Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

General Review Article

Lipidomics and Metabolomics in Infant Atopic Dermatitis: What’s the Correlation with Early Nutrition?

Author(s): Angelica Dessì*, Camilla Di Maria, Roberta Pintus, Vassilios Fanos and Alice Bosco

Volume 20, Issue 4, 2024

Published on: 11 May, 2023

Page: [510 - 524] Pages: 15

DOI: 10.2174/1573396320666230411093122

Price: $65

Open Access Journals Promotions 2
Abstract

To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk.

In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.

Keywords: Atopic dermatitis, metabolomics, lipidomics, nutrition, infant, microbiota.

Graphical Abstract
[1]
Bylund S, Kobyletzki L, Svalstedt M. Svensson. Prevalence and incidence of atopic dermatitis: A systematic review. Acta Derm Venereol 2020; 100(12): adv00160.
[http://dx.doi.org/10.2340/00015555-3510] [PMID: 32412646]
[2]
Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J Invest Dermatol 2014; 134(6): 1527-34.
[http://dx.doi.org/10.1038/jid.2013.446] [PMID: 24166134]
[3]
Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet 2020; 396(10247): 345-60.
[http://dx.doi.org/10.1016/S0140-6736(20)31286-1] [PMID: 32738956]
[4]
Nedoszytko B, Reszka E, Gutowska-Owsiak D, et al. Genetic and epigenetic aspects of atopic dermatitis. Int J Mol Sci 2020; 21(18): 6484.
[http://dx.doi.org/10.3390/ijms21186484] [PMID: 32899887]
[5]
Drucker AM. Atopic dermatitis: Burden of illness, quality of life, and associated complications. Allergy Asthma Proc 2017; 38(1): 3-8.
[http://dx.doi.org/10.2500/aap.2017.38.4005] [PMID: 28052794]
[6]
Feld M, Garcia R, Buddenkotte J, et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol 2016; 138(2): 500-508.e24.
[http://dx.doi.org/10.1016/j.jaci.2016.02.020] [PMID: 27212086]
[7]
Li S, Ganguli-Indra G, Indra AK. Lipidomic analysis of epidermal lipids: A tool to predict progression of inflammatory skin disease in humans. Expert Rev Proteomics 2016; 13(5): 451-6.
[http://dx.doi.org/10.1080/14789450.2016.1177462] [PMID: 27121756]
[8]
Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered “omics” data for atopic dermatitis: A road map to precision medicine. Front Immunol 2018; 9: 2727.
[http://dx.doi.org/10.3389/fimmu.2018.02727] [PMID: 30631320]
[9]
Schjødt MS, Gürdeniz G, Chawes B. The metabolomics of childhood atopic diseases: A comprehensive pathway-specific review. Metabolites 2020; 10(12): 511.
[http://dx.doi.org/10.3390/metabo10120511] [PMID: 33339279]
[10]
Gruber F, Kremslehner C, Narzt MS. The impact of recent advances in lipidomics and redox lipidomics on dermatological research. Free Radic Biol Med 2019; 144: 256-65.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.019] [PMID: 31004751]
[11]
Jia Y, Gan Y, He C, Chen Z, Zhou C. The mechanism of skin lipids influencing skin status. J Dermatol Sci 2018; 89(2): 112-9.
[http://dx.doi.org/10.1016/j.jdermsci.2017.11.006] [PMID: 29174114]
[12]
Kendall AC, Koszyczarek MM, Jones EA, et al. Lipidomics for translational skin research: A primer for the uninitiated. Exp Dermatol 2018; 27(7): 721-8.
[http://dx.doi.org/10.1111/exd.13558] [PMID: 29654617]
[13]
Murphy SA, Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res 2013; 57(8): 1336-46.
[http://dx.doi.org/10.1002/mnfr.201200863] [PMID: 23729171]
[14]
Montecchiani V, Fanos V. Human microbiome and allergy. Pediatr Allergy Immunol 2020; 31(S26): 5-7.
[http://dx.doi.org/10.1111/pai.13360] [PMID: 33236419]
[15]
Mussap M, Antonucci R, Noto A, Fanos V. The role of metabolomics in neonatal and pediatric laboratory medicine. Clin Chim Acta 2013; 426: 127-38.
[http://dx.doi.org/10.1016/j.cca.2013.08.020] [PMID: 24035970]
[16]
McLean WH. Filaggrin failure - from ichthyosis vulgaris to atopic eczema and beyond. Br J Dermatol 2016; 175(S2): 4-7.
[http://dx.doi.org/10.1111/bjd.14997]
[17]
Brown SJ, Kroboth K, Sandilands A, et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol 2012; 132(1): 98-104.
[http://dx.doi.org/10.1038/jid.2011.342] [PMID: 22071473]
[18]
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: From basic mechanisms to clinical applications. Epigenomics 2017; 9(4): 539-71.
[http://dx.doi.org/10.2217/epi-2016-0162] [PMID: 28322581]
[19]
Martin MJ, Estravís M, García-Sánchez A, Dávila I, Isidoro-García M, Sanz C. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes 2020; 11(4): 442.
[http://dx.doi.org/10.3390/genes11040442] [PMID: 32325630]
[20]
Schübeler D. Function and information content of DNA methylation. Nature 2015; 517(7534): 321-6.
[http://dx.doi.org/10.1038/nature14192] [PMID: 25592537]
[21]
Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet 2017; 49(12): 1752-7.
[http://dx.doi.org/10.1038/ng.3985] [PMID: 29083406]
[22]
Boorgula MP, Taub MA, Rafaels N, et al. Replicated methylation changes associated with eczema herpeticum and allergic response. Clin Epigenetics 2019; 11(1): 122.
[http://dx.doi.org/10.1186/s13148-019-0714-1] [PMID: 31443688]
[23]
Kumar D, Puan KJ, Andiappan AK, et al. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med 2017; 9(1): 18.
[http://dx.doi.org/10.1186/s13073-017-0404-6] [PMID: 28219444]
[24]
Stevens ML, Zhang Z, Johansson E, et al. Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun 2020; 11(1): 4092.
[http://dx.doi.org/10.1038/s41467-020-17895-x] [PMID: 32796837]
[25]
Thürmann L, Grützmann K, Klös M, et al. Early-onset childhood atopic dermatitis is related to NLRP2 repression. J Allergy Clin Immunol 2018; 141(4): 1482-1485.e16.
[http://dx.doi.org/10.1016/j.jaci.2017.11.018] [PMID: 29233739]
[26]
Rossi MN, Pascarella A, Licursi V, et al. NLRP2 regulates proinflammatory and antiapoptotic responses in proximal tubular epithelial cells. Front Cell Dev Biol 2019; 7: 252.
[http://dx.doi.org/10.3389/fcell.2019.00252] [PMID: 31709256]
[27]
Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol 2014; 39(1): 48-53.
[http://dx.doi.org/10.1111/ced.12206] [PMID: 24341479]
[28]
Liang Y, Wang P, Zhao M, et al. Demethylation of the FCER1G promoter leads to FcεRI overexpression on monocytes of patients with atopic dermatitis. Allergy 2012; 67(3): 424-30.
[http://dx.doi.org/10.1111/j.1398-9995.2011.02760.x] [PMID: 22150093]
[29]
Ziyab AH, Karmaus W, Holloway JW, Zhang H, Ewart S, Arshad SH. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol 2013; 27(3): e420-3.
[http://dx.doi.org/10.1111/jdv.12000] [PMID: 23003573]
[30]
Tonacci A, Bagnato G, Pandolfo G, et al. MicroRNA cross involvement in autism spectrum disorders and atopic dermatitis: A literature review. J Clin Med 2019; 8(1): 88.
[http://dx.doi.org/10.3390/jcm8010088] [PMID: 30646527]
[31]
Rebane A, Runnel T, Aab A, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 2014; 134(4): 836-847.e11.
[http://dx.doi.org/10.1016/j.jaci.2014.05.022] [PMID: 24996260]
[32]
Lv Y, Qi R, Xu J, et al. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One 2014; 9(12): e115448.
[http://dx.doi.org/10.1371/journal.pone.0115448] [PMID: 25531302]
[33]
Bikle DD, Xie Z, Tu CL. Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 2012; 7(4): 461-72.
[http://dx.doi.org/10.1586/eem.12.34] [PMID: 23144648]
[34]
Yamanishi H, Soma T, Kishimoto J, Hibino T, Ishida-Yamamoto A. Marked changes in lamellar granule and trans-golgi network structure occur during epidermal keratinocyte differentiation. J Invest Dermatol 2019; 139(2): 352-9.
[http://dx.doi.org/10.1016/j.jid.2018.07.043] [PMID: 30240698]
[35]
Candi E, Schmidt R, Melino G. The cornified envelope: A model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6(4): 328-40.
[http://dx.doi.org/10.1038/nrm1619] [PMID: 15803139]
[36]
Mahanty S, Setty SRG. Epidermal lamellar body biogenesis: Insight into the roles of golgi and lysosomes. Front Cell Dev Biol 2021; 9: 701950.
[http://dx.doi.org/10.3389/fcell.2021.701950] [PMID: 34458262]
[37]
Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta Biomembr 2006; 1758(12): 2080-95.
[http://dx.doi.org/10.1016/j.bbamem.2006.06.021] [PMID: 16945325]
[38]
Feingold KR. Thematic review series: Skin Lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007; 48(12): 2531-46.
[http://dx.doi.org/10.1194/jlr.R700013-JLR200] [PMID: 17872588]
[39]
Elias PM, Choi EH. Interactions among stratum corneum defensive functions. Exp Dermatol 2005; 14(10): 719-26.
[http://dx.doi.org/10.1111/j.1600-0625.2005.00363.x] [PMID: 16176279]
[40]
Madison KC. Barrier function of the skin: “La raison d’être” of the epidermis. J Invest Dermatol 2003; 121(2): 231-41.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12359.x] [PMID: 12880413]
[41]
Masukawa Y, Narita H, Sato H, et al. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009; 50(8): 1708-19.
[http://dx.doi.org/10.1194/jlr.D800055-JLR200] [PMID: 19349641]
[42]
van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 2011; 52(6): 1211-21.
[http://dx.doi.org/10.1194/jlr.M014456] [PMID: 21444759]
[43]
Ziboh VA, Miller CC, Cho Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin Nutr 2000; 71(S1): 361-6.
[http://dx.doi.org/10.1093/ajcn/71.1.361S] [PMID: 10617998]
[44]
Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang CM. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol 2010; 130(4): 985-94.
[http://dx.doi.org/10.1038/jid.2009.384] [PMID: 20032992]
[45]
Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: Skin lipids. antimicrobial lipids at the skin surface. J Lipid Res 2008; 49(1): 4-11.
[http://dx.doi.org/10.1194/jlr.R700016-JLR200] [PMID: 17906220]
[46]
Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science 2014; 346(6212): 954-9.
[http://dx.doi.org/10.1126/science.1260144] [PMID: 25414304]
[47]
Scharschmidt TC, Fischbach MA. What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech 2013; 10(3-4): e83-9.
[http://dx.doi.org/10.1016/j.ddmec.2012.12.003] [PMID: 24273587]
[48]
Dréno B, Araviiskaia E, Berardesca E, et al. Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 2016; 30(12): 2038-47.
[http://dx.doi.org/10.1111/jdv.13965] [PMID: 27735094]
[49]
Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota. Genome Res 2008; 18(7): 1043-50.
[http://dx.doi.org/10.1101/gr.075549.107] [PMID: 18502944]
[50]
Mukherjee S, Mitra R, Maitra A, et al. Sebum and hydration levels in specific regions of human face significantly predict the nature and diversity of facial skin microbiome. Sci Rep 2016; 6(1): 36062.
[http://dx.doi.org/10.1038/srep36062] [PMID: 27786295]
[51]
Seidenari S, Giusti G. Objective assessment of the skin of children affected by atopic dermatitis: A study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. Acta Derm Venereol 1995; 75(6): 429-33.
[PMID: 8651017]
[52]
Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 2010; 65(7): 911-8.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02326.x] [PMID: 20132155]
[53]
Nemoto-Hasebe I, Akiyama M, Nomura T, Sandilands A, Irwin McLean WH, Shimizu H. Clinical severity correlates with impaired barrier in filaggrin-related eczema. J Invest Dermatol 2009; 129(3): 682-9.
[http://dx.doi.org/10.1038/jid.2008.280] [PMID: 18818676]
[54]
Stemmler S, Hoffjan S. Trying to understand the genetics of atopic dermatitis. Mol Cell Probes 2016; 30(6): 374-85.
[http://dx.doi.org/10.1016/j.mcp.2016.10.004] [PMID: 27725295]
[55]
Bonamonte D, Filoni A, Vestita M, Romita P, Foti C, Angelini G. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis. BioMed Res Int 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/2450605] [PMID: 31119157]
[56]
Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol 2013; 132(1): 15-26.
[http://dx.doi.org/10.1016/j.jaci.2013.04.011] [PMID: 23726263]
[57]
Totté JEE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of S taphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br J Dermatol 2016; 175(4): 687-95.
[http://dx.doi.org/10.1111/bjd.14566] [PMID: 26994362]
[58]
Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C. Atopic dermatitis: The skin barrier and beyond. Br J Dermatol 2019; 180(3): 464-74.
[http://dx.doi.org/10.1111/bjd.16934] [PMID: 29969827]
[59]
Baurecht H, Rühlemann MC, Rodríguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol 2018; 141(5): 1668-1676.e16.
[http://dx.doi.org/10.1016/j.jaci.2018.01.019] [PMID: 29421277]
[60]
Kennedy EA, Connolly J, Hourihane JOB, et al. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol 2017; 139(1): 166-72.
[http://dx.doi.org/10.1016/j.jaci.2016.07.029] [PMID: 27609659]
[61]
Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 2012; 22(5): 850-9.
[http://dx.doi.org/10.1101/gr.131029.111] [PMID: 22310478]
[62]
Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: A complex and evolving relationship. Trends Microbiol 2018; 26(6): 484-97.
[http://dx.doi.org/10.1016/j.tim.2017.11.008] [PMID: 29233606]
[63]
Brodská P, Panzner P, Pizinger K, Schmid-Grendelmeier P. IgE-mediated sensitization to malassezia in atopic dermatitis: More common in male patients and in head and neck type. Dermatitis 2014; 25(3): 120-6.
[http://dx.doi.org/10.1097/DER.0000000000000040] [PMID: 24819285]
[64]
Glatz M, Buchner M, Bartenwerffer W, et al. Malassezia spp.-specific immunoglobulin E level is a marker for severity of atopic dermatitis in adults. Acta Derm Venereol 2015; 95(2): 191-6.
[http://dx.doi.org/10.2340/00015555-1864] [PMID: 24696225]
[65]
Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013; 210(13): 2939-50.
[http://dx.doi.org/10.1084/jem.20130351] [PMID: 24323357]
[66]
Saunders SP, Moran T, Floudas A, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol 2016; 137(2): 482-91.
[http://dx.doi.org/10.1016/j.jaci.2015.06.045] [PMID: 26299987]
[67]
Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 2016; 15(1): 35-50.
[http://dx.doi.org/10.1038/nrd4624] [PMID: 26471366]
[68]
Yoshida K, Kubo A, Fujita H, et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol 2014; 134(4): 856-64.
[http://dx.doi.org/10.1016/j.jaci.2014.08.001] [PMID: 25282566]
[69]
Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007; 120(1): 150-5.
[http://dx.doi.org/10.1016/j.jaci.2007.04.031] [PMID: 17512043]
[70]
Kezic S, O’Regan GM, Yau N, et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy 2011; 66(7): 934-40.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02540.x] [PMID: 21261659]
[71]
Tsoi LC, Rodriguez E, Stölzl D, et al. Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. J Allergy Clin Immunol 2020; 145(5): 1406-15.
[http://dx.doi.org/10.1016/j.jaci.2019.11.047] [PMID: 31891686]
[72]
Assfalg M, Bortoletti E, D’Onofrio M, et al. An exploratory 1 H‐nuclear magnetic resonance metabolomics study reveals altered urine spectral profiles in infants with atopic dermatitis. Br J Dermatol 2012; 166(5): 1123-5.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10711.x] [PMID: 22032695]
[73]
Huang Y, Chen G, Liu X, et al. Serum metabolomics study and eicosanoid analysis of childhood atopic dermatitis based on liquid chromatography-mass spectrometry. J Proteome Res 2014; 13(12): 5715-23.
[http://dx.doi.org/10.1021/pr5007069] [PMID: 25316199]
[74]
Park YM, Lee SY, Kang MJ, et al. Imbalance of gut Streptococcus, Clostridium, and Akkermansia determines the natural course of atopic dermatitis in infant. Allergy Asthma Immunol Res 2020; 12(2): 322-37.
[http://dx.doi.org/10.4168/aair.2020.12.2.322] [PMID: 32009325]
[75]
Ta LDH, Chan JCY, Yap GC, et al. A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes 2020; 12(1): 1801964.
[http://dx.doi.org/10.1080/19490976.2020.1801964] [PMID: 33023370]
[76]
Trompette A, Pernot J, Perdijk O, et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol 2022; 15(5): 908-26.
[http://dx.doi.org/10.1038/s41385-022-00524-9] [PMID: 35672452]
[77]
Shen CP, Zhao MT, Jia ZX, Zhang JL, Jiao L, Ma L. Skin ceramide profile in children with atopic dermatitis. Dermatitis 2018; 29(4): 219-22.
[http://dx.doi.org/10.1097/DER.0000000000000392] [PMID: 29939855]
[78]
Wang H, Cui L, Jia Y, Gao Y, Zhang G, He C. Application of lipidomics to reveal differences of facial skin surface lipids between atopic dermatitis and healthy infants. J Cosmet Dermatol 2020; 19(6): 1528-34.
[http://dx.doi.org/10.1111/jocd.13188] [PMID: 31617666]
[79]
Hoji A, Kumar R, Gern JE, Bendixsen CG, Seroogy CM, Cook-Mills JM. Cord blood sphingolipids are associated with atopic dermatitis and wheeze in the first year of life. J Allergy Clin Immunol 2022; 1(3): 162-71.
[http://dx.doi.org/10.1016/j.jacig.2022.03.002] [PMID: 36117517]
[80]
Eigenmann PA, Beyer K, Lack G, et al. Are avoidance diets still warranted in children with atopic dermatitis? Pediatr Allergy Immunol 2020; 31(1): 19-26.
[http://dx.doi.org/10.1111/pai.13104] [PMID: 31273833]
[81]
Martin PE, Eckert JK, Koplin JJ, et al. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy 2015; 45(1): 255-64.
[http://dx.doi.org/10.1111/cea.12406] [PMID: 25210971]
[82]
Lloyd-Lavery A, Solman L, Grindlay DJC, Rogers NK, Thomas KS, Harman KE. What’s new in atopic eczema? An analysis of systematic reviews published in 2016. Part 2: Epidemiology, aetiology and risk factors. Clin Exp Dermatol 2019; 44(4): 370-5.
[http://dx.doi.org/10.1111/ced.13853] [PMID: 30706503]
[83]
Savage J, Sicherer S, Wood R. The natural history of food allergy. J Allergy Clin Immunol Pract 2016; 4(2): 196-203.
[http://dx.doi.org/10.1016/j.jaip.2015.11.024] [PMID: 26968958]
[84]
di Mauro G, Bernardini R, Barberi S, et al. Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics. World Allergy Organ J 2016; 9: 28.
[http://dx.doi.org/10.1186/s40413-016-0111-6] [PMID: 27583103]
[85]
Schütte O, Bachmann L, Shivappa N, et al. Pro-inflammatory diet pictured in children with atopic dermatitis or food allergy: Nutritional data of the LiNA cohort. Front Nutr 2022; 9: 868872.
[http://dx.doi.org/10.3389/fnut.2022.868872] [PMID: 35464023]
[86]
Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA. Primary prevention of allergic disease through nutritional interventions. J Allergy Clin Immunol Pract 2013; 1(1): 29-36.
[http://dx.doi.org/10.1016/j.jaip.2012.09.003] [PMID: 24229819]
[87]
Earp E, Tsianou Z, Grindlay DJC, Rogers NK, Olabi B. What’s new in atopic eczema? An analysis of systematic reviews published in 2019. Part 1: Risk factors and prevention. Clin Exp Dermatol 2021; 46(7): 1205-10.
[http://dx.doi.org/10.1111/ced.14788] [PMID: 34080217]
[88]
Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunity 2017; 47(1): 32-50.
[http://dx.doi.org/10.1016/j.immuni.2017.07.004] [PMID: 28723552]
[89]
Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest 1993; 92(3): 1374-80.
[http://dx.doi.org/10.1172/JCI116711] [PMID: 7690780]
[90]
Ong PY. Association between egg and staphylococcal superantigen IgE sensitizations in atopic dermatitis. Allergy Asthma Proc 2014; 35(4): 346-8.
[http://dx.doi.org/10.2500/aap.2014.35.3757] [PMID: 24992554]
[91]
Lee SY, Lee E, Park YM, Hong SJ. Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol Res 2018; 10(4): 354-62.
[http://dx.doi.org/10.4168/aair.2018.10.4.354] [PMID: 29949831]
[92]
Kim J, Kim H. Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J Clin Med 2019; 8(4): 444.
[http://dx.doi.org/10.3390/jcm8040444] [PMID: 30987008]
[93]
Ganal-Vonarburg SC, Hornef MW, Macpherson AJ. Microbial–host molecular exchange and its functional consequences in early mammalian life. Science 2020; 368(6491): 604-7.
[http://dx.doi.org/10.1126/science.aba0478] [PMID: 32381716]
[94]
Foisy M, Boyle RJ, Chalmers JR, Simpson EL, Williams HC. The prevention of eczema in infants and children: An overview of Cochrane and non-Cochrane reviews. Evid Based Child Health 2011; 6(5): 1322-39.
[http://dx.doi.org/10.1002/ebch.827] [PMID: 22822349]
[95]
Trikamjee T, Comberiati P, D’Auria E, Peroni D, Zuccotti GV. Nutritional factors in the prevention of atopic dermatitis in children. Front Pediatr 2021; 8: 577413.
[http://dx.doi.org/10.3389/fped.2020.577413] [PMID: 33585361]
[96]
Güngör D, Nadaud P, LaPergola CC, et al. Infant milk-feeding practices and food allergies, allergic rhinitis, atopic dermatitis, and asthma throughout the life span: A systematic review. Am J Clin Nutr 2019; 109 (Suppl. 7): S772-99.
[http://dx.doi.org/10.1093/ajcn/nqy283] [PMID: 30982870]
[97]
Lin B, Dai R, Lu L, Fan X, Yu Y. Breastfeeding and atopic dermatitis risk: A systematic review and meta-analysis of prospective cohort studies. Dermatology 2020; 236(4): 345-60.
[http://dx.doi.org/10.1159/000503781] [PMID: 31694017]
[98]
Khaleva E, Gridneva Z, Geddes DT, et al. Transforming growth factor beta in human milk and allergic outcomes in children: A systematic review. Clin Exp Allergy 2019; 49(9): 1201-13.
[http://dx.doi.org/10.1111/cea.13409] [PMID: 31058363]
[99]
Amalia N, Orchard D, Francis KL, King E. Systematic review and meta‐analysis on the use of probiotic supplementation in pregnant mother, breastfeeding mother and infant for the prevention of atopic dermatitis in children. Australas J Dermatol 2020; 61(2): e158-73.
[http://dx.doi.org/10.1111/ajd.13186] [PMID: 31721162]
[100]
Yin DG, He Z, Duan XY, Fan FX, Liao XB, Wang QC. Effect of probiotic supplementation during pregnancy and infancy in preventing atopic dermatitis in children: A Meta analysis. Zhongguo Dang Dai Er Ke Za Zhi 2019; 21(1): 82-8.
[PMID: 30675869]
[101]
Fanfaret I, Boda D, Ion L, et al. Probiotics and prebiotics in atopic dermatitis: Pros and cons (Review). Exp Ther Med 2021; 22(6): 1376.
[http://dx.doi.org/10.3892/etm.2021.10811] [PMID: 34650624]
[102]
Zhao Y, Qi C, Li X, et al. Prevention of atopic dermatitis in mice by Lactobacillus Reuteri Fn041 through induction of regulatory T cells and modulation of the gut microbiota. Mol Nutr Food Res 2022; 66(6): 2100699.
[http://dx.doi.org/10.1002/mnfr.202100699] [PMID: 34825773]
[103]
Łoś-Rycharska E, Gołębiewski M, Sikora M, et al. A combined analysis of gut and skin microbiota in infants with food allergy and atopic dermatitis: A pilot study. Nutrients 2021; 13(5): 1682.
[http://dx.doi.org/10.3390/nu13051682] [PMID: 34063398]
[104]
Gołębiewski M, Łoś-Rycharska E, Sikora M, Grzybowski T, Gorzkiewicz M, Krogulska A. Mother’s milk microbiome shaping fecal and skin microbiota in infants with food allergy and atopic dermatitis: A pilot analysis. Nutrients 2021; 13(10): 3600.
[http://dx.doi.org/10.3390/nu13103600] [PMID: 34684601]
[105]
Wu Y, Zhou X, Zhang X, et al. Breast milk flora plays an important role in infantile eczema: Cohort study in Northeast China. J Appl Microbiol 2021; 131(6): 2981-93.
[http://dx.doi.org/10.1111/jam.15076] [PMID: 33735474]
[106]
Penders J, Stobberingh EE, Thijs C, et al. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin Exp Allergy 2006; 36(12): 1602-8.
[http://dx.doi.org/10.1111/j.1365-2222.2006.02599.x] [PMID: 17177684]
[107]
Amorim NCM, Silva AGCL, Rebouças AS, et al. Dietary share of ultra-processed foods and its association with vitamin E biomarkers in Brazilian lactating women. Br J Nutr 2022; 127(8): 1224-31.
[http://dx.doi.org/10.1017/S0007114521001963] [PMID: 34103111]
[108]
Kong WS, Tsuyama N, Inoue H, et al. Long-chain saturated fatty acids in breast milk are associated with the pathogenesis of atopic der-matitis via induction of inflammatory ILC3s. Sci Rep 2021; 11(1): 13109.
[http://dx.doi.org/10.1038/s41598-021-92282-0] [PMID: 34162906]
[109]
Teo CWL, Tay SHY, Tey HL, Ung YW, Yap WN. Vitamin E in atopic dermatitis: From preclinical to clinical studies. Dermatology 2021; 237(4): 553-64.
[http://dx.doi.org/10.1159/000510653] [PMID: 33070130]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy