Ji, Z.; Shen, Y.; Feng, X.; Kong, Y.; Shao, Y.; Meng, J.; Zhang, X.; Yang, G. Deregulation of lipid metabolism: The critical factors in ovarian cancer. Front. Oncol., 2020, 10, 593017.
[http://dx.doi.org/10.3389/fonc.2020.593017] [PMID: 33194756]
[24]
Alannan, M.; Fayyad-Kazan, H.; Trézéguet, V.; Merched, A. Targeting lipid metabolism in liver cancer. Biochemistry, 2020, 59(41), 3951-3964.
[http://dx.doi.org/10.1021/acs.biochem.0c00477] [PMID: 32930581]
[25]
Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 2000, 283(15), 2008-2012.
[http://dx.doi.org/10.1001/jama.283.15.2008] [PMID: 10789670]
[26]
Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; Carpenter, J.R.; Chan, A.W.; Churchill, R.; Deeks, J.J.; Hróbjartsson, A.; Kirkham, J.; Jüni, P.; Loke, Y.K.; Pigott, T.D.; Ramsay, C.R.; Regidor, D.; Rothstein, H.R.; Sandhu, L.; Santaguida, P.L.; Schünemann, H.J.; Shea, B.; Shrier, I.; Tugwell, P.; Turner, L.; Valentine, J.C.; Waddington, H.; Waters, E.; Wells, G.A.; Whiting, P.F.; Higgins, J.P.T. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 2016, 355, i4919.
[http://dx.doi.org/10.1136/bmj.i4919] [PMID: 27733354]
[27]
Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414), 557-560.
[http://dx.doi.org/10.1136/bmj.327.7414.557] [PMID: 12958120]
[28]
Song, F.; Gilbody, S. Bias in meta-analysis detected by a simple, graphical test. Increase in studies of publication bias coincided with increasing use of meta-analysis. BMJ, 1998, 316(7129), 471.
[PMID: 9492690]
[29]
Ngu, Y.J.; Skalny, A.V.; Tinkov, A.A.; Tsai, C.S.; Chang, C.C.; Chuang, Y.K.; Nikolenko, V.N.; Zotkin, D.A.; Chiu, C.F.; Chang, J.S. Association between essential and non-essential metals, body composition, and metabolic syndrome in adults. Biol. Trace Elem. Res., 2022, 200(12), 4903-4915.
[http://dx.doi.org/10.1007/s12011-021-03077-3] [PMID: 34993913]
[30]
Li, X.H.; Feng, L.; Zhao, C.F.; Zhang, J.L.; Wang, H.M. Observation and analysis of blood glucose, blood lipid and serum zinc, copper and magnesium in patients with type 2 diabetes mellitus. Zhongguo Laonianxue Zazhi, 2008, (15), 1521-1522.
[31]
Costarelli, L.; Muti, E.; Malavolta, M.; Cipriano, C.; Giacconi, R.; Tesei, S.; Piacenza, F.; Pierpaoli, S.; Gasparini, N.; Faloia, E.; Tirabassi, G.; Boscaro, M.; Polito, A.; Mauro, B.; Maiani, F.; Raguzzini, A.; Marcellini, F.; Giuli, C.; Papa, R.; Emanuelli, M.; Lattanzio, F.; Mocchegiani, E. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J. Nutr. Biochem., 2010, 21(5), 432-437.
[http://dx.doi.org/10.1016/j.jnutbio.2009.02.001] [PMID: 19427184]
[32]
Yeung, D.C.Y.; Lam, K.S.L.; Wang, Y.; Tso, A.W.K.; Xu, A. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides, and the key components of the metabolic syndrome in Chinese subjects. J. Clin. Endocrinol. Metab., 2009, 94(7), 2531-2536.
[http://dx.doi.org/10.1210/jc.2009-0058] [PMID: 19351730]
[33]
Maxel, T.; Smidt, K.; Larsen, A.; Bennetzen, M.; Cullberg, K.; Fjeldborg, K.; Lund, S.; Pedersen, S.B.; Rungby, J. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes., 2015, 2(1), 46.
[http://dx.doi.org/10.1186/s40608-015-0076-y] [PMID: 26623077]
[34]
Yerlikaya, F.H.; Can, U.; Alpaydin, M.S.; Aribas, A. The relationship between plasma microRNAs and serum trace elements levels in primary hyperlipidemia. Bratisl. Med. J., 2019, 120(5), 344-348.
[http://dx.doi.org/10.4149/BLL_2019_056] [PMID: 31113196]
[35]
Cheng, W.L.; Lin, Y.Q. Determination of trace elements in serum of elderly patients with diabetes, coronary heart disease and hyperlipidemia. Biol. Trace. Elem. Res., 1995, (04), 15-16.
[36]
Xu, G.Y.; Yu, P.; Wang, X.S. Determination of serum zinc, calcium and magnesium in middle-aged and elderly patients with hyperlipidemia. Trace Elem Res., 1997, 04, 50-51.
[37]
Yu, S.M.; Fan, Z.W.; Zang, H.M. Clinical significance of determination of serum copper and zinc in patients with coronary heart disease. Preven. Control Chronic Dis. Chin., 1998, 1998(03), 46-47.
[38]
Li, J.R.; Gong, L.; Kang, Y.; Yu, B.; Zhang, X.G. Correlation between serum calcium, magnesium and zinc trace elements and hyperlipidemia. J. Cardiopulm. Rehabil. Prev., 2001, (04), 359-360.
[39]
Pei, W.J.; Ju, L.; Wang, J. Correlation between plasma zinc copper magnesium and prostacyclin and thromboxane in patients with hyperlipidemia. Chin. Med. J., 2001, (02), 143-144.
[40]
He, B.P.; Zhang, X.R.; Wu, Q.Y.; Xu, J.M.; Zhang, J.; Zhu, M.; Liu, X.Y.; Ma, J.W.; Zheng, H.Y.; Du, X.W. Study on the relationship between copper and zinc and apolipoprotein in hypertensive patients with hyperlipidemia. Guangdong Trace Elements Sci., 2003, (11), 32-35.
[41]
Zhuang, Y.Y.; Yu, Y.H.; Zhang, Y.; Meng, L.; Chen, H.B. Changes in micronutrient levels in hyperlipidemia. Zhongguo Laonianxue Zazhi, 2008, (14), 1443-1444.
[42]
Yan, X.M.; Meng, X.X.; Zhang, Y. Determination and correlation analysis of serum total cholesterol, triglyceride, copper and zinc in the aged. Zhongguo Laonianxue Zazhi, 2013, 33(11), 2630-2631.
[43]
Yang, C.J.; Hou, D.L.; Wang, X.K.; Wang, S.S. Correlation between types of dyslipidemia and trace elements. J. Med. Philos., 2015, 36(10), 62-65.
[44]
Yao, Y.F.; Fang, R.C.; Tang, Y.; Lan, J.H. Correlation between serum zinc and copper levels and blood lipids in patients with diabetes mellitus complicated with coronary heart disease. Zhejiang Clin. Med., 2017, 19(5), 955-956.
[45]
Nead, K.G.; Halterman, J.S.; Kaczorowski, J.M.; Auinger, P.; Weitzman, M. Overweight children and adolescents: A risk group for iron deficiency. Pediatrics, 2004, 114(1), 104-108.
[http://dx.doi.org/10.1542/peds.114.1.104] [PMID: 15231915]
[46]
Zhou, B.; Ren, H.; Zhou, X.; Yuan, G. Associations of iron status with apolipoproteins and lipid ratios: A cross-sectional study from the China Health and Nutrition Survey. Lipids Health Dis., 2020, 19(1), 140.
[http://dx.doi.org/10.1186/s12944-020-01312-9] [PMID: 32546165]
[47]
Tussing-Humphreys, L.M.; Liang, H.; Nemeth, E.; Freels, S.; Braunschweig, C.A. Excess adiposity, inflammation, and iron-deficiency in female adolescents. J. Am. Diet. Assoc., 2009, 109(2), 297-302.
[http://dx.doi.org/10.1016/j.jada.2008.10.044] [PMID: 19167957]
[48]
Aranda, N.; Fernandez-Cao, J.C.; Tous, M.; Arija, V. Increased iron levels and lipid peroxidation in a Mediterranean population of Spain. Eur. J. Clin. Invest., 2016, 46(6), 520-526.
[http://dx.doi.org/10.1111/eci.12625] [PMID: 26999720]
[49]
Tang, L.H.; Yuan, Q.M.; Luo, B.Y. Relationship between serum ferritin and metabolic syndrome. 2007, 2007(13), 1331-1333.
[50]
Fan, LM; Zhang, D.Z.; Ye, Y.L. Correlation between serum ferritin and metabolic syndrome in patients with type 2 diabetes mellitus. Beijing Med., 2015, 37(02), 173-174..
[51]
Zhang, L.C.; Cheng, J.; Zhong, C. Plasma ferritin and oxidative stress in patients with hyperlipidemia. World's Latest Med. Info. Digest, 2015, 15(63), 33.
[52]
Lee, H.S.; Park, E. Association of serum ferritin level and depression with respect to the body mass index in Korean male adults. Nutr. Res. Pract., 2019, 13(3), 263-267.
[http://dx.doi.org/10.4162/nrp.2019.13.3.263] [PMID: 31214295]
[53]
Bleys, J.; Navas-Acien, A.; Stranges, S.; Menke, A.; Miller, E.R., III; Guallar, E. Serum selenium and serum lipids in US adults. Am. J. Clin. Nutr., 2008, 88(2), 416-423.
[http://dx.doi.org/10.1093/ajcn/88.2.416] [PMID: 18689378]
[54]
Zhao, Z.; Barcus, M.; Kim, J.; Lum, K.L.; Mills, C.; Lei, X.G. High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J. Nutr., 2016, 146(9), 1625-1633.
[http://dx.doi.org/10.3945/jn.116.229955] [PMID: 27466604]
[55]
Ju, W.; Ji, M.; Li, X.; Li, Z.; Wu, G.; Fu, X.; Yang, X.; Gao, X. Relationship between higher serum selenium level and adverse blood lipid profile. Clin. Nutr., 2018, 37(5), 1512-1517.
[http://dx.doi.org/10.1016/j.clnu.2017.08.025] [PMID: 28943111]
[56]
Chen, C.; Jin, Y.; Unverzagt, F.W.; Cheng, Y.; Hake, A.M.; Liang, C.; Ma, F.; Su, L.; Liu, J.; Bian, J.; Li, P.; Gao, S. The association between selenium and lipid levels: A longitudinal study in rural elderly Chinese. Arch. Gerontol. Geriatr., 2015, 60(1), 147-152.
[http://dx.doi.org/10.1016/j.archger.2014.09.005] [PMID: 25263027]
[57]
Cold, F.; Winther, K.H.; Pastor-Barriuso, R.; Rayman, M.P.; Guallar, E.; Nybo, M.; Griffin, B.A.; Stranges, S.; Cold, S. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br. J. Nutr., 2015, 114(11), 1807-1818.
[http://dx.doi.org/10.1017/S0007114515003499] [PMID: 26420334]
[58]
Boskabadi, H.; Maamouri, G.; Rezagholizade Omran, F.; Mafinejad, S.; Tara, F.; Rayman, M.P.; Ghayour-Mobarhan, M.; Sahebkar, A.; Tavallaie, S.; Shakeri, M.T.; Mohammadi, M.; Ferns, G.A. Effect of prenatal selenium supplementation on cord blood selenium and lipid profile. Pediatr. Neonatol., 2012, 53(6), 334-339.
[http://dx.doi.org/10.1016/j.pedneo.2012.08.008] [PMID: 23276436]
[59]
Moon, S.; Chung, H.S.; Yu, J.M.; Yoo, H.J.; Park, J.H.; Kim, D.S.; Park, Y.K.; Yoon, S.N. Association between serum selenium level and the prevalence of diabetes mellitus in U.S. population. J. Trace Elem. Med. Biol., 2019, 52, 83-88.
[http://dx.doi.org/10.1016/j.jtemb.2018.12.005] [PMID: 30732904]
[60]
Ma, J.; Xie, Y.; Zhou, Y.; Wang, D.; Cao, L.; Zhou, M.; Wang, X.; Wang, B.; Chen, W. Urinary copper, systemic inflammation, and blood lipid profiles: Wuhan-Zhuhai cohort study. Environ. Pollut., 2020, 267, 115647.
[http://dx.doi.org/10.1016/j.envpol.2020.115647] [PMID: 33254652]
[61]
Chen, J.; Lan, C.; An, H.; Jin, Y.; Li, Q.; Ge, S.; Yu, Y.; Shen, G.; Pan, B.; Xu, Y.; Ye, R.; Li, Z.; Wang, B. Potential interference on the lipid metabolisms by serum copper in a women population: A repeated measurement study. Sci. Total Environ., 2021, 760, 143375.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143375] [PMID: 33189376]
[62]
Jürimäe, J.; Mäestu, E.; Mengel, E.; Remmel, L.; Purge, P.; Tillmann, V. Association between dietary calcium intake and adiposity in male adolescents. Nutrients, 2019, 11(7), 1454.
[http://dx.doi.org/10.3390/nu11071454] [PMID: 31252547]
[63]
Setayesh, L.; Amini, A.; Bagheri, R.; Moradi, N.; Yarizadeh, H.; Asbaghi, O.; Casazza, K.; Yekaninejad, M.S.; Wong, A.; Suzuki, K.; Mirzaei, K. Elevated plasma concentrations of vitamin d-binding protein are associated with lower high-density lipoprotein and higher fat mass index in overweight and obese women. Nutrients, 2021, 13(9), 3223.
[http://dx.doi.org/10.3390/nu13093223] [PMID: 34579103]
[64]
Zhou, Z.; Lu, Y.; Pi, H.; Gao, P.; Li, M.; Zhang, L.; Pei, L.; Mei, X.; Liu, L.; Zhao, Q.; Qin, Q.Z.; Chen, Y.; Jiang, Y.; Zhang, Z.; Yu, Z. Cadmium exposure is associated with the prevalence of dyslipidemia. Cell. Physiol. Biochem., 2016, 40(3-4), 633-643.
[http://dx.doi.org/10.1159/000452576] [PMID: 27898410]
[65]
Asgary, S.; Movahedian, A.; Keshvari, M.; Taleghani, M.; Sahebkar, A.; Sarrafzadegan, N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere, 2017, 180, 540-544.
[http://dx.doi.org/10.1016/j.chemosphere.2017.03.069] [PMID: 28431391]
[66]
Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci., 2018, 68(1), 19-31.
[http://dx.doi.org/10.1007/s12576-017-0571-7] [PMID: 28965330]
[67]
Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytán-Hernández, D.; Hernández-Mendoza, H.; Romero-Guzmán, E.T. Association of serum zinc levels in overweight and obesity. Biol. Trace Elem. Res., 2020, 198(1), 51-57.
[http://dx.doi.org/10.1007/s12011-020-02060-8] [PMID: 32020525]
[68]
Fukunaka, A.; Fujitani, Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int. J. Mol. Sci., 2018, 19(2), 476.
[http://dx.doi.org/10.3390/ijms19020476] [PMID: 29415457]
[69]
Wei, X.; Liu, X.; Tan, C.; Mo, L.; Wang, H.; Peng, X.; Deng, F.; Chen, L. Expression and function of zinc-α2-glycoprotein. Neurosci. Bull., 2019, 35(3), 540-550.
[http://dx.doi.org/10.1007/s12264-018-00332-x] [PMID: 30610461]
[70]
Banaszak, M.; Górna, I.; Przysławski, J. Zinc and the innovative Zinc-α2-Glycoprotein adipokine play an important role in lipid metabolism: A critical review. Nutrients, 2021, 13(6), 2023.
[http://dx.doi.org/10.3390/nu13062023] [PMID: 34208404]
[71]
Thoen, R.U.; Barther, N.N.; Schemitt, E.; Bona, S.; Fernandes, S.; Coral, G.; Marroni, N.P.; Tovo, C.; Guedes, R.P.; Porawski, M. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl. Physiol. Nutr. Metab., 2019, 44(6), 580-586.
[http://dx.doi.org/10.1139/apnm-2018-0519] [PMID: 30339765]
[72]
Qi, Y.; Zhang, Z.; Liu, S.; Aluo, Z.; Zhang, L.; Yu, L.; Li, Y.; Song, Z.; Zhou, L. Zinc supplementation alleviates lipid and glucose metabolic disorders induced by a high-fat diet. J. Agric. Food Chem., 2020, 68(18), 5189-5200.
[http://dx.doi.org/10.1021/acs.jafc.0c01103] [PMID: 32290656]
[73]
Hughes, S.; Samman, S. The effect of zinc supplementation in humans on plasma lipids, antioxidant status and thrombogenesis. J. Am. Coll. Nutr., 2006, 25(4), 285-291.
[http://dx.doi.org/10.1080/07315724.2006.10719537] [PMID: 16943449]
[74]
Ranasinghe, P.; Wathurapatha, W.S.; Ishara, M.H.; Jayawardana, R.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Effects of Zinc supplementation on serum lipids: A systematic review and meta-analysis. Nutr. Metab., 2015, 12(1), 26.
[http://dx.doi.org/10.1186/s12986-015-0023-4] [PMID: 26244049]
[75]
Barbara, M.; Mindikoglu, A.L. The role of zinc in the prevention and treatment of nonalcoholic fatty liver disease. Metabolism Open, 2021, 11, 100105.
[http://dx.doi.org/10.1016/j.metop.2021.100105] [PMID: 34337376]
[76]
Abbasi, U.; Abbina, S.; Gill, A.; Takuechi, L.E.; Kizhakkedathu, J.N. Role of iron in the molecular pathogenesis of diseases and therapeutic opportunities. ACS Chem. Biol., 2021, 16(6), 945-972.
[http://dx.doi.org/10.1021/acschembio.1c00122] [PMID: 34102834]
[77]
Banach, W.; Nitschke, K.; Krajewska, N.; Mongiałło, W.; Matuszak, O.; Muszyński, J.; Skrypnik, D. The association between excess body mass and disturbances in somatic mineral levels. Int. J. Mol. Sci., 2020, 21(19), 7306.
[http://dx.doi.org/10.3390/ijms21197306] [PMID: 33022938]
[78]
Liu, Q.; Sun, L.; Tan, Y.; Wang, G.; Lin, X.; Cai, L. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr. Med. Chem., 2009, 16(1), 113-129.
[http://dx.doi.org/10.2174/092986709787002862] [PMID: 19149565]
[79]
Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093.
[http://dx.doi.org/10.1111/obr.12323] [PMID: 26395622]
[80]
Wang, H.; Jiang, X.; Wu, J.; Zhang, L.; Huang, J.; Zhang, Y.; Zou, X.; Liang, B. Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics, 2016, 203(1), 241-253.
[http://dx.doi.org/10.1534/genetics.116.186742] [PMID: 27017620]
[81]
Hider, R.C.; Kong, X. Iron: Effect of overload and deficiency. Met. Ions Life Sci., 2013, 13, 229-294.
[http://dx.doi.org/10.1007/978-94-007-7500-8_8] [PMID: 24470094]
[82]
Lin, Z.; Liu, J.; Kang, R.; Yang, M.; Tang, D. Lipid metabolism in ferroptosis. Adv. Biol., 2021, 5(8), 2100396.
[http://dx.doi.org/10.1002/adbi.202100396] [PMID: 34015188]
[83]
Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 108.
[http://dx.doi.org/10.1038/s41392-020-00216-5] [PMID: 32606298]
[84]
Jiang, Y.; Mao, C.; Yang, R.; Yan, B.; Shi, Y.; Liu, X.; Lai, W.; Liu, Y.; Wang, X.; Xiao, D.; Zhou, H.; Cheng, Y.; Yu, F.; Cao, Y.; Liu, S.; Yan, Q.; Tao, Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics, 2017, 7(13), 3293-3305.
[http://dx.doi.org/10.7150/thno.19988] [PMID: 28900510]
[85]
Habib, A.; Finn, A.V. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol., 2014, 5, 195.
[http://dx.doi.org/10.3389/fphar.2014.00195] [PMID: 25221512]
[86]
Zhu, X.H.; Ding, G.Q.; Zhang, R.H.; Zhou, B. Research progress of Iron, Zinc, Copper, Selenium, Manganese and metabolic syndrome. 2016, 36(01), 197-200.
[87]
Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules, 2013, 18(3), 3292-3311.
[http://dx.doi.org/10.3390/molecules18033292] [PMID: 23486107]
[88]
Steinbrenner, H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic. Biol. Med., 2013, 65, 1538-1547.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.016] [PMID: 23872396]
[89]
Huang, J.Q.; Zhou, J.C.; Wu, Y.Y.; Ren, F.Z.; Lei, X.G. Role of glutathione peroxidase 1 in glucose and lipid metabolism-related diseases. Free Radic. Biol. Med., 2018, 127, 108-115.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.077] [PMID: 29800654]
[90]
Liang, W.; Zhao, Y.J.; Yang, H.; Shen, L.H. Effects of antioxidant system on coronary artery lesions in patients with abnormal glucose metabolism. Aging Clin. Exp. Res., 2017, 29(2), 141-146.
[http://dx.doi.org/10.1007/s40520-016-0564-z] [PMID: 27075629]
[91]
Nido, S.A.; Shituleni, S.A.; Mengistu, B.M.; Liu, Y.; Khan, A.Z.; Gan, F.; Kumbhar, S.; Huang, K. Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol. Trace Elem. Res., 2016, 171(2), 399-409.
[http://dx.doi.org/10.1007/s12011-015-0552-8] [PMID: 26546553]
[92]
Christensen, K.; Werner, M.; Malecki, K. Serum selenium and lipid levels: Associations observed in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Environ. Res., 2015, 140, 76-84.
[http://dx.doi.org/10.1016/j.envres.2015.03.020] [PMID: 25836721]
[93]
Stranges, S.; Tabák, A.G.; Guallar, E.; Rayman, M.P.; Akbaraly, T.N.; Laclaustra, M.; Alfthan, G.; Mussalo-Rauhamaa, H.; Viikari, J.S.A.; Raitakari, O.T.; Kivimäki, M. Selenium status and blood lipids: The cardiovascular risk in young finns study. J. Intern. Med., 2011, 270(5), 469-477.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02398.x] [PMID: 21554435]
[94]
Zhao, Z.; Kim, J.; Lei, X.G. High dietary fat and selenium concentrations exert tissue- and glutathione peroxidase 1–Dependent impacts on lipid metabolism of young-adult mice. J. Nutr., 2020, 150(7), 1738-1748.
[http://dx.doi.org/10.1093/jn/nxaa130] [PMID: 32386229]
[95]
Blades, B.; Ayton, S.; Hung, Y.H.; Bush, A.I.; La Fontaine, S. Copper and lipid metabolism: A reciprocal relationship. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(11), 129979.
[http://dx.doi.org/10.1016/j.bbagen.2021.129979] [PMID: 34364973]
[96]
Weiss, K.H.; Zischka, H. Copper directly affects intestinal lipid turnover. Gastroenterology, 2018, 154(1), 15-17.
[http://dx.doi.org/10.1053/j.gastro.2017.11.016] [PMID: 29174544]
[97]
Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis., 2018, 22(1), 23-37.
[http://dx.doi.org/10.1016/j.cld.2017.08.007] [PMID: 29128059]
[98]
Rinella, M.E. Nonalcoholic fatty liver disease: A systematic review. JAMA, 2015, 313(22), 2263-2273.
[http://dx.doi.org/10.1001/jama.2015.5370] [PMID: 26057287]
[99]
Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology, 2020, 158(7), 1851-1864.
[http://dx.doi.org/10.1053/j.gastro.2020.01.052] [PMID: 32061595]
[100]
Divella, R.; Mazzocca, A.; Daniele, A.; Sabbà, C.; Paradiso, A. Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int. J. Biol. Sci., 2019, 15(3), 610-616.
[http://dx.doi.org/10.7150/ijbs.29599] [PMID: 30745847]
[101]
Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life, 2017, 69(4), 263-270.
[http://dx.doi.org/10.1002/iub.1613] [PMID: 28271632]
[102]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism, 2019, 92, 82-97.
[http://dx.doi.org/10.1016/j.metabol.2018.11.014] [PMID: 30502373]
[103]
Pierson, H.; Muchenditsi, A.; Kim, B.E.; Ralle, M.; Zachos, N.; Huster, D.; Lutsenko, S. The function of ATPase copper transporter ATP7B in intestine. Gastroenterology, 2018, 154(1), 168-180.e5.
[http://dx.doi.org/10.1053/j.gastro.2017.09.019] [PMID: 28958857]
[104]
Kaler, S.G. ATP7A-related copper transport diseases- emerging concepts and future trends. Nat. Rev. Neurol., 2011, 7(1), 15-29.
[http://dx.doi.org/10.1038/nrneurol.2010.180] [PMID: 21221114]
[105]
Tadini-Buoninsegni, F.; Smeazzetto, S. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. IUBMB Life, 2017, 69(4), 218-225.
[http://dx.doi.org/10.1002/iub.1603] [PMID: 28164426]
[106]
Hummel, M.; Standl, E.; Schnell, O. Chromium in metabolic and cardiovascular disease. Horm. Metab. Res., 2007, 39(10), 743-751.
[http://dx.doi.org/10.1055/s-2007-985847] [PMID: 17952838]
[107]
Racek, J. [Chromium as an essential element]. Cas. Lek. Cesk., 2003, 142(6), 335-339.
[PMID: 12924032]
[108]
Iskra, R.; Ianovych, V.G. Biochemical mechanisms of chromium action in the human and animal organism. Ukr Biokhim Zh, 2011, 83(5), 5-12.
[109]
Zabłocka-Słowińska, K.; Grajeta, H. The role of manganese in etiopathogenesis and prevention of selected diseases. Postepy Hig. Med. Dosw., 2012, 66, 549-553.
[http://dx.doi.org/10.5604/17322693.1006411] [PMID: 22922155]
[110]
Lee, S.H.; Jouihan, H.A.; Cooksey, R.C.; Jones, D.; Kim, H.J.; Winge, D.R.; McClain, D.A. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology, 2013, 154(3), 1029-1038.
[http://dx.doi.org/10.1210/en.2012-1445] [PMID: 23372018]
[111]
Zhou, B.; Su, X.; Su, D.; Zeng, F.; Wang, M.H.; Huang, L.; Huang, E.; Zhu, Y.; Zhao, D.; He, D.; Zhu, X.; Yeoh, E.; Zhang, R.; Ding, G. Dietary intake of manganese and the risk of the metabolic syndrome in a Chinese population. Br. J. Nutr., 2016, 116(5), 853-863.
[http://dx.doi.org/10.1017/S0007114516002580] [PMID: 27385039]
[112]
Zhang, F.; Ye, J.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; Jiang, Q.; Wang, S. Anti-obesity effects of dietary calcium: The evidence and possible mechanisms. Int. J. Mol. Sci., 2019, 20(12), 3072.
[http://dx.doi.org/10.3390/ijms20123072] [PMID: 31234600]
[113]
Song, Q.; Sergeev, I.N. Calcium and vitamin D in obesity. Nutr. Res. Rev., 2012, 25(1), 130-141.
[http://dx.doi.org/10.1017/S0954422412000029] [PMID: 22588363]
[114]
Schrager, S. Dietary calcium intake and obesity. J. Am. Board Fam. Med., 2005, 18(3), 205-210.
[http://dx.doi.org/10.3122/jabfm.18.3.205] [PMID: 15879568]
[115]
Peterlik, M.; Cross, H.S. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur. J. Clin. Nutr., 2009, 63(12), 1377-1386.
[http://dx.doi.org/10.1038/ejcn.2009.105] [PMID: 19724293]
[116]
Peterlik, M.; Cross, H.S. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur. J. Clin. Invest., 2005, 35(5), 290-304.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01487.x] [PMID: 15860041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy