Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

SARS-CoV-2 Infection, Inflammation, Immunonutrition, and Pathogenesis of COVID-19

Author(s): Ligen Yu*, Mohd Khanapi Abd Ghani, Alessio Aghemo, Debmalya Barh, Matteo Bassetti, Fausto Catena, Gaetano Gallo, Ali Gholamrezanezhad, Mohammad Amjad Kamal, Amos Lal, Kamal Kant Sahu, Shailendra K. Saxena, Ugo Elmore, Farid Rahimi, Chiara Robba, Yuanlin Song, Zhengyuan Xia and Boxuan Yu

Volume 30, Issue 39, 2023

Published on: 16 May, 2023

Page: [4390 - 4408] Pages: 19

DOI: 10.2174/0929867330666230330092725

Price: $65

Abstract

The COVID-19 pandemic, caused by the coronavirus, SARS-CoV-2, has claimed millions of lives worldwide in the past two years. Fatalities among the elderly with underlying cardiovascular disease, lung disease, and diabetes have particularly been high. A bibliometrics analysis on author’s keywords was carried out, and searched for possible links between various coronavirus studies over the past 50 years, and integrated them. We found keywords like immune system, immunity, nutrition, malnutrition, micronutrients, exercise, inflammation, and hyperinflammation were highly related to each other. Based on these findings, we hypothesized that the human immune system is a multilevel super complex system, which employs multiple strategies to contain microorganism infections and restore homeostasis. It was also found that the behavior of the immune system is not able to be described by a single immunological theory. However, one main strategy is “self-destroy and rebuild”, which consists of a series of inflammatory responses: 1) active self-destruction of damaged/dysfunctional somatic cells; 2) removal of debris and cells; 3) rebuilding tissues. Thus, invading microorganisms’ clearance could be only a passive bystander response to this destroy-rebuild process. Microbial infections could be self-limiting and promoted as an indispensable essential nutrition for the vast number of genes existing in the microorganisms. The transient nutrition surge resulting from the degradation of the self-destroyed cell debris coupled with the existing nutrition state in the patient may play an important role in the pathogenesis of COVID-19. Finally, a few possible coping strategies to mitigate COVID-19, including vaccination, are discussed.

Keywords: COVID-19, cytokine storm, immunity, inflammatory response, malnutrition, phagocytosis, restrictive diet, self-limiting infection.

[1]
https://www.science.org/content/article/cancer-survivor-had-longest-documented-covid-19-infection-here-s-what-scientists-learned
[http://dx.doi.org/10.1126/science.acx9383]
[2]
Nussenblatt, V.; Roder, A.E.; Das, S.; de Wit, E.; Youn, J.H.; Banakis, S.; Mushegian, A.; Mederos, C.; Wang, W.; Chung, M.; Pérez-Pérez, L.; Palmore, T.; Brudno, J.N.; Kochenderfer, J.N.; Ghedin, E. yearlong COVID-19 infection reveals within-host evolution of sars-cov-2 in a patient with B-cell pepletion. J. Infect. Dis., 2022, 225(7), 1118-1123.
[http://dx.doi.org/10.1093/infdis/jiab622] [PMID: 34940844]
[3]
Zhu, C.C.; Zhu, J. The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous. BMC Infect. Dis., 2021, 21(1), 1145.
[http://dx.doi.org/10.1186/s12879-021-06670-y] [PMID: 34753451]
[4]
Narain, J.P.; Dawa, N.; Bhatia, R. Health system response to COVID-19 and future pandemics. J. Health Manag., 2020, 22(2), 138-145.
[http://dx.doi.org/10.1177/0972063420935538]
[5]
Pieniawska-Śmiech, K.; Kuraszewicz, A.; Sado, J.; Śmiech, K.; Lewandowicz-Uszyńska, A. Assessment of COVID-19 incidence and the ability to synthesise anti-sars-cov-2 antibodies of paediatric patients with primary immunodeficiency. J. Clin. Med., 2021, 10(21), 5111.
[http://dx.doi.org/10.3390/jcm10215111] [PMID: 34768630]
[6]
Bansal, N.; Ovchinsky, N.; Foca, M.; Lamour, J.M.; Kogan-Liberman, D.; Hsu, D.T.; Beddows, K.; Abraham, L.; Coburn, M.; Cunningham, R.; Nguyen, T.; Hayde, N. COVID-19 infection in pediatric solid organ transplant patients. Pediatr. Transplant., 2022, 26(2), 14156.
[http://dx.doi.org/10.1111/petr.14156] [PMID: 34633125]
[7]
Levin, B.R.; Baquero, F.; Ankomah, P.P.; McCall, I.C. Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol., 2017, 25(11), 878-892.
[http://dx.doi.org/10.1016/j.tim.2017.07.005] [PMID: 28843668]
[8]
Levin, B.R.; Antia, R. Why we don’t get sick: The within-host population dynamics of bacterial infections. Science, 2001, 292(5519), 1112-1115.
[http://dx.doi.org/10.1126/science.1058879] [PMID: 11352067]
[9]
Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.H.; Boucau, J.; Bowman, K.; Adhikari, U.D.; Winkler, M.L.; Mueller, A.A.; Hsu, T.Y.T.; Desjardins, M.; Baden, L.R.; Chan, B.T.; Walker, B.D.; Lichterfeld, M.; Brigl, M.; Kwon, D.S.; Kanjilal, S.; Richardson, E.T.; Jonsson, A.H.; Alter, G.; Barczak, A.K.; Hanage, W.P.; Yu, X.G.; Gaiha, G.D.; Seaman, M.S.; Cernadas, M.; Li, J.Z. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med., 2020, 383(23), 2291-2293.
[http://dx.doi.org/10.1056/NEJMc2031364] [PMID: 33176080]
[10]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[11]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[12]
Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[13]
Eijk, L.E.; Binkhorst, M.; Bourgonje, A.R.; Offringa, A.K.; Mulder, D.J.; Bos, E.M.; Kolundzic, N.; Abdulle, A.E.; Voort, P.H.J.; Olde Rikkert, M.G.M.; Hoeven, J.G.; Dunnen, W.F.A.; Hillebrands, J.L.; Goor, H. COVID -19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol., 2021, 254(4), 307-331.
[http://dx.doi.org/10.1002/path.5642] [PMID: 33586189]
[14]
Fox, S.E.; Akmatbekov, A.; Harbert, J.L.; Li, G.; Quincy Brown, J.; Vander Heide, R.S. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans. Lancet Respir. Med., 2020, 8(7), 681-686.
[http://dx.doi.org/10.1016/S2213-2600(20)30243-5] [PMID: 32473124]
[15]
Prasad, A.; Prasad, M. Single virus targeting multiple organs: What we know and where we are heading? Front. Med., 2020, 7, 370.
[http://dx.doi.org/10.3389/fmed.2020.00370] [PMID: 32850890]
[16]
Raza, A.; Estepa, A.; Chan, V.; Jafar, M.S. Acute renal failure in critically Ill COVID-19 Patients with a focus on the role of renal replacement therapy: A Review of what we know so far. Cureus, 2020, 12(6), e8429.
[http://dx.doi.org/10.7759/cureus.8429] [PMID: 32642345]
[17]
Su, H.; Yang, M.; Wan, C.; Yi, L.X.; Tang, F.; Zhu, H.Y.; Yi, F.; Yang, H.C.; Fogo, A.B.; Nie, X.; Zhang, C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int., 2020, 98(1), 219-227.
[http://dx.doi.org/10.1016/j.kint.2020.04.003] [PMID: 32327202]
[18]
Ritter, A.; Kreis, N.N.; Louwen, F.; Yuan, J. Obesity and COVID-19: Molecular mechanisms linking both pandemics. Int. J. Mol. Sci., 2020, 21(16), 5793.
[http://dx.doi.org/10.3390/ijms21165793] [PMID: 32806722]
[19]
Mauvais-Jarvis, F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes, 2020, 69(9), 1857-1863.
[http://dx.doi.org/10.2337/dbi19-0023] [PMID: 32669390]
[20]
Petrakis, D.; Margină, D.; Tsarouhas, K.; Tekos, F.; Stan, M.; Nikitovic, D.; Kouretas, D.; Spandidos, D.; Tsatsakis, A. Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol. Med. Rep., 2020, 22(1), 9-19.
[http://dx.doi.org/10.3892/mmr.2020.11127] [PMID: 32377709]
[21]
Flaherty, G.T.; Hession, P.; Liew, C.H.; Lim, B.C.W.; Leong, T.K.; Lim, V.; Sulaiman, L.H. COVID-19 in adult patients with pre-existing chronic cardiac, respiratory and metabolic disease: a critical literature review with clinical recommendations. Trop. Dis. Travel Med. Vaccines, 2020, 6(1), 16.
[http://dx.doi.org/10.1186/s40794-020-00118-y] [PMID: 32868984]
[22]
Yoshikawa, N.; Yoshikawa, T.; Hill, T.; Huang, C.; Watts, D.M.; Makino, S.; Milligan, G.; Chan, T.; Peters, C.J.; Tseng, C.T.K. Differential virological and immunological outcome of severe acute respiratory syndrome coronavirus infection in susceptible and resistant transgenic mice expressing human angiotensin-converting enzyme 2. J. Virol., 2009, 83(11), 5451-5465.
[http://dx.doi.org/10.1128/JVI.02272-08] [PMID: 19297479]
[23]
Tseng, C.T.K.; Perrone, L.A.; Zhu, H.; Makino, S.; Peters, C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol., 2005, 174(12), 7977-7985.
[http://dx.doi.org/10.4049/jimmunol.174.12.7977] [PMID: 15944304]
[24]
Chivukula, R.R.; Maley, J.H.; Dudzinski, D.M.; Hibbert, K.; Hardin, C.C. Evidence-based management of the critically Ill adult with SARS-CoV-2 infection. J. Intensive Care Med., 2021, 36(1), 18-41.
[http://dx.doi.org/10.1177/0885066620969132] [PMID: 33111601]
[25]
Wilson, J.G.; Simpson, L.J.; Ferreira, A.M.; Rustagi, A.; Roque, J.; Asuni, A.; Ranganath, T.; Grant, P.M.; Subramanian, A.; Rosenberg-Hasson, Y.; Maecker, H.T.; Holmes, S.P.; Levitt, J.E.; Blish, C.A.; Rogers, A.J. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight, 2020, 5(17), e140289.
[http://dx.doi.org/10.1172/jci.insight.140289] [PMID: 32706339]
[26]
El Zowalaty, M.E.; Järhult, J.D. From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approach. One Health, 2020, 9, 100124.
[http://dx.doi.org/10.1016/j.onehlt.2020.100124] [PMID: 32195311]
[27]
Jorwal, P.; Jorwal, P.; Bharadwaj, S. One health approach and COVID-19: A perspective. J. Family Med. Prim. Care, 2020, 9(12), 5888-5891.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1058_20] [PMID: 33681013]
[28]
Li, Q.; Bergquist, R.; Grant, L.; Song, J.X.; Feng, X.Y.; Zhou, X.N. Consideration of COVID-19 beyond the human-centred approach of prevention and control: The ONE-HEALTH perspective. Emerg. Microbes Infect., 2022, 11(1), 2520-2528.
[http://dx.doi.org/10.1080/22221751.2022.2125343] [PMID: 36102336]
[29]
van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2), 523-538.
[http://dx.doi.org/10.1007/s11192-009-0146-3] [PMID: 20585380]
[30]
Gupta, A.; Gupta, R.; Singh, R.L. Microbes and Environment.Principles and Applications of Environmental Biotechnology for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future; Singh, R., Ed.; Springer: Singapore, 2017, pp. 43-84.
[http://dx.doi.org/10.1007/978-981-10-1866-4_3]
[31]
Millen, D.D.; De Beni, A.M.; Lauritano , P.R.D. Rumenology; Springer International Publishing: Cham, Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-30533-2]
[32]
Cammack, K.M.; Austin, K.J.; Lamberson, W.R.; Conant, G.C.; Cunningham, H.C. Ruminant nutrition symposium: Tiny but mighty: The role of the rumen microbes in livestock production. J. Anim. Sci., 2018, 96(10), 4481.
[http://dx.doi.org/10.1093/jas/sky331] [PMID: 29385535]
[33]
Storm, E.; Ørskov, E.R.; Smart, R. The nutritive value of rumen micro-organisms in ruminants. Br. J. Nutr., 1983, 50(2), 471-478.
[http://dx.doi.org/10.1079/BJN19830115] [PMID: 6615775]
[34]
Hackmann, T.J.; Firkins, J.L. Maximizing efficiency of rumen microbial protein production. Front. Microbiol., 2015, 6, 465.
[http://dx.doi.org/10.3389/fmicb.2015.00465] [PMID: 26029197]
[35]
Gilbert, S.F.; Sapp, J.; Tauber, A.I. A symbiotic view of life: We have never been individuals. Q. Rev. Biol., 2012, 87(4), 325-341.
[http://dx.doi.org/10.1086/668166] [PMID: 23397797]
[36]
Alexander, K.L.; Targan, S.R.; Elson, C.O., III Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev., 2014, 260(1), 206-220.
[http://dx.doi.org/10.1111/imr.12180] [PMID: 24942691]
[37]
Georgountzou, A.; Papadopoulos, N.G. Postnatal innate immune development: From birth to adulthood. Front. Immunol., 2017, 8, 957.
[http://dx.doi.org/10.3389/fimmu.2017.00957] [PMID: 28848557]
[38]
Kloc, M.; Ghobrial, R.M.; Kuchar, E.; Lewicki, S.; Kubiak, J.Z. Development of child immunity in the context of COVID-19 pandemic. Clin. Immunol., 2020, 217, 108510.
[http://dx.doi.org/10.1016/j.clim.2020.108510] [PMID: 32544611]
[39]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2005, 307(5717), 1915-1920.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[40]
McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; Hentschel, U.; King, N.; Kjelleberg, S.; Knoll, A.H.; Kremer, N.; Mazmanian, S.K.; Metcalf, J.L.; Nealson, K.; Pierce, N.E.; Rawls, J.F.; Reid, A.; Ruby, E.G.; Rumpho, M.; Sanders, J.G.; Tautz, D.; Wernegreen, J.J. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3229-3236.
[http://dx.doi.org/10.1073/pnas.1218525110] [PMID: 23391737]
[41]
Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet., 2012, 13(4), 260-270.
[http://dx.doi.org/10.1038/nrg3182] [PMID: 22411464]
[42]
Lahiri, S.; Kim, H.; Garcia-Perez, I.; Reza, M.M.; Martin, K.A.; Kundu, P.; Cox, L.M.; Selkrig, J.; Posma, J.M.; Zhang, H.; Padmanabhan, P.; Moret, C.; Gulyás, B.; Blaser, M.J.; Auwerx, J.; Holmes, E.; Nicholson, J.; Wahli, W.; Pettersson, S. The gut microbiota influences skeletal muscle mass and function in mice. Sci. Transl. Med., 2019, 11(502), eaan5662.
[http://dx.doi.org/10.1126/scitranslmed.aan5662] [PMID: 31341063]
[43]
Reza, M.M.; Finlay, B.B.; Pettersson, S. Gut microbes, ageing & organ function: A chameleon in modern biology? EMBO Mol. Med., 2019, 11(9), e9872.
[http://dx.doi.org/10.15252/emmm.201809872] [PMID: 31410991]
[44]
Gupta, V.; Kumar, R.; Sood, U.; Singhvi, N. Reconciling hygiene and cleanliness: A new perspective from human microbiome. Indian J. Microbiol., 2020, 60(1), 37-44.
[http://dx.doi.org/10.1007/s12088-019-00839-5] [PMID: 32089572]
[45]
Singhvi, N.; Gupta, V.; Gaur, M.; Sharma, V.; Puri, A.; Singh, Y.; Dubey, G.P.; Lal, R. Interplay of human gut microbiome in health and wellness. Indian J. Microbiol., 2020, 60(1), 26-36.
[http://dx.doi.org/10.1007/s12088-019-00825-x] [PMID: 32089571]
[46]
Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; Yu, L.; Xu, C.; Ren, Z.; Xu, Y.; Xu, S.; Shen, H.; Zhu, X.; Shi, Y.; Shen, Q.; Dong, W.; Liu, R.; Ling, Y.; Zeng, Y.; Wang, X.; Zhang, Q.; Wang, J.; Wang, L.; Wu, Y.; Zeng, B.; Wei, H.; Zhang, M.; Peng, Y.; Zhang, C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359(6380), 1151-1156.
[http://dx.doi.org/10.1126/science.aao5774] [PMID: 29590046]
[47]
Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.T.H.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; de Vos, W.M.; van der Poll, T.; Wiersinga, W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2016, 65(4), 575-583.
[http://dx.doi.org/10.1136/gutjnl-2015-309728] [PMID: 26511795]
[48]
Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; Capri, M.; Brigidi, P.; Candela, M. Gut microbiota and extreme longevity. Curr. Biol., 2016, 26(11), 1480-1485.
[http://dx.doi.org/10.1016/j.cub.2016.04.016] [PMID: 27185560]
[49]
Candela, M.; Biagi, E.; Brigidi, P.; O'Toole, P.W.; De Vos, W.M. Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mech. Ageing Dev., 2016, 136, 70-75.
[http://dx.doi.org/10.1016/j.mad.2013.12.004]
[50]
Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O'Connor, E.M.; Cusack, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O'Sullivan, O.; Fitzgerald, G.F.; Deane, J.; O'Connor, M.; Harnedy, N.; O'Connor, K.; O'Mahony, D.; van Sinderen, D.; Wallace, M.; Brennan, L.; Stanton, C.; Marchesi, J.R.; Fitzgerald, A.P.; Shanahan, F.; Hill, C.; Ross, R.P.; O'Toole, P.W. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, ‏178-184.
[http://dx.doi.org/10.1038/nature11319]
[51]
Yu, B.; Yu, B.; Yu, L. Commentary: Reconciling hygiene and cleanliness: A new perspective from human microbiome. Indian J. Microbiol., 2020, 60(2), 259-261.
[http://dx.doi.org/10.1007/s12088-020-00863-w] [PMID: 32255860]
[52]
Yu, L. Restoring good health in elderly with diverse gut microbiome and food intake restriction to combat COVID-19. Indian J. Microbiol., 2021, 61(1), 104-107.
[http://dx.doi.org/10.1007/s12088-020-00913-3] [PMID: 33424043]
[53]
Kumar, R.; Sood, U.; Gupta, V.; Singh, M.; Scaria, J.; Lal, R. Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J. Microbiol., 2020, 60(1), 12-25.
[http://dx.doi.org/10.1007/s12088-019-00808-y] [PMID: 32089570]
[54]
Rath, S.; Rud, T.; Karch, A.; Pieper, D.H.; Vital, M. Pathogenic functions of host microbiota. Microbiome, 2018, 6(1), 174.
[http://dx.doi.org/10.1186/s40168-018-0542-0] [PMID: 30266099]
[55]
Martens, E.C.; Neumann, M.; Desai, M.S. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol., 2018, 16(8), 457-470.
[http://dx.doi.org/10.1038/s41579-018-0036-x] [PMID: 29904082]
[56]
Hornef, M. Pathogens, commensal symbionts, and pathobionts: Discovery and functional effects on the Host. ILAR J., 2015, 56(2), 159-162.
[http://dx.doi.org/10.1093/ilar/ilv007] [PMID: 26323625]
[57]
Proença, J.T.; Barral, D.C.; Gordo, I. Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interaction. Sci. Rep., 2017, 7(1), 4504.
[http://dx.doi.org/10.1038/s41598-017-04081-1] [PMID: 28674418]
[58]
Yu, B.; Yu, L.; Klionsky, D.J. Nutrition acquisition by human immunity, transient overnutrition and the cytokine storm in severe cases of COVID-19. Med. Hypotheses, 2021, 155, 110668.
[http://dx.doi.org/10.1016/j.mehy.2021.110668] [PMID: 34467856]
[59]
Dickson, R.P.; Martinez, F.J.; Huffnagle, G.B. The role of the microbiome in exacerbations of chronic lung diseases. Lancet, 2014, 384, 691-702.
[http://dx.doi.org/10.1016/S0140-6736(14)61136-3]
[60]
Sokol, H.; Seksik, P. The intestinal microbiota in inflammatory bowel diseases: Time to connect with the host. Curr. Opin. Gastroenterol., 2010, 26, 327-331.
[http://dx.doi.org/10.1097/MOG.0b013e328339536b]
[61]
Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; Lai, C.K.C.; Chen, Z.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Alterations in gut microbiota of patients with covid-19 during time of hospitalization. Gastroenterology, 2020, 159(3), 944-955.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048] [PMID: 32442562]
[62]
Dhar, D.; Mohanty, A. Gut microbiota and Covid-19- possible link and implications. Virus Res., 2020, 285, 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[63]
van der Lelie, D.; Taghavi, S. COVID-19 and the gut microbiome: More than a gut feeling. mSystems, 2020, 5(4), e00453-20.
[http://dx.doi.org/10.1128/mSystems.00453-20] [PMID: 32694127]
[64]
Kalantar-Zadeh, K.; Ward, S.A.; Kalantar-Zadeh, K.; El-Omar, E.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles. ACS Nano, 2020, 14, ‏5179-5182.
[http://dx.doi.org/10.1021/acsnano.0c03402]
[65]
Metcalf, J.L.; Xu, Z.Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E.R.; Song, S.J.; Amir, A.; Larsen, P.; Sangwan, N.; Haarmann, D.; Humphrey, G.C.; Ackermann, G.; Thompson, L.R.; Lauber, C.; Bibat, A.; Nicholas, C.; Gebert, M.J.; Petrosino, J.F.; Reed, S.C.; Gilbert, J.A.; Lynne, A.M.; Bucheli, S.R.; Carter, D.O.; Knight, R. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science, 2016, 351(6269), 158-162.
[http://dx.doi.org/10.1126/science.aad2646] [PMID: 26657285]
[66]
Eberl, G. A new vision of immunity: Homeostasis of the superorganism. Mucosal Immunol., 2010, 3(5), 450-460.
[http://dx.doi.org/10.1038/mi.2010.20] [PMID: 20445502]
[67]
Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol., 2010, 11(9), 785-797.
[http://dx.doi.org/10.1038/ni.1923] [PMID: 20720586]
[68]
Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-resident macrophages. Nat. Immunol., 2013, 14(10), 986-995.
[http://dx.doi.org/10.1038/ni.2705] [PMID: 24048120]
[69]
Desgeorges, T.; Caratti, G.; Mounier, R.; Tuckermann, J.; Chazaud, B. Glucocorticoids shape macrophage phenotype for tissue repair. Front. Immunol., 2019, 10, 1591.
[http://dx.doi.org/10.3389/fimmu.2019.01591] [PMID: 31354730]
[70]
Davis, L.E.; Oyer, R.; Beckham, J.D.; Tyler, K.L. Elevated CSF cytokines in the Jarisch-Herxheimer reaction of general paresis. JAMA Neurol., 2013, 70(8), 1060-1064.
[http://dx.doi.org/10.1001/jamaneurol.2013.2120] [PMID: 23732875]
[71]
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol., 1994, 12(1), 991-1045.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.005015] [PMID: 8011301]
[72]
Cunliffe, J. A proliferation of pathogens through the 20th century. Scand. J. Immunol., 2008, 68(2), 120-128.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02130.x] [PMID: 18544150]
[73]
Cunliffe, J. Intentional pathogen killing--or denial of substrate? Scand. J. Immunol., 2007, 66(6), 604-609.
[http://dx.doi.org/10.1111/j.1365-3083.2007.02017.x] [PMID: 17949408]
[74]
Cunliffe, J. Tissue homeostasis and immunity--more on models. Scand. J. Immunol., 2006, 64(3), 172-176.
[http://dx.doi.org/10.1111/j.1365-3083.2006.01814.x] [PMID: 16918683]
[75]
Cunliffe, J. From terra firma to terra plana – danger is shaking the foundations: deconstructing the ‘immune system’. Med. Hypotheses, 1999, 52(3), 213-219.
[http://dx.doi.org/10.1054/mehy.1997.0645] [PMID: 10362280]
[76]
Cunliffe, J. Morphostasis: An evolving perspective. Med. Hypotheses, 1997, 49(6), 449-459.
[http://dx.doi.org/10.1016/S0306-9877(97)90062-1] [PMID: 9466367]
[77]
Cunliffe, J. Morphostasis and immunity. Med. Hypotheses, 1995, 44(2), 89-96.
[http://dx.doi.org/10.1016/0306-9877(95)90076-4] [PMID: 7596312]
[78]
Pradeu, T.; Jaeger, S.; Vivier, E. The speed of change: Towards a discontinuity theory of immunity? Nat. Rev. Immunol., 2013, 13(10), 764-769.
[http://dx.doi.org/10.1038/nri3521] [PMID: 23995627]
[79]
Pradeu, T.; Vivier, E. The discontinuity theory of immunity. Sci. Immunol., 2016, 1(1), aag0479.
[http://dx.doi.org/10.1126/sciimmunol.aag0479] [PMID: 28239677]
[80]
Eberl, G.; Pradeu, T. Towards a General Theory of Immunity? Trends Immunol., 2018, 39(4), 261-263.
[http://dx.doi.org/10.1016/j.it.2017.11.004] [PMID: 29229264]
[81]
Oltz, E.M. Regulation of antigen receptor gene assembly in lymphocytes. Immunol. Res., 2001, 23(2-3), 121-134.
[http://dx.doi.org/10.1385/IR:23:2-3:121] [PMID: 11444378]
[82]
Thomas, L.R.; Cobb, R.M.; Oltz, E.M. Dynamic regulation of antigen receptor gene assembly. Adv. Exp. Med. Biol., 2009, 650, 103-115.
[http://dx.doi.org/10.1007/978-1-4419-0296-2_9] [PMID: 19731805]
[83]
Calder, P.C.; Kew, S. The immune system: A target for functional foods? Br. J. Nutr., 2002, 88(S2), S165-S176.
[http://dx.doi.org/10.1079/BJN2002682] [PMID: 12495459]
[84]
Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci., 2008, 13(13), 453-461.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[85]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[86]
Shi, F.D.; Ljunggren, H.G.; Sarvetnick, N. Innate immunity and autoimmunity: From self-protection to self-destruction. Trends Immunol., 2001, 22(2), 97-101.
[http://dx.doi.org/10.1016/S1471-4906(00)01821-4] [PMID: 11286711]
[87]
Viorritto, I.C.B.; Nikolov, N.P.; Siegel, R.M. Autoimmunity versus tolerance: Can dying cells tip the balance? Clin. Immunol., 2007, 122(2), 125-134.
[http://dx.doi.org/10.1016/j.clim.2006.07.012] [PMID: 17029966]
[88]
Hartl, W.H. Metabolic self-destruction in critically ill patients (part i): Origins, mechanisms and biologic sense. Aktuel. Ernahrungsmed., 2016, 41(1), 40-44.
[http://dx.doi.org/10.1055/s-0041-111343]
[89]
Hartl, W.H. Metabolic self-destruction in critically ill patients (part ii): The importance of modern medical care and therapeutic consequences. Aktuel. Ernahrungsmed., 2016, 41(2), 113-117.
[http://dx.doi.org/10.1055/s-0042-102160]
[90]
Wildbaum, G.; Nahir, M.A.; Karin, N. Beneficial autoimmunity to proinflammatory mediators restrains the consequences of self-destructive immunity. Immunity, 2003, 19(5), 679-688.
[http://dx.doi.org/10.1016/S1074-7613(03)00291-7] [PMID: 14614855]
[91]
Sender, R.; Milo, R. The distribution of cellular turnover in the human body. Nat. Med., 2021, 27(1), 45-48.
[http://dx.doi.org/10.1038/s41591-020-01182-9] [PMID: 33432173]
[92]
Han, C.Z.; Ravichandran, K.S. Metabolic connections during apoptotic cell engulfment. Cell, 2011, 147(7), 1442-1445.
[http://dx.doi.org/10.1016/j.cell.2011.12.006] [PMID: 22196723]
[93]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[94]
Ravichandran, K.S.; Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol., 2007, 7(12), 964-974.
[http://dx.doi.org/10.1038/nri2214] [PMID: 18037898]
[95]
Henson, P.M.; Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol., 2006, 27(5), 244-250.
[http://dx.doi.org/10.1016/j.it.2006.03.005] [PMID: 16584921]
[96]
Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol., 2017, 17(3), 151-164.
[http://dx.doi.org/10.1038/nri.2016.147] [PMID: 28138137]
[97]
Kanduc, D.; Mittelman, A.; Serpico, R.; Sinigaglia, E.; Sinha, A.; Natale, C.; Santacroce, R.; Di Corcia, M.; Lucchese, A.; Dini, L.; Pani, P.; Santacroce, S.; Simone, S.; Bucci, R.; Farber, E.; Simone, S.; Bucci, R.; Farber, E. Cell death: Apoptosis versus necrosis (Review). Int. J. Oncol., 2002, 21(1), 165-170.
[http://dx.doi.org/10.3892/ijo.21.1.165] [PMID: 12063564]
[98]
Broderick, N.A. A common origin for immunity and digestion. Front. Immunol., 2015, 6, 72.
[http://dx.doi.org/10.3389/fimmu.2015.00072] [PMID: 25745424]
[99]
Seeberg, J.C.; Loibl, M.; Moser, F.; Schwegler, M.; Büttner-Herold, M.; Daniel, C.; Engel, F.B.; Hartmann, A.; Schlötzer-Schrehardt, U.; Goppelt-Struebe, M.; Schellerer, V.; Naschberger, E.; Ganzleben, I.; Heinzerling, L.; Fietkau, R.; Distel, L.V. Non-professional phagocytosis: A general feature of normal tissue cells. Sci. Rep., 2019, 9(1), 11875.
[http://dx.doi.org/10.1038/s41598-019-48370-3] [PMID: 31417141]
[100]
Schwegler, M.; Wirsing, A.M.; Dollinger, A.J.; Abendroth, B.; Putz, F.; Fietkau, R.; Distel, L.V. Clearance of primary necrotic cells by non-professional phagocytes. Biol. Cell, 2015, 107(10), 372-387.
[http://dx.doi.org/10.1111/boc.201400090] [PMID: 26032600]
[101]
Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol., 2015, 16(9), 907-917.
[http://dx.doi.org/10.1038/ni.3253] [PMID: 26287597]
[102]
Green, D.R.; Oguin, T.H.; Martinez, J. The clearance of dying cells: Table for two. Cell Death Differ., 2016, 23(6), 915-926.
[http://dx.doi.org/10.1038/cdd.2015.172] [PMID: 26990661]
[103]
Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A.; Adamopoulos, I.E.; Adeli, K.; Adolph, T.E.; Adornetto, A.; Aflaki, E.; Agam, G.; Agarwal, A.; Aggarwal, B.B.; Agnello, M. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2021, 17(1), 1-382.
[http://dx.doi.org/10.1080/15548627.2020.1797280]
[104]
van Niekerk, G.; Loos, B.; Nell, T.; Engelbrecht, A.M. Autophagy—A free meal in sickness-associated anorexia. Autophagy, 2016, 12(4), 727-734.
[http://dx.doi.org/10.1080/15548627.2016.1147672] [PMID: 27050464]
[105]
Haq, S.; Grondin, J.; Banskota, S.; Khan, W.I. Autophagy: Roles in intestinal mucosal homeostasis and inflammation. J. Biomed. Sci., 2019, 26(1), 19.
[http://dx.doi.org/10.1186/s12929-019-0512-2] [PMID: 30764829]
[106]
Deretic, V.; Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe, 2009, 5(6), 527-549.
[http://dx.doi.org/10.1016/j.chom.2009.05.016] [PMID: 19527881]
[107]
Benjamin, J.L.; Sumpter, R., Jr; Levine, B.; Hooper, LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe, 2013, 13, 723-734.
[http://dx.doi.org/10.1016/j.chom.2013.05.004]
[108]
Cuervo, A.M.; Macian, F. Autophagy, nutrition and immunology. Mol. Aspects Med., 2012, 33, ‏2-13.
[http://dx.doi.org/10.1016/j.mam.2011.09.001]
[109]
Singh, R.; Cuervo, A.M. Autophagy in the cellular energetic balance. Cell Metab., 2011, 13(5), 495-504.
[http://dx.doi.org/10.1016/j.cmet.2011.04.004] [PMID: 21531332]
[110]
Huett, A.; Goel, G.; Xavier, R.J. A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol., 2010, 26, 302-309.
[http://dx.doi.org/10.1097/MOG.0b013e32833ae2ed]
[111]
Kuma, A.; Hatano, M.; Matsui, M.; Yamamoto, A.; Nakaya, H.; Yoshimori, T.; Ohsumi, Y.; Tokuhisa, T.; Mizushima, N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020), 1032-1036.
[http://dx.doi.org/10.1038/nature03029] [PMID: 15525940]
[112]
Kheloufi, M.; Boulanger, C.M.; Durand, F.; Rautou, P.E. Liver autophagy in anorexia nervosa and acute liver injury. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/701064] [PMID: 25250330]
[113]
Zhi, X.; Feng, W.; Rong, Y.; Liu, R. Anatomy of autophagy: From the beginning to the end. Cell. Mol. Life Sci., 2018, 75(5), 815-831.
[http://dx.doi.org/10.1007/s00018-017-2657-z] [PMID: 28939950]
[114]
Eskelinen, E.L.; Saftig, P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta Mol. Cell Res., 2009, 1793(4), 664-673.
[http://dx.doi.org/10.1016/j.bbamcr.2008.07.014] [PMID: 18706940]
[115]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[116]
Kuballa, P.; Nolte, W.M.; Castoreno, A.B.; Xavier, R.J. Autophagy and the immune system. Annu. Rev. Immunol., 2012, 30(1), 611-646.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074948] [PMID: 22449030]
[117]
Jo, E.K.; Yuk, J.M.; Shin, D.M.; Sasakawa, C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol., 2013, 4, 97.
[http://dx.doi.org/10.3389/fimmu.2013.00097] [PMID: 23653625]
[118]
Gomes, L.C.; Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell, 2014, 54(2), 224-233.
[http://dx.doi.org/10.1016/j.molcel.2014.03.009] [PMID: 24766886]
[119]
Randall-Demllo, S.; Chieppa, M.; Eri, R. Intestinal epithelium and autophagy: partners in gut homeostasis. Front. Immunol., 2013, 4, 301.
[http://dx.doi.org/10.3389/fimmu.2013.00301] [PMID: 24137160]
[120]
Kabat, A.M.; Pott, J.; Maloy, K.J. The mucosal immune system and its regulation by autophagy. Front. Immunol., 2016, 7, 240.
[http://dx.doi.org/10.3389/fimmu.2016.00240] [PMID: 27446072]
[121]
Ghartey-Kwansah, G.; Adu-Nti, F.; Aboagye, B.; Ankobil, A.; Essuman, E.E.; Opoku, Y.K.; Abokyi, S.; Abu, E.K.; Boampong, J.N. Autophagy in the control and pathogenesis of parasitic infections. Cell Biosci., 2020, 10(1), 101.
[http://dx.doi.org/10.1186/s13578-020-00464-6] [PMID: 32944216]
[122]
Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol., 2009, 7(2), 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[123]
Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther., 2021, 6(1), 128.
[http://dx.doi.org/10.1038/s41392-021-00507-5] [PMID: 33776057]
[124]
Wimmer, K.; Sachet, M.; Oehler, R. Circulating biomarkers of cell death. Clin. Chim. Acta, 2020, 500, 87-97.
[http://dx.doi.org/10.1016/j.cca.2019.10.003] [PMID: 31655053]
[125]
Mitteldorf, J. How evolutionary thinking affects people’s ideas about aging interventions. Rejuvenation Res., 2006, 9(2), 346-350.
[http://dx.doi.org/10.1089/rej.2006.9.346] [PMID: 16706667]
[126]
Exton, M.S. Infection-induced anorexia: Active host defence strategy. Appetite, 1997, 29(3), 369-383.
[http://dx.doi.org/10.1006/appe.1997.0116] [PMID: 9468766]
[127]
van Niekerk, G.; Isaacs, A.W.; Nell, T.; Engelbrecht, A.M. Sickness-associated anorexia: Mother nature’s idea of immunonutrition? Mediators Inflamm., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/8071539] [PMID: 27445441]
[128]
Nilsson, A. Mechanisms Behind Illness-Induced Anorexia. 2016,
[http://dx.doi.org/10.3384/diss.diva-132640]
[129]
Garbarino, J.; Sturley, S.L. Saturated with fat: New perspectives on lipotoxicity. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(2), 110-116.
[http://dx.doi.org/10.1097/MCO.0b013e32832182ee] [PMID: 19202381]
[130]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[131]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[132]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[133]
Costantini, S.; Sharma, A.; Colonna, G. The value of the cytokinome profile.Inflammatory diseases - A modern perspective; Nagal, A., Ed.; IntechOpen, 2011.
[http://dx.doi.org/10.5772/25707]
[134]
Virtue, S.; Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome — An allostatic perspective. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(3), 338-349.
[http://dx.doi.org/10.1016/j.bbalip.2009.12.006] [PMID: 20056169]
[135]
Posey, K.A.; Clegg, D.J.; Printz, R.L.; Byun, J.; Morton, G.J.; Vivekanandan-Giri, A.; Pennathur, S.; Baskin, D.G.; Heinecke, J.W.; Woods, S.C.; Schwartz, M.W.; Niswender, K.D. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab., 2009, 296(5), E1003-E1012.
[http://dx.doi.org/10.1152/ajpendo.90377.2008] [PMID: 19116375]
[136]
Stahlschmidt, Z.R.; Acker, M.; Kovalko, I.; Adamo, S.A. The double-edged sword of immune defence and damage control: do food availability and immune challenge alter the balance? Funct. Ecol., 2015, 29(11), 1445-1452.
[http://dx.doi.org/10.1111/1365-2435.12454]
[137]
van Niekerk, G.; du Toit, A.; Loos, B.; Engelbrecht, A.M. Nutrient excess and autophagic deficiency: explaining metabolic diseases in obesity. Metabolism, 2018, 82, 14-21.
[http://dx.doi.org/10.1016/j.metabol.2017.12.007] [PMID: 29289514]
[138]
Chang, H.R.; Bistrian, B. The role of cytokines in the catabolic consequences of infection and injury. JPEN J. Parenter. Enteral Nutr., 1998, 22(3), 156-166.
[http://dx.doi.org/10.1177/0148607198022003156] [PMID: 9586794]
[139]
Demling, R.H.; De Santi, L. Effect of a Catabolic State with Involuntary Weight Loss on Acute and Chronic Respiratory Disease. Medscape, 2002. Available from: https://www.medscape.org/viewarticle/432384
[140]
Romijn, J.A. Part 1 Substrate metabolism in the metabolic response to injury. Proc. Nutr. Soc., 2000, 59(3), 447-449.
[http://dx.doi.org/10.1017/S0029665100000616] [PMID: 10997672]
[141]
Akner, G.; Cederholm, T. Treatment of protein-energy malnutrition in chronic nonmalignant disorders. Am. J. Clin. Nutr., 2001, 74(1), 6-24.
[http://dx.doi.org/10.1093/ajcn/74.1.6] [PMID: 11451713]
[142]
Brunelli, S.; Roverequerini, P. The immune system and the repair of skeletal muscle. Pharmacol. Res., 2008, 58(2), 117-121.
[http://dx.doi.org/10.1016/j.phrs.2008.06.008] [PMID: 18639637]
[143]
Berardi, E.; Madaro, L.; Lozanoska-Ochser, B.; Adamo, S.; Thorrez, L.; Bouche, M.; Coletti, D. A pound of flesh: What cachexia is and what it is not. Diagnostics, 2021, 11(1), 116.
[http://dx.doi.org/10.3390/diagnostics11010116] [PMID: 33445790]
[144]
Arabi, Y.M.; Reintam Blaser, A.; Preiser, J.C. Less is more in nutrition: Critically ill patients are starving but not hungry. Intensive Care Med., 2019, 45(11), 1629-1631.
[http://dx.doi.org/10.1007/s00134-019-05765-0] [PMID: 31531714]
[145]
Omodei, D.; Pucino, V.; Labruna, G.; Procaccini, C.; Galgani, M.; Perna, F.; Pirozzi, D.; De Caprio, C.; Marone, G.; Fontana, L.; Contaldo, F.; Pasanisi, F.; Matarese, G.; Sacchetti, L. Immune-metabolic profiling of anorexic patients reveals an anti-oxidant and anti-inflammatory phenotype. Metabolism, 2015, 64(3), 396-405.
[http://dx.doi.org/10.1016/j.metabol.2014.10.025] [PMID: 25500208]
[146]
Nova, E.; Samartín, S.; Gómez, S.; Morandé, G.; Marcos, A. The adaptive response of the immune system to the particular malnutrition of eating disorders. Eur. J. Clin. Nutr., 2002, 56(S3), S34-S37.
[http://dx.doi.org/10.1038/sj.ejcn.1601482] [PMID: 12142959]
[147]
Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3066-3090.
[http://dx.doi.org/10.1080/10408398.2020.1792826] [PMID: 32691606]
[148]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[149]
Allen, A.; Snary, D. The structure and function of gastric mucus. Gut, 1972, 13(8), 666-672.
[http://dx.doi.org/10.1136/gut.13.8.666] [PMID: 4562023]
[150]
Forstner, JF Intestinal mucins in health and disease. Digestion, 1978, 17, 234-263.
[http://dx.doi.org/10.1159/000198115]
[151]
Higashizono, K.; Fukatsu, K.; Watkins, A.; Watanabe, T.; Noguchi, M.; Tominaga, E.; Ri, M.; Murakoshi, S.; Yasuhara, H.; Seto, Y. Effects of short-term fasting on gut-associated lymphoid tissue and intestinal morphology in mice. Clin. Nutr. Exp., 2018, 18, 6-14.
[http://dx.doi.org/10.1016/j.yclnex.2017.12.002]
[152]
Papavramidis, T.S.; Kaidoglou, K.; Grosomanidis, V.; Kazamias, P.; Anagnostopoulos, T.H.; Paramythiotis, D.; Kotzampassi, K. Short-term fasting-induced jejunal mucosa atrophy in rats –the role of probiotics during refeeding. Ann. Gastroenterol., 2009, 22, 268-274.
[153]
Grundy, S.M. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur. J. Clin. Invest., 2015, 45(11), 1209-1217.
[http://dx.doi.org/10.1111/eci.12519] [PMID: 26291691]
[154]
Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep., 2018, 20(2), 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[155]
Humphries, D.L.; Scott, M.E.; Vermund, S.H. Pathways Linking Nutritional Status and Infectious Disease: Causal and Conceptual Frameworks. Nutrition and Infectious Diseases. Nutrition and Health; Humphries, D.L.; Scott, M.E.; Vermund, S.H., Eds.; Humana: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-56913-6_1]
[156]
Poon, I.K.H.; Lucas, C.D.; Rossi, A.G.; Ravichandran, K.S. Apoptotic cell clearance: Basic biology and therapeutic potential. Nat. Rev. Immunol., 2014, 14(3), 166-180.
[http://dx.doi.org/10.1038/nri3607] [PMID: 24481336]
[157]
Fazeli, G.; Wehman, A.M. Safely removing cell debris with LC3-associated phagocytosis. Biol. Cell, 2017, 109(10), 355-363.
[http://dx.doi.org/10.1111/boc.201700028] [PMID: 28755428]
[158]
Roos, W.P.; Thomas, A.D.; Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer, 2016, 16(1), 20-33.
[http://dx.doi.org/10.1038/nrc.2015.2] [PMID: 26678314]
[159]
Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol., 2016, 7, 578.
[http://dx.doi.org/10.3389/fmicb.2016.00578] [PMID: 27199913]
[160]
Nair, M.R.B.; Chouhan, D.; Sen Gupta, S.; Chattopadhyay, S. Fermented foods: Are they tasty medicines for helicobacter pylori associated peptic ulcer and gastric cancer? Front. Microbiol., 2016, 7, 1148.
[http://dx.doi.org/10.3389/fmicb.2016.01148] [PMID: 27504109]
[161]
Carvalho, N.M.; Costa, E.M.; Silva, S.; Pimentel, L.; Fernandes, T.H.; Pintado, M.E. Fermented foods and beverages in human diet and their influence on gut microbiota and health. Fermentation, 2018, 4(4), 90.
[http://dx.doi.org/10.3390/fermentation4040090]
[162]
Yu, B.W.; Yu, B.X.; Yu, L.G. Restore gut homeostasis and healthy weight for an anorexia nervosa Patient by the Luigi Cornaro diet – a case report; Institute of Materials: Singapore, 2018. Available from: https://personal.ntu.edu.sg/mlgyu/Book%20on%20Luigi%20Cornaro%20Diet%20for%20An%20Anorexia%20Nervosa%20Patient%20-%20Simplified%20Version.pdf
[163]
van Ommen, B.; Wopereis, S.; van Empelen, P.; van Keulen, H.M.; Otten, W.; Kasteleyn, M.; Molema, J.J.W.; de Hoogh, I.M.; Chavannes, N.H.; Numans, M.E.; Evers, A.W.M.; Pijl, H. From diabetes care to diabetes cure—the integration of systems biology, ehealth, and behavioral change. Front. Endocrinol., 2018, 8, 381.
[http://dx.doi.org/10.3389/fendo.2017.00381] [PMID: 29403436]
[164]
Ahn, A.C.; Tewari, M.; Poon, C.S.; Phillips, R.S. The clinical applications of a systems approach. PLoS Med., 2006, 3(7), e209.
[http://dx.doi.org/10.1371/journal.pmed.0030209] [PMID: 16683861]
[165]
Ahn, A.C.; Tewari, M.; Poon, C.S.; Phillips, R.S. The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Med., 2006, 3(6), e208.
[http://dx.doi.org/10.1371/journal.pmed.0030208] [PMID: 16681415]
[166]
Baxter, A.J.; Coyne, T.; McClintock, C. Dietary patterns and metabolic syndrome--a review of epidemiologic evidence. Asia Pac. J. Clin. Nutr., 2006, 15(2), 134-142.
[PMID: 16672196]
[167]
Hayden, M.R. An immediate and long-term complication of COVID-19 may be type 2 diabetes mellitus: The central role of beta-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells, 2020, 9(11), 2475.
[http://dx.doi.org/10.3390/cells9112475] [PMID: 33202960]
[168]
Rocca, E.; Anjum, R.L. Complexity, Reductionism and the Biomedical Model.Rethinking Causality, Complexity and Evidence for the Unique Patient; Anjum, R.; Copeland, S.; Rocca, E., Eds.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-41239-5_5]
[169]
DeFronzo, R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia, 2010, 53(7), 1270-1287.
[http://dx.doi.org/10.1007/s00125-010-1684-1] [PMID: 20361178]
[170]
Tomita, T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn. J. Basic Med. Sci., 2016, 16(3), 162-179.
[http://dx.doi.org/10.17305/bjbms.2016.919] [PMID: 27209071]
[171]
Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab., 2018, 27(6), 1212-1221.e3.
[http://dx.doi.org/10.1016/j.cmet.2018.04.010] [PMID: 29754952]
[172]
Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-Restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr., 2019, 39, 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320]
[173]
Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity, 2019, 27(5), oby.22449.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[174]
Yang, J.S.; Lu, C.C.; Kuo, S.C.; Hsu, Y.M.; Tsai, S.C.; Chen, S.Y.; Chen, Y.T.; Lin, Y.J.; Huang, Y.C.; Chen, C.J.; Lin, W.D.; Liao, W.L.; Lin, W.Y.; Liu, Y.H.; Sheu, J.C.; Tsai, F.J. Autophagy and its link to type II diabetes mellitus. Biomedicines, 2017, 7(2), 8.
[http://dx.doi.org/10.1051/bmdcn/2017070201] [PMID: 28612706]
[175]
Dhurandhar, N.V. Infectobesity: Obesity of infectious origin. J. Nutr., 2001, 131(10), 2794S-2797S.
[http://dx.doi.org/10.1093/jn/131.10.2794S] [PMID: 11584109]
[176]
van Ginneken, V.; Sitnyakowsky, L.; Jeffery, J.E. “Infectobesity: Viral infections (especially with human adenovirus-36: Ad-36) may be a cause of obesity. Med. Hypotheses, 2009, 72(4), 383-388.
[http://dx.doi.org/10.1016/j.mehy.2008.11.034] [PMID: 19138827]
[177]
Na, H.N.; Nam, J.H. Infectobesity: A new area for microbiological and virological research. J. Bacteriol. Virol., 2011, 41(2), 65.
[http://dx.doi.org/10.4167/jbv.2011.41.2.65]
[178]
Valiquette, L.; Sirard, S.; Laupland, K. A microbiological explanation for the obesity pandemic? Can. J. Infect. Dis. Med. Microbiol., 2014, 25(6), 294-295.
[http://dx.doi.org/10.1155/2014/464162] [PMID: 25587289]
[179]
Patterson, S. The Perils of Germaphobia. Smithsonian, 2013, 44, 8-8.
[180]
Vandegrift, R.; Bateman, A.C.; Siemens, K.N.; Nguyen, M.; Wilson, H.E.; Green, J.L.; Van Den Wymelenberg, K.G.; Hickey, R.J. Cleanliness in context: Reconciling hygiene with a modern microbial perspective. Microbiome, 2017, 5(1), 76.
[http://dx.doi.org/10.1186/s40168-017-0294-2] [PMID: 28705228]
[181]
Han, J.H.; Sullivan, N.; Leas, B.F.; Pegues, D.A.; Kaczmarek, J.L.; Umscheid, C.A. Cleaning hospital room surfaces to prevent health care–associated infections. Ann. Intern. Med., 2015, 163(8), 598-607.
[http://dx.doi.org/10.7326/M15-1192] [PMID: 26258903]
[182]
Sherlock, O.; O’Connell, N.; Creamer, E.; Humphreys, H. Is it really clean? An evaluation of the efficacy of four methods for determining hospital cleanliness. J. Hosp. Infect., 2009, 72(2), 140-146.
[http://dx.doi.org/10.1016/j.jhin.2009.02.013] [PMID: 19321226]
[183]
Ragonnaud, E.; Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing, 2021, 18(1), 2.
[http://dx.doi.org/10.1186/s12979-020-00213-w] [PMID: 33397404]
[184]
Lu, M.; Zhang, Z.; Xue, M.; Zhao, B.S.; Harder, O.; Li, A.; Liang, X.; Gao, T.Z.; Xu, Y.; Zhou, J.; Feng, Z.; Niewiesk, S.; Peeples, M.E.; He, C.; Li, J. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol., 2020, 5(4), 584-598.
[http://dx.doi.org/10.1038/s41564-019-0653-9] [PMID: 32015498]
[185]
COVIDSurg Collaborative, GlobalSurg Collaborative. SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. Br. J. Surg., 2021, 108(9), 1056-1063.
[http://dx.doi.org/10.1093/bjs/znab101] [PMID: 33761533]
[186]
Bianco, F.; Ranieri, A.J.; Paterniti, G.; Pata, F.; Gallo, G. Acute intestinal ischemia in a patient with COVID-19. Tech. Coloproctol., 2020, 24(11), 1217-1218.
[http://dx.doi.org/10.1007/s10151-020-02255-0] [PMID: 32506344]
[187]
Bhangu, A.; Lawani, I.; Ng-Kamstra, J.S.; Wang, Y.; Chan, A.; Futaba, K.; Ng, S.; Ebele, E.; Lederhuber, H.; Tabiri, S.; Ghosh, D.; Gallo, G.; Pata, F.; Di Saverio, S.; Spinelli, A.; Medina, A.R-D.; Ademuyiwa, A.O.; Akinbode, G.; Ingabire, J.C.A.; Ntirenganya, F.; Kamara, T.B.; Goh, M.; Moore, R.; Kim, H.J.; Lee, S-H.; Minaya-Bravo, A.; Abbott, T.; Chakrabortee, S.; Denning, M.; Fitzgerald, J.E.; Glasbey, J.; Griffiths, E.; Halkias, C.; Harrison, E.M.; Jones, C.S.; Kinross, J.; Lawday, S.; Li, E.; Markar, S.; Morton, D.G.; Nepogodiev, D.; Pinkney, T.D.; Simoes, J.; Warren, O.; Wong, D.J.N.; Bankhead-Kendall, B.; Breen, K.A.; Davidson, G.H.; Kaafarani, H.; Keller, D.S.; Mazingi, D.; Kamarajah, S.K.; Blackwell, S.; Dames, N. Global guidance for surgical care during the COVID-19 pandemic. Br. J. Surg., 2020, 107(9), 1097-1103.
[http://dx.doi.org/10.1002/bjs.11646] [PMID: 32293715]
[188]
Havervall, S.; Rosell, A.; Phillipson, M.; Mangsbo, S.M.; Nilsson, P.; Hober, S.; Thålin, C. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA, 2021, 325(19), 2015-2016.
[http://dx.doi.org/10.1001/jama.2021.5612] [PMID: 33825846]
[189]
Hayden, M.R. Hypothesis: Neuroglia activation due to increased peripheral and cns proinflammatory cytokines/chemokines with neuroinflammation may result in long COVID. Neuroglia, 2021, 2(1), 7-35.
[http://dx.doi.org/10.3390/neuroglia2010004]
[190]
Chang, L.; Wei, Y.; Hashimoto, K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res. Bull., 2022, 182, 44-56.
[http://dx.doi.org/10.1016/j.brainresbull.2022.02.004] [PMID: 35151796]
[191]
Liu, Q.; Mak, J.W.Y.; Su, Q.; Yeoh, Y.K.; Lui, G.C.Y.; Ng, S.S.S.; Zhang, F.; Li, A.Y.L.; Lu, W.; Hui, D.S.C.; Chan, P.K.S.; Chan, F.K.L.; Ng, S.C. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut, 2022, 71(3), 544-552.
[http://dx.doi.org/10.1136/gutjnl-2021-325989] [PMID: 35082169]
[192]
Wang, B.; Zhang, L.; Wang, Y.; Dai, T.; Qin, Z.; Zhou, F.; Zhang, L. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2022, 7(1), 143.
[http://dx.doi.org/10.1038/s41392-022-00986-0] [PMID: 35487886]
[193]
Panelli, S.; Calcaterra, V.; Verduci, E.; Comandatore, F.; Pelizzo, G.; Borghi, E.; Bandi, C.; Zuccotti, G. Dysbiosis in children with neurological impairment and long-term enteral nutrition. Front. Nutr., 2022, 9, 895046.
[http://dx.doi.org/10.3389/fnut.2022.895046] [PMID: 35811980]
[194]
Jansen van Vuren, E.; Steyn, S.F.; Brink, C.B.; Möller, M.; Viljoen, F.P.; Harvey, B.H. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed. Pharmacother., 2021, 135, 111200.
[http://dx.doi.org/10.1016/j.biopha.2020.111200] [PMID: 33421734]
[195]
Hayden, M.R.; Tyagi, S.C. Impaired folate-mediated one-carbon metabolism in type 2 diabetes, late-onset alzheimer’s disease and long COVID. Medicina, 2021, 58(1), 16.
[http://dx.doi.org/10.3390/medicina58010016] [PMID: 35056324]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy