Mini-Review Article

MiRNAs Overexpression and Their Role in Breast Cancer: Implications for Cancer Therapeutics

Author(s): Sau Har Lee*, Chu Xin Ng, Sharon Rachel Wong and Pei Pei Chong

Volume 24, Issue 6, 2023

Published on: 14 April, 2023

Page: [484 - 508] Pages: 25

DOI: 10.2174/1389450124666230329123409

Price: $65

Abstract

MicroRNAs have a plethora of roles in various biological processes in the cells and most human cancers have been shown to be associated with dysregulation of the expression of miRNA genes. MiRNA biogenesis involves two alternative pathways, the canonical pathway which requires the successful cooperation of various proteins forming the miRNA-inducing silencing complex (miRISC), and the non-canonical pathway, such as the mirtrons, simtrons, or agotrons pathway, which bypasses and deviates from specific steps in the canonical pathway. Mature miRNAs are secreted from cells and circulated in the body bound to argonaute 2 (AGO2) and miRISC or transported in vesicles. These miRNAs may regulate their downstream target genes via positive or negative regulation through different molecular mechanisms. This review focuses on the role and mechanisms of miRNAs in different stages of breast cancer progression, including breast cancer stem cell formation, breast cancer initiation, invasion, and metastasis as well as angiogenesis. The design, chemical modifications, and therapeutic applications of synthetic anti-sense miRNA oligonucleotides and RNA mimics are also discussed in detail. The strategies for systemic delivery and local targeted delivery of the antisense miRNAs encompass the use of polymeric and liposomal nanoparticles, inorganic nanoparticles, extracellular vesicles, as well as viral vectors and viruslike particles (VLPs). Although several miRNAs have been identified as good candidates for the design of antisense and other synthetic modified oligonucleotides in targeting breast cancer, further efforts are still needed to study the most optimal delivery method in order to drive the research beyond preclinical studies.

Keywords: Cancer therapeutic, anti-sense microRNA, microRNA delivery, breast cancer, therapeutic microRNA, oncogenic microRNA.

Graphical Abstract
[1]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543): 853-8.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[2]
Gargalionis A, Basdra E. Insights in microRNAs Biology. Curr Top Med Chem 2013; 13(13): 1493-502.
[http://dx.doi.org/10.2174/15680266113139990098] [PMID: 23745801]
[3]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[4]
Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res 2004; 32(90001): 109D-11.
[http://dx.doi.org/10.1093/nar/gkh023] [PMID: 14681370]
[5]
Carroll AP, Goodall GJ, Liu B. Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches. Wiley Interdiscip Rev RNA 2014; 5(3): 361-79.
[http://dx.doi.org/10.1002/wrna.1217] [PMID: 24459110]
[6]
Chu C, Liu X, Bai X, et al. MiR-519d suppresses breast cancer tumorigenesis and metastasis via targeting MMP3. Int J Biol Sci 2018; 14(2): 228-36.
[http://dx.doi.org/10.7150/ijbs.22849] [PMID: 29483840]
[7]
Seo Y, Kim SS, Kim N, Cho S, Park JB, Kim JH. Development of a miRNA-controlled dual-sensing system and its application for targeting miR-21 signaling in tumorigenesis. Exp Mol Med 2020; 52(12): 1989-2004.
[http://dx.doi.org/10.1038/s12276-020-00537-z] [PMID: 33311703]
[8]
Yao Y, Xu Q, Yan L, et al. MiRNA-128 and MiRNA-142 regulate tumorigenesis and EMT in Oral squamous cell carcinoma through HOXA10. Cancer Manag Res 2020; 12: 9987-97.
[http://dx.doi.org/10.2147/CMAR.S250093] [PMID: 33116855]
[9]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[10]
Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17(1): 28-40.
[http://dx.doi.org/10.1016/j.ccr.2009.11.019] [PMID: 20060366]
[11]
Slattery ML, Herrick JS, Mullany LE, et al. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer 2017; 56(11): 769-87.
[http://dx.doi.org/10.1002/gcc.22481] [PMID: 28675510]
[12]
Wu Y, Song Y, Xiong Y, et al. MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer. Cell Physiol Biochem 2017; 43(3): 945-58.
[http://dx.doi.org/10.1159/000481648] [PMID: 28957811]
[13]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[14]
Di Leva G, Garofalo M, Croce CM. MicroRNAs in Cancer. Annu Rev Pathol 2014; 9(1): 287-314.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[15]
Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRNAs. Biomol Concepts 2014; 5(4): 275-87.
[http://dx.doi.org/10.1515/bmc-2014-0012] [PMID: 25372759]
[16]
Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 2002; 21(17): 4663-70.
[http://dx.doi.org/10.1093/emboj/cdf476] [PMID: 12198168]
[17]
Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[18]
Okada C, Yamashita E, Lee SJ, et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 2009; 326(5957): 1275-9.
[http://dx.doi.org/10.1126/science.1178705] [PMID: 19965479]
[19]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-6.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[20]
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293(5531): 834-8.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[21]
Ketting RF, Fischer SEJ, Bernstein E, Sijen T, Hannon GJ, Plasterk RHA. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15(20): 2654-9.
[http://dx.doi.org/10.1101/gad.927801] [PMID: 11641272]
[22]
Miyoshi K, Okada TN, Siomi H, Siomi MC. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 2009; 15(7): 1282-91.
[http://dx.doi.org/10.1261/rna.1541209] [PMID: 19451544]
[23]
Gao Q, Lei F, Zeng Q, et al. Functional Passenger-Strand miRNAs in Exosomes derived from human colon cancer cells and their Heterogeneous Paracrine effects. Int J Biol Sci 2020; 16(6): 1044-58.
[http://dx.doi.org/10.7150/ijbs.40787] [PMID: 32140072]
[24]
Shan SW, Fang L, Shatseva T, et al. Mature MiR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7, and vimentin in different signal pathways. J Cell Sci 2013; 126(6): 122895.
[http://dx.doi.org/10.1242/jcs.122895] [PMID: 23418359]
[25]
Ipsaro JJ, Joshua-Tor L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015; 22(1): 20-8.
[http://dx.doi.org/10.1038/nsmb.2931] [PMID: 25565029]
[26]
Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 2007; 130(1): 89-100.
[http://dx.doi.org/10.1016/j.cell.2007.06.028] [PMID: 17599402]
[27]
Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 2012; 40(10): 4626-40.
[http://dx.doi.org/10.1093/nar/gks026] [PMID: 22270084]
[28]
Hansen TB, Venø MT, Jensen TI, Schaefer A, Damgaard CK, Kjems J. Argonaute-associated short introns are a novel class of gene regulators. Nat Commun 2016; 7(1): 11538.
[http://dx.doi.org/10.1038/ncomms11538] [PMID: 27173734]
[29]
Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R Jr, Ambros V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci USA 2020; 117(39): 24213-23.
[http://dx.doi.org/10.1073/pnas.2008323117] [PMID: 32929008]
[30]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285(23): 17442-52.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[31]
Zhu JJ, Liu YF, Zhang YP, et al. VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proc Natl Acad Sci USA 2017; 114(31): 8271-6.
[http://dx.doi.org/10.1073/pnas.1700561114] [PMID: 28716920]
[32]
Teng Y, Ren Y, Hu X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 2017; 8(1): 14448.
[http://dx.doi.org/10.1038/ncomms14448] [PMID: 28211508]
[33]
Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer 2015; 14(1): 133.
[http://dx.doi.org/10.1186/s12943-015-0400-7] [PMID: 26178901]
[34]
Gümürdü A, Yildiz R, Eren E, et al. MicroRNA exocytosis by large dense-core vesicle fusion. Sci Rep 2017; 7(1): 45661.
[http://dx.doi.org/10.1038/srep45661] [PMID: 28358390]
[35]
Xu J, Chen Q, Zen K, Zhang C, Zhang Q. Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. J Neurochem 2013; 124(1): 15-25.
[http://dx.doi.org/10.1111/jnc.12057] [PMID: 23083096]
[36]
Tian T, Zhu YL, Zhou YY, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 2014; 289(32): 22258-67.
[http://dx.doi.org/10.1074/jbc.M114.588046] [PMID: 24951588]
[37]
Svensson KJ, Christianson HC, Wittrup A, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 2013; 288(24): 17713-24.
[http://dx.doi.org/10.1074/jbc.M112.445403] [PMID: 23653359]
[38]
Wei F, Ma C, Zhou T, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer 2017; 16(1): 132.
[http://dx.doi.org/10.1186/s12943-017-0694-8] [PMID: 28743280]
[39]
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13(4): 423-33.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[40]
Aucher A, Rudnicka D, Davis DM. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 2013; 191(12): 6250-60.
[http://dx.doi.org/10.4049/jimmunol.1301728] [PMID: 24227773]
[41]
Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 2007; 8(2): 113-26.
[http://dx.doi.org/10.1038/nrm2104] [PMID: 17245413]
[42]
Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012; 336(6078): 237-40.
[http://dx.doi.org/10.1126/science.1215691] [PMID: 22499947]
[43]
Iwakawa H, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol 2015; 25(11): 651-65.
[http://dx.doi.org/10.1016/j.tcb.2015.07.011] [PMID: 26437588]
[44]
Yang Y, Ji C, Guo S, et al. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget 2017; 8(42): 72835-46.
[http://dx.doi.org/10.18632/oncotarget.20427] [PMID: 29069829]
[45]
Huang L, Liu Z, Hu J, et al. MiR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res 2020; 156: 104774.
[http://dx.doi.org/10.1016/j.phrs.2020.104774] [PMID: 32220639]
[46]
Yang F, Wei K, Qin Z, et al. MiR-598 suppresses invasion and migration by negative regulation of derlin-1 and epithelial-mesenchymal transition in non-small cell lung cancer. Cell Physiol Biochem 2018; 47(1): 245-56.
[http://dx.doi.org/10.1159/000489803] [PMID: 29768262]
[47]
Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105(5): 1608-13.
[http://dx.doi.org/10.1073/pnas.0707594105] [PMID: 18227514]
[48]
Truesdell SS, Mortensen RD, Seo M, et al. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep 2012; 2(1): 842.
[http://dx.doi.org/10.1038/srep00842] [PMID: 23150790]
[49]
Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318(5858): 1931-4.
[http://dx.doi.org/10.1126/science.1149460] [PMID: 18048652]
[50]
Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 2007; 128(6): 1105-18.
[http://dx.doi.org/10.1016/j.cell.2007.01.038] [PMID: 17382880]
[51]
Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30(4): 460-71.
[http://dx.doi.org/10.1016/j.molcel.2008.05.001] [PMID: 18498749]
[52]
Polyak K. Breast cancer: Origins and evolution. J Clin Invest 2007; 117(11): 3155-63.
[http://dx.doi.org/10.1172/JCI33295] [PMID: 17975657]
[53]
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16): 7065-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1783] [PMID: 16103053]
[54]
Adhami M, Haghdoost AA, Sadeghi B, Malekpour Afshar R. Candidate miRNAs in human breast cancer biomarkers: A systematic review. Breast Cancer 2018; 25(2): 198-205.
[http://dx.doi.org/10.1007/s12282-017-0814-8] [PMID: 29101635]
[55]
Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci 2019; 20(19): 4940.
[http://dx.doi.org/10.3390/ijms20194940] [PMID: 31590453]
[56]
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449(7163): 682-8.
[http://dx.doi.org/10.1038/nature06174] [PMID: 17898713]
[57]
Zeng Q, Jin F, Qian H, et al. The miR-345-3p/PPP2CA signaling axis promotes proliferation and invasion of breast cancer cells. Carcinogenesis 2022; 43(2): 150-9.
[http://dx.doi.org/10.1093/carcin/bgab124] [PMID: 34922339]
[58]
Tang P, Shen Y, Yang J, et al. miR-622 induces breast cancer cell MCF-7 proliferation, migration, and invasion by directly negatively targeting EYA1. Journal of Nanomaterials. 2022; 2022.
[59]
Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012; 481(7381): 306-13.
[http://dx.doi.org/10.1038/nature10762] [PMID: 22258609]
[60]
Humphries B, Wang Z, Yang C. MicroRNA regulation of epigenetic modifiers in breast cancer. Cancers (Basel) 2019; 11(7): 897.
[http://dx.doi.org/10.3390/cancers11070897] [PMID: 31252590]
[61]
Mortazavi D, Sohrabi B, Mosallaei M, et al. Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. J Oncol 2022; 2022: 1-22.
[http://dx.doi.org/10.1155/2022/4889807] [PMID: 35087589]
[62]
Ou B, Liu Y, Gao Z, et al. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer viaFTO-mediated m6A demethylation. Cell Death Dis 2022; 13(10): 905.
[http://dx.doi.org/10.1038/s41419-022-05317-3] [PMID: 36302751]
[63]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. nature 2001; 414: 105-11.
[64]
Zhang Y, Bin X, Zhang X. Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. OncoTargets Ther 2018; 11: 4263-70.
[http://dx.doi.org/10.2147/OTT.S165156] [PMID: 30100733]
[65]
Sansone P, Berishaj M, Rajasekhar VK, et al. Evolution of cancer stem-like cells in endocrine-resistant metastatic breast cancers is mediated by Stromal Microvesicles. Cancer Res 2017; 77(8): 1927-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2129] [PMID: 28202520]
[66]
Lo PK, Zhang Y, Yao Y, et al. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling. J Biol Chem 2017; 292(27): 11466-84.
[http://dx.doi.org/10.1074/jbc.M117.775080] [PMID: 28512126]
[67]
Cowell CF, Weigelt B, Sakr RA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: Revisited. Mol Oncol 2013; 7(5): 859-69.
[http://dx.doi.org/10.1016/j.molonc.2013.07.005] [PMID: 23890733]
[68]
Choi Y, Lee HJ, Jang MH, et al. Epithelial-mesenchymal transition increases during the progression of in situ to invasive basal- like breast cancer. Hum Pathol 2013; 44(11): 2581-9.
[http://dx.doi.org/10.1016/j.humpath.2013.07.003] [PMID: 24055090]
[69]
Wang L, Xu C, Liu X, et al. TGF-β1 stimulates epithelial–mesenchymal transition and cancer-associated myoepithelial cell during the progression from in situ to invasive breast cancer. Cancer Cell Int 2019; 19(1): 343.
[http://dx.doi.org/10.1186/s12935-019-1068-7] [PMID: 31889895]
[70]
Hass R, von der Ohe J, Ungefroren H. Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation. Cancers (Basel) 2019; 11(10): 1432.
[http://dx.doi.org/10.3390/cancers11101432] [PMID: 31557960]
[71]
Nieto MA, Huang RYJ, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166(1): 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[72]
Kumar LD, Golani A, Kumar LD. EMT in breast cancer metastasis an interplay of microRNAs signaling pathways and circulating tumor cells. Front Biosci 2020; 25(5): 979-1010.
[http://dx.doi.org/10.2741/4844] [PMID: 32114421]
[73]
Leibovich-Rivkin T, Liubomirski Y, Bernstein B, Meshel T, Ben-Baruch A. Inflammatory factors of the tumor microenvironment induce plasticity in nontransformed breast epithelial cells: EMT, invasion, and collapse of normally organized breast textures. Neoplasia 2013; 15(12): 1330-IN5.
[http://dx.doi.org/10.1593/neo.131688] [PMID: 24403855]
[74]
Shome R, Ghosh SS. Transferrin Coated D -penicillamine–Au-Cu Nanocluster PLGA Nanocomposite Reverses Hypoxia-Induced EMT and MDR of Triple-Negative Breast Cancers. ACS Appl Bio Mater 2021; 4(6): 5033-48.
[http://dx.doi.org/10.1021/acsabm.1c00296] [PMID: 35007052]
[75]
Kang H, Kim H, Lee S, Youn H, Youn B. Role of metabolic reprogramming in epithelial–mesenchymal transition (EMT). Int J Mol Sci 2019; 20(8): 2042.
[http://dx.doi.org/10.3390/ijms20082042] [PMID: 31027222]
[76]
Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16(1): 10.
[http://dx.doi.org/10.1186/s12943-016-0577-4] [PMID: 28137309]
[77]
Ma F, Li W, Liu C, et al. MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget 2017; 8(41): 69538-50.
[http://dx.doi.org/10.18632/oncotarget.18422] [PMID: 29050223]
[78]
Smith AL, Iwanaga R, Drasin DJ, et al. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 2012; 31(50): 5162-71.
[http://dx.doi.org/10.1038/onc.2012.11] [PMID: 22286770]
[79]
Wang F, Li L, Chen Z, Zhu M, Gu Y. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int J Mol Med 2016; 37(5): 1421-8.
[http://dx.doi.org/10.3892/ijmm.2016.2518] [PMID: 26951965]
[80]
Saman H, Raza SS, Uddin S, Rasul K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers (Basel) 2020; 12(5): 1172.
[http://dx.doi.org/10.3390/cancers12051172] [PMID: 32384792]
[81]
Lu Y, Qin T, Li J, et al. MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 2017; 24(9): 386-92.
[http://dx.doi.org/10.1038/cgt.2017.30] [PMID: 28752859]
[82]
Li Y, Cai B, Shen L, et al. MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3. Cancer Lett 2017; 397: 111-9.
[http://dx.doi.org/10.1016/j.canlet.2017.03.032] [PMID: 28365400]
[83]
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/ HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40(5): 457-70.
[http://dx.doi.org/10.1007/s13402-017-0335-7] [PMID: 28741069]
[84]
Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res 2016; 76(13): 3666-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0359] [PMID: 27325641]
[85]
Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells 2015; 7(1): 27-36.
[http://dx.doi.org/10.4252/wjsc.v7.i1.27] [PMID: 25621103]
[86]
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Breast Cancer Stemness. Int J Mol Sci 2021; 22(7): 3756.
[http://dx.doi.org/10.3390/ijms22073756] [PMID: 33916548]
[87]
Kuang W, Tan J, Duan Y, et al. Cyclic stretch induced miR-146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb. Biochem Biophys Res Commun 2009; 378(2): 259-63.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.041] [PMID: 19026611]
[88]
Hariyanto NI, Purwandhita RP, Syahrani RA, Louisa M, Wanandi SI. Role of TGF-β1 in human breast cancer stem cells. J Pak Med Assoc 2021; 71(2): S84-9.
[PMID: 33785948]
[89]
Wang Y, Yu Y, Tsuyada A, et al. Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011; 30(12): 1470-80.
[http://dx.doi.org/10.1038/onc.2010.531] [PMID: 21102523]
[90]
Dirican E, Akkiprik M. Phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as therapeutic targets in breast cancer. Tumour Biol 2017; 39(3)
[http://dx.doi.org/10.1177/1010428317695529] [PMID: 28351303]
[91]
Li B, Lu Y, Wang H, et al. miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomed Pharmacother 2016; 79: 93-101.
[http://dx.doi.org/10.1016/j.biopha.2016.01.045] [PMID: 27044817]
[92]
Stinson S, Lackner MR, Adai AT, et al. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal 2011; 4(186): pt5.
[PMID: 21868360]
[93]
Bahena-Ocampo I, Espinosa M, Ceballos-Cancino G, et al. miR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation. EMBO Rep 2016; 17(5): 648-58.
[http://dx.doi.org/10.15252/embr.201540678] [PMID: 27113763]
[94]
Isobe T, Hisamori S, Hogan DJ, et al. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. eLife 2014; 3: e01977.
[http://dx.doi.org/10.7554/eLife.01977] [PMID: 25406066]
[95]
El Helou R, Pinna G, Cabaud O, et al. miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep 2017; 18(9): 2256-68.
[http://dx.doi.org/10.1016/j.celrep.2017.02.016] [PMID: 28249169]
[96]
Cheng CW, Yu JC, Hsieh YH, et al. Increased cellular levels of microRNA-9 and microRNA-221 correlate with cancer stemness and predict poor outcome in human breast cancer. Cell Physiol Biochem 2018; 48(5): 2205-18.
[http://dx.doi.org/10.1159/000492561] [PMID: 30110679]
[97]
Zuo J, Yu Y, Zhu M, et al. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation. Cancer Biomark 2018; 21(2): 383-92.
[http://dx.doi.org/10.3233/CBM-170642] [PMID: 29103027]
[98]
Yan C, Chen Y, Kong W, et al. PVT1- derived miR-1207-5p promotes breast cancer cell growth by targeting STAT6. Cancer Sci 2017; 108(5): 868-76.
[http://dx.doi.org/10.1111/cas.13212] [PMID: 28235236]
[99]
Li Y, Liang C, Ma H, et al. miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer. Molecules 2014; 19(6): 7122-37.
[http://dx.doi.org/10.3390/molecules19067122] [PMID: 24886939]
[100]
Liu S, Wang Z, Liu Z, et al. miR-221/222 activate the Wnt/β- catenin signaling to promote triple-negative breast cancer. J Mol Cell Biol 2018; 10(4): 302-15.
[http://dx.doi.org/10.1093/jmcb/mjy041] [PMID: 30053090]
[101]
Macedo T, Silva-Oliveira RJ, Silva VAO, Vidal DO, Evangelista AF, Marques MMC. Overexpression of mir-183 and mir-494 promotes proliferation and migration in human breast cancer cell lines. Oncol Lett 2017; 14(1): 1054-60.
[http://dx.doi.org/10.3892/ol.2017.6265] [PMID: 28693273]
[102]
Wang H, Tan Z, Hu H, et al. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer 2019; 19(1): 738.
[http://dx.doi.org/10.1186/s12885-019-5951-3] [PMID: 31351450]
[103]
Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283(2): 1026-33.
[http://dx.doi.org/10.1074/jbc.M707224200] [PMID: 17991735]
[104]
Wang ZX, Lu BB, Wang H, Cheng ZX, Yin YM. MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res 2011; 42(4): 281-90.
[http://dx.doi.org/10.1016/j.arcmed.2011.06.008] [PMID: 21820606]
[105]
Chen H, Pan H, Qian Y, Zhou W, Liu X. MiR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Mol Cancer 2018; 17(1): 4.
[http://dx.doi.org/10.1186/s12943-017-0754-0] [PMID: 29310680]
[106]
Li L, Wei D, Zhang J, Deng R, Tang J, Su D. miR-641 Inhibited Cell Proliferation and Induced Apoptosis by Targeting NUCKS1/PI3K/AKT Signaling Pathway in Breast Cancer. Comput Math Methods Med 2022; 2022: 1-18.
[http://dx.doi.org/10.1155/2022/5203839] [PMID: 35069784]
[107]
Sibilano M, Tullio V, Adorno G, Savini I, Gasperi V, Catani MV. Platelet-derived miR-126-3p directly targets AKT2 and exerts anti-tumor effects in breast cancer cells: Further insights in platelet-cancer interplay. Int J Mol Sci 2022; 23(10): 5484.
[http://dx.doi.org/10.3390/ijms23105484] [PMID: 35628294]
[108]
Ke H, Pei J, Ni Z, et al. Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-xL. Exp Cell Res 2004; 298(2): 329-38.
[http://dx.doi.org/10.1016/j.yexcr.2004.04.031] [PMID: 15265683]
[109]
Cheng X, Chen J, Huang Z. miR-372 promotes breast cancer cell proliferation by directly targeting LATS2. Exp Ther Med 2018; 15(3): 2812-7.
[http://dx.doi.org/10.3892/etm.2018.5761] [PMID: 29456685]
[110]
Breunig C, Pahl J, Küblbeck M, et al. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 2017; 8(8): e2973-3.
[http://dx.doi.org/10.1038/cddis.2017.364] [PMID: 28771222]
[111]
Wang CP, Yu YZ, Zhao H, et al. MicroRNA-454-5p promotes breast cancer progression by inducing epithelial-mesenchymal transition via targeting the FoxJ2/E-cadherin axis. Oncol Rep 2021; 46(1): 127.
[http://dx.doi.org/10.3892/or.2021.8078] [PMID: 33982790]
[112]
Ren L, Chen H, Song J, et al. MiR-454-3p-mediated Wnt/β- catenin signaling antagonists suppression promotes breast cancer metastasis. Theranostics 2019; 9(2): 449-65.
[http://dx.doi.org/10.7150/thno.29055] [PMID: 30809286]
[113]
Chen D, Dang BL, Huang J, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget 2015; 6(32): 32701-12.
[http://dx.doi.org/10.18632/oncotarget.4702] [PMID: 26196741]
[114]
Han X, Yan S, Weijie Z, et al. Critical role of miR-10b in transforming growth factor-β1-induced epithelial–mesenchymal transition in breast cancer. Cancer Gene Ther 2014; 21(2): 60-7.
[http://dx.doi.org/10.1038/cgt.2013.82] [PMID: 24457988]
[115]
Han M, Liu M, Wang Y, et al. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem 2012; 363(1-2): 427-36.
[http://dx.doi.org/10.1007/s11010-011-1195-5] [PMID: 22187223]
[116]
Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 2013; 123(1): 150-63.
[http://dx.doi.org/10.1172/JCI64946] [PMID: 23241956]
[117]
Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25(4): 501-15.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[118]
Liu Y, Cheng T, Du Y, Hu X, Xia W. LncRNA LUCAT1/miR-181a-5p axis promotes proliferation and invasion of breast cancer via targeting KLF6 and KLF15. BMC Mol Cell Biol 2020; 21(1): 69.
[http://dx.doi.org/10.1186/s12860-020-00310-0] [PMID: 32998707]
[119]
Li Y, Kuscu C, Banach A, et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res 2015; 75(13): 2674-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2875] [PMID: 25977338]
[120]
Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S. Impaired microRNA processing facilitates breast cancer cell invasion by upregulating urokinase-type plasminogen activator expression. Genes Cancer 2011; 2(2): 140-50.
[http://dx.doi.org/10.1177/1947601911408888] [PMID: 21779487]
[121]
Zhu Y, Wu J, Li S, et al. The function role of miR-181a in chemosensitivity to adriamycin by targeting Bcl-2 in low-invasive breast cancer cells. Cell Physiol Biochem 2013; 32(5): 1225-37.
[http://dx.doi.org/10.1159/000354521] [PMID: 24335172]
[122]
Jiao X, Zhao L, Ma M, et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 2013; 139(3): 717-30.
[http://dx.doi.org/10.1007/s10549-013-2607-x] [PMID: 23780685]
[123]
Alexandrova E, Lamberti J, Saggese P, et al. Small non-coding RNA profiling identifies miR-181a-5p as a mediator of estrogen receptor beta-induced inhibition of cholesterol biosynthesis in triple-negative breast cancer. Cells 2020; 9(4): 874.
[http://dx.doi.org/10.3390/cells9040874] [PMID: 32260128]
[124]
Liu J, Jia Y, Jia L, Li T, Yang L, Zhang G. MicroRNA 615-3p inhibits the tumor growth and metastasis of NSCLC via inhibiting IGF2. Oncol Res 2019; 27(2): 269-79.
[http://dx.doi.org/10.3727/096504018X15215019227688] [PMID: 29562959]
[125]
Yan T, Ooi WF, Qamra A, et al. HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis. Nat Commun 2018; 9(1): 100.
[http://dx.doi.org/10.1038/s41467-017-02601-1] [PMID: 29311615]
[126]
Lei B, Wang D, Zhang M, Deng Y, Jiang H, Li Y. miR-615-3p promotes the epithelial-mesenchymal transition and metastasis of breast cancer by targeting PICK1/TGFBRI axis. J Exp Clin Cancer Res 2020; 39(1): 71.
[http://dx.doi.org/10.1186/s13046-020-01571-5] [PMID: 32336285]
[127]
Badodekar N, Sharma A, Patil V, et al. Angiogenesis induction in breast cancer: A paracrine paradigm. Cell Biochem Funct 2021; 39(7): 860-73.
[http://dx.doi.org/10.1002/cbf.3663] [PMID: 34505714]
[128]
Tiwari A, Mukherjee B, Dixit M. MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets 2018; 18(3): 266-77.
[http://dx.doi.org/10.2174/1568009617666170630142725] [PMID: 28669338]
[129]
Du Y, Tu G, Yang G, et al. MiR-205/YAP1 in activated fibroblasts of breast tumor promotes VEGF-independent angiogenesis through STAT3 signaling. Theranostics 2017; 7(16): 3972-88.
[http://dx.doi.org/10.7150/thno.18990] [PMID: 29109792]
[130]
Sun LL, Xiao L, Du XL, et al. MiR-205 promotes endothelial progenitor cell angiogenesis and deep vein thrombosis recanalization and resolution by targeting PTEN to regulate Akt/autophagy pathway and MMP2 expression. J Cell Mol Med 2019; 23(12): 8493-504.
[http://dx.doi.org/10.1111/jcmm.14739] [PMID: 31633295]
[131]
Ma C, Peng P, Zhou Y, Liu T, Wang L, Lu C. MicroRNA-93 promotes angiogenesis and attenuates remodeling via inactivation of the Hippo/Yap pathway by targeting Lats2 after myocardial infarctionω. Mol Med Rep 2020; 22(1): 483-93.
[http://dx.doi.org/10.3892/mmr.2020.11085] [PMID: 32319642]
[132]
Fang L, Du WW, Yang W, et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 2012; 11(23): 4352-65.
[http://dx.doi.org/10.4161/cc.22670] [PMID: 23111389]
[133]
An G, Lu F, Huang S, et al. Effects of miR-93 on epithelial-to-mesenchymal transition and vasculogenic mimicry in triple-negative breast cancer cells. Mol Med Rep 2020; 23(1): 1-1.
[http://dx.doi.org/10.3892/mmr.2020.11668] [PMID: 33179106]
[134]
Hu J, Xu J, Wu Y, et al. Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer. Tumour Biol 2015; 36(1): 251-8.
[http://dx.doi.org/10.1007/s13277-014-2611-8] [PMID: 25238878]
[135]
Hunter S, Nault B, Ugwuagbo K, Maiti S, Majumder M. Mir526b and Mir655 promote tumour associated angiogenesis and lymphangiogenesis in breast cancer. Cancers (Basel) 2019; 11(7): 938.
[http://dx.doi.org/10.3390/cancers11070938] [PMID: 31277414]
[136]
Lu C, Zhao Y, Wang J, et al. Breast cancer cell-derived extracellular vesicles transfer miR-182-5p and promote breast carcinogenesis via the CMTM7/EGFR/AKT axis. Mol Med 2021; 27(1): 78.
[http://dx.doi.org/10.1186/s10020-021-00338-8] [PMID: 34294040]
[137]
Chiang C-H, Chu P-Y, Hou M-F, Hung W-C. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res 2016; 6(8): 1785-98.
[PMID: 27648365]
[138]
Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2014; 33(6): 679-89.
[http://dx.doi.org/10.1038/onc.2012.636] [PMID: 23353819]
[139]
Robertson ED, Wasylyk C, Ye T, Jung AC, Wasylyk B. The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response. PLoS One 2014; 9(11): e113050.
[http://dx.doi.org/10.1371/journal.pone.0113050] [PMID: 25401928]
[140]
Johansson J, Berg T, Kurzejamska E, et al. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013; 32(50): 5614-24.
[http://dx.doi.org/10.1038/onc.2013.322] [PMID: 23955085]
[141]
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 2012; 3(1): 1-17.
[http://dx.doi.org/10.1186/1758-907X-3-1] [PMID: 22230293]
[142]
Liu B, Montgomery SB. Identifying causal variants and genes using functional genomics in specialized cell types and contexts. Hum Genet 2020; 139(1): 95-102.
[http://dx.doi.org/10.1007/s00439-019-02044-2] [PMID: 31317254]
[143]
Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol 2017; 57(1): 81-105.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104846] [PMID: 27732800]
[144]
Rani A, O’Shea A, Ianov L, Cohen RA, Woods AJ, Foster TC. miRNA in circulating microvesicles as biomarkers for age-related cognitive decline. Front Aging Neurosci 2017; 9: 323.
[http://dx.doi.org/10.3389/fnagi.2017.00323] [PMID: 29046635]
[145]
Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov 2017; 16(3): 167-79.
[http://dx.doi.org/10.1038/nrd.2016.117] [PMID: 27444227]
[146]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[147]
Harries LW. RNA biology provides new therapeutic targets for human disease. Front Genet 2019; 10: 205.
[http://dx.doi.org/10.3389/fgene.2019.00205] [PMID: 30906315]
[148]
Bajan S, Hutvagner G. RNA-based therapeutics: From antisense oligonucleotides to miRNAs. Cells 2020; 9(1): 137.
[http://dx.doi.org/10.3390/cells9010137] [PMID: 31936122]
[149]
Rossor AM, Reilly MM, Sleigh JN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol 2018; 18(2): 126-31.
[http://dx.doi.org/10.1136/practneurol-2017-001764] [PMID: 29455156]
[150]
Potaczek DP, Garn H, Unger SD, Renz H. Antisense molecules: A new class of drugs. J Allergy Clin Immunol 2016; 137(5): 1334-46.
[http://dx.doi.org/10.1016/j.jaci.2015.12.1344] [PMID: 27155029]
[151]
Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 2011; 18(12): 1111-20.
[http://dx.doi.org/10.1038/gt.2011.100] [PMID: 21753793]
[152]
Walayat A, Yang M, Xiao D. Therapeutic implication of miRNA in human disease.IntechOpen. Antisense Therapy. 2018.
[153]
Song Y, Ke X, Chen L. The Potential Use of RNA-based Therapeutics for Breast Cancer Treatment. Curr Med Chem 2021; 28(25): 5110-36.
[http://dx.doi.org/10.2174/0929867327666201117100336] [PMID: 33208059]
[154]
Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2013; 2(8): e117.
[http://dx.doi.org/10.1038/mtna.2013.46] [PMID: 23982190]
[155]
Neudecker V, Brodsky KS, Kreth S, Ginde AA, Eltzschig HK. Emerging roles for microRNAs in perioperative medicine. Anesthesiology 2016; 124(2): 489-506.
[http://dx.doi.org/10.1097/ALN.0000000000000969] [PMID: 26632665]
[156]
Sharma VK, Watts JK. Oligonucleotide therapeutics: Chemistry, delivery and clinical progress. Future Med Chem 2015; 7(16): 2221-42.
[http://dx.doi.org/10.4155/fmc.15.144] [PMID: 26510815]
[157]
Wan WB, Seth PP. The medicinal chemistry of therapeutic oligonucleotides. J Med Chem 2016; 59(21): 9645-67.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00551] [PMID: 27434100]
[158]
Hutvágner G, Simard MJ, Mello CC, Zamore PD, Joyce G. Sequence-specific inhibition of small RNA function. PLoS Biol 2004; 2(4): e98.
[http://dx.doi.org/10.1371/journal.pbio.0020098] [PMID: 15024405]
[159]
Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides. Neurol Genet 2019; 5(2): e323.
[http://dx.doi.org/10.1212/NXG.0000000000000323] [PMID: 31119194]
[160]
Yu RZ, Grundy JS, Geary RS. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol 2013; 9(2): 169-82.
[http://dx.doi.org/10.1517/17425255.2013.737320] [PMID: 23231725]
[161]
Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017; 544(7650): 367-71.
[http://dx.doi.org/10.1038/nature22038] [PMID: 28405022]
[162]
Ben-Shushan D, Markovsky E, Gibori H, Tiram G, Scomparin A, Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res 2014; 4(1): 38-49.
[http://dx.doi.org/10.1007/s13346-013-0160-0] [PMID: 25786616]
[163]
Sud R, Geller ET, Schellenberg GD. Antisense-mediated exon skipping decreases tau protein expression: A potential therapy for tauopathies. Mol Ther Nucleic Acids 2014; 3(7): e180.
[http://dx.doi.org/10.1038/mtna.2014.30] [PMID: 25072694]
[164]
Li Z, Lech CJ, Phan AT. Sugar-modified G-quadruplexes: Effects of LNA-, 2′F-RNA– and 2′F-ANA-guanosine chemistries on G-quadruplex structure and stability. Nucleic Acids Res 2014; 42(6): 4068-79.
[http://dx.doi.org/10.1093/nar/gkt1312] [PMID: 24371274]
[165]
Pallan PS, Greene EM, Jicman PA, et al. Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Res 2011; 39(8): 3482-95.
[http://dx.doi.org/10.1093/nar/gkq1270] [PMID: 21183463]
[166]
Rigo F, Hua Y, Chun SJ, Prakash TP, Krainer AR, Bennett CF. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nat Chem Biol 2012; 8(6): 555-61.
[http://dx.doi.org/10.1038/nchembio.939] [PMID: 22504300]
[167]
Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 2012; 19(8): 937-54.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.011] [PMID: 22921062]
[168]
Le BT, Adams AM, Fletcher S, Wilton SD, Veedu RN. Rational design of short locked nucleic acid-modified 2′-O-methyl antisense oligonucleotides for efficient exon-skipping in vitro. Mol Ther Nucleic Acids 2017; 9: 155-61.
[http://dx.doi.org/10.1016/j.omtn.2017.09.002] [PMID: 29246294]
[169]
White NA, Sumita M, Marquez VE, Hoogstraten CG. Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA 2018; 24(11): 1542-54.
[http://dx.doi.org/10.1261/rna.067579.118] [PMID: 30111534]
[170]
Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications. Beilstein J Org Chem 2021; 17: 908-31.
[http://dx.doi.org/10.3762/bjoc.17.76] [PMID: 33981365]
[171]
Zhou LY, Qin Z, Zhu YH, He ZY, Xu T. Current RNA-based therapeutics in clinical trials. Curr Gene Ther 2019; 19(3): 172-96.
[http://dx.doi.org/10.2174/1566523219666190719100526] [PMID: 31566126]
[172]
Karaki S, Paris C, Rocchi P. Antisense oligonucleotides, A novel developing targeting therapy. Antisense Therapy. 2019; p. 10.
[http://dx.doi.org/10.5772/intechopen.82105]
[173]
Yoo J, Hajjar RJ, Jeong D. Generation of efficient miRNA inhibitors using tough decoy constructs. Cardiac Gene Therapy. Spinger 2017; pp. 41-53.
[http://dx.doi.org/10.1007/978-1-4939-6588-5_3]
[174]
Obad S, dos Santos C, Petri A, Heidenblad M, Broom O. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nat Genet 2011; 43: 371-8.
[http://dx.doi.org/10.1038/ng.786] [PMID: 21423181]
[175]
Zhang Y, Roccaro AM, Rombaoa C, et al. LNA-mediated anti–miR-155 silencing in low-grade B-cell lymphomas. Blood 2012; 120(8): 1678-86.
[http://dx.doi.org/10.1182/blood-2012-02-410647] [PMID: 22797699]
[176]
Lundin KE, Gissberg O, Smith CE, Zain R. Chemical development of therapeutic oligonucleotides. Oligonucleotide-Based Therapies. Springer 2019; pp. 3-16.
[http://dx.doi.org/10.1007/978-1-4939-9670-4_1]
[177]
Lv W, Zhao J, Situ B, et al. A target-triggered dual amplification strategy for sensitive detection of microRNA. Biosens Bioelectron 2016; 83: 250-5.
[http://dx.doi.org/10.1016/j.bios.2016.04.053] [PMID: 27131998]
[178]
Berezikov E, Goumans M-j, Martinez J. Revealing details: Whole mount microRNA in situ hybridization protocol for zebrafish embryos and adult tissues 2012.
[179]
Chaudhuri AD, Yelamanchili SV, Fox HS. Combined fluorescent in situ hybridization for detection of microRNAs and immunofluorescent labeling for cell-type markers. Front Cell Neurosci 2013; 7: 160.
[http://dx.doi.org/10.3389/fncel.2013.00160] [PMID: 24065888]
[180]
Søe MJ, Møller T, Dufva M, Holmstrøm K. A sensitive alternative for microRNA in situ hybridizations using probes of 2′-O-methyl RNA + LNA. J Histochem Cytochem 2011; 59(7): 661-72.
[http://dx.doi.org/10.1369/0022155411409411] [PMID: 21525189]
[181]
Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther 2014; 24(6): 374-87.
[http://dx.doi.org/10.1089/nat.2014.0506] [PMID: 25353652]
[182]
Jain ML, Bruice PY, Szabó IE, Bruice TC. Incorporation of positively charged linkages into DNA and RNA backbones: A novel strategy for antigene and antisense agents. Chem Rev 2012; 112(3): 1284-309.
[http://dx.doi.org/10.1021/cr1004265] [PMID: 22074477]
[183]
Sharma VK, Sharma RK, Singh SK. Antisense oligonucleotides: Modifications and clinical trials. MedChemComm 2014; 5(10): 1454-71.
[http://dx.doi.org/10.1039/C4MD00184B]
[184]
Saran R, Huang Z, Liu J. Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coord Chem Rev 2021; 428: 213624.
[http://dx.doi.org/10.1016/j.ccr.2020.213624]
[185]
Crooke ST, Wang S, Vickers TA, Shen W, Liang X. Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017; 35(3): 230-7.
[http://dx.doi.org/10.1038/nbt.3779] [PMID: 28244996]
[186]
Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51.
[http://dx.doi.org/10.1016/j.addr.2015.01.008] [PMID: 25666165]
[187]
Dirin M, Winkler J. Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin Biol Ther 2013; 13(6): 875-88.
[http://dx.doi.org/10.1517/14712598.2013.774366] [PMID: 23451977]
[188]
Liang X, Shen W, Sun H, Prakash TP, Crooke ST. TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Res 2014; 42(12): 7819-32.
[http://dx.doi.org/10.1093/nar/gku484] [PMID: 24861627]
[189]
Shen W, De Hoyos CL, Migawa MT, et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat Biotechnol 2019; 37(6): 640-50.
[http://dx.doi.org/10.1038/s41587-019-0106-2] [PMID: 31036929]
[190]
Shen W, Liang X, Crooke ST. Phosphorothioate oligonucleotides can displace NEAT1 RNA and form nuclear paraspeckle-like structures. Nucleic Acids Res 2014; 42(13): 8648-62.
[http://dx.doi.org/10.1093/nar/gku579] [PMID: 25013176]
[191]
Pollak AJ, Hickman JH, Liang XH, Crooke ST. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms. Nucleic Acid Ther 2020; 30(5): 312-24.
[http://dx.doi.org/10.1089/nat.2020.0864] [PMID: 32589504]
[192]
Vickers TA, Crooke ST. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. PLoS One 2014; 9(10): e108625.
[http://dx.doi.org/10.1371/journal.pone.0108625] [PMID: 25299183]
[193]
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15(3): 338-52.
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[194]
Watts JK. The medicinal chemistry of antisense oligonucleotides. Oligonucleotide-Based Drugs and Therapeutics: Preclinical and Clinical Considerations for Development. 2018; p. 39.
[http://dx.doi.org/10.1002/9781119070153.ch2]
[195]
Yamada CM, Dellinger DJ, Caruthers MH. Synthesis and biological activity of phosphonocarboxylate DNA. Nucleosides Nucleotides Nucleic Acids 2007; 26(6-7): 539-46.
[http://dx.doi.org/10.1080/15257770701489896] [PMID: 18066852]
[196]
Kumar P, Caruthers MH. DNA analogues modified at the nonlinking positions of phosphorus. Acc Chem Res 2020; 53(10): 2152-66.
[http://dx.doi.org/10.1021/acs.accounts.0c00078] [PMID: 32885957]
[197]
Threlfall RN, Torres AG, Krivenko A, Gait MJ, Caruthers MH. Synthesis and biological activity of phosphonoacetate- and thiophosphonoacetate-modified 2′-O-methyl oligoribonucleotides. Org Biomol Chem 2012; 10(4): 746-54.
[http://dx.doi.org/10.1039/C1OB06614E] [PMID: 22124653]
[198]
Dhami I. Synthesis and evaluation of modified peptide nucleic acid (PNA) for improved DNA/RNA binding selectivity 2018.
[199]
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. Eng Rep 2020; 2(9): e12238.
[http://dx.doi.org/10.1002/eng2.12238] [PMID: 32838227]
[200]
Chen JL, Zhang P, Abe M, et al. Design, optimization, and study of small molecules that target tau pre-mRNA and affect splicing. J Am Chem Soc 2020; 142(19): 8706-27.
[http://dx.doi.org/10.1021/jacs.0c00768] [PMID: 32364710]
[201]
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19(10): 673-94.
[http://dx.doi.org/10.1038/s41573-020-0075-7] [PMID: 32782413]
[202]
Shakeel S, Karim S, Ali A. Peptide nucleic acid (PNA)—a review. Journal of chemical technology & biotechnology: International research in process. Environmental & Clean Technology 2006; 81: 892-9.
[203]
Gupta A, Mishra A, Puri N. Peptide nucleic acids: Advanced tools for biomedical applications. J Biotechnol 2017; 259: 148-59.
[http://dx.doi.org/10.1016/j.jbiotec.2017.07.026] [PMID: 28764969]
[204]
Banack SA, Metcalf JS, Jiang L, Craighead D, Ilag LL, Cox PA. Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth. PLoS One 2012; 7(11): e49043.
[http://dx.doi.org/10.1371/journal.pone.0049043] [PMID: 23145061]
[205]
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three’s a crowd – stabilisation, structure, and applications of DNA triplexes. Chem Sci (Camb) 2022; 13(35): 10193-215.
[http://dx.doi.org/10.1039/D2SC01793H]
[206]
Hwang J, Lee S, Kim D, et al. Peptide nucleic acid (PNA) probe-based analysis to detect filaggrin mutations in atopic dermatitis patients. Exp Dermatol 2018; 27(11): 1304-8.
[http://dx.doi.org/10.1111/exd.13765] [PMID: 30092122]
[207]
Korecka JA, Thomas R, Hinrich AJ, et al. Splice-switching antisense oligonucleotides reduce LRRK2 kinase activity in human LRRK2 transgenic mice. Mol Ther Nucleic Acids 2020; 21: 623-35.
[http://dx.doi.org/10.1016/j.omtn.2020.06.027] [PMID: 32736291]
[208]
McClorey G, Wood MJ. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 2015; 24: 52-8.
[http://dx.doi.org/10.1016/j.coph.2015.07.005] [PMID: 26277332]
[209]
Crooke ST, Baker BF, Crooke RM, Liang X. Antisense technology: An overview and prospectus. Nat Rev Drug Discov 2021; 20(6): 427-53.
[http://dx.doi.org/10.1038/s41573-021-00162-z] [PMID: 33762737]
[210]
Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res 2017; 45(5): 2262-82.
[http://dx.doi.org/10.1093/nar/gkx056] [PMID: 28426096]
[211]
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44(14): 6549-63.
[http://dx.doi.org/10.1093/nar/gkw533] [PMID: 27288447]
[212]
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27(2): 536.
[http://dx.doi.org/10.3390/molecules27020536] [PMID: 35056851]
[213]
Summerton JE. Invention and early history of morpholinos: From pipe dream to practical products. Methods Mol Biol 2017; 1565: 1-15.
[214]
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano 2014; 8(3): 1972-94.
[http://dx.doi.org/10.1021/nn4057269] [PMID: 24559246]
[215]
Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978; 75(1): 280-4.
[http://dx.doi.org/10.1073/pnas.75.1.280] [PMID: 75545]
[216]
Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 2018; 46(4): 1584-600.
[http://dx.doi.org/10.1093/nar/gkx1239] [PMID: 29240946]
[217]
Adachi H, Hengesbach M, Yu YT, Morais P. From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9(5): 550.
[http://dx.doi.org/10.3390/biomedicines9050550] [PMID: 34068948]
[218]
Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J Clin Med 2020; 9(6): 2004.
[http://dx.doi.org/10.3390/jcm9062004] [PMID: 32604776]
[219]
Liang XH, Sun H, Nichols JG, Crooke ST. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther 2017; 25(9): 2075-92.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.002] [PMID: 28663102]
[220]
Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W. Structure of human RNase H1 complexed with an RNA/DNA hybrid: Insight into HIV reverse transcription. Mol Cell 2007; 28(2): 264-76.
[http://dx.doi.org/10.1016/j.molcel.2007.08.015] [PMID: 17964265]
[221]
Yin W, Rogge M. Targeting RNA: A transformative therapeutic strategy. Clin Transl Sci 2019; 12(2): 98-112.
[http://dx.doi.org/10.1111/cts.12624] [PMID: 30706991]
[222]
Crooke ST, Vickers TA, Liang X. Phosphorothioate modified oligonucleotide–protein interactions. Nucleic Acids Res 2020; 48(10): 5235-53.
[http://dx.doi.org/10.1093/nar/gkaa299] [PMID: 32356888]
[223]
Kupryushkin MS, Filatov AV, Mironova NL, et al. Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells. Mol Ther Nucleic Acids 2022; 27: 211-26.
[http://dx.doi.org/10.1016/j.omtn.2021.11.025] [PMID: 34976439]
[224]
Li H, Lei Y, Li S, Li F, Lei J. MicroRNA-20a-5p inhibits the autophagy and cisplatin resistance in ovarian cancer via regulating DNMT3B-mediated DNA methylation of RBP1. Reprod Toxicol 2022; 109: 93-100.
[http://dx.doi.org/10.1016/j.reprotox.2021.12.011] [PMID: 34990753]
[225]
Lim KRQ, Bittel A, Maruyama R, et al. DUX4 transcript knockdown with antisense 2′-o-methoxyethyl gapmers for the treatment of facioscapulohumeral muscular dystrophy. Mol Ther 2021; 29(2): 848-58.
[http://dx.doi.org/10.1016/j.ymthe.2020.10.010] [PMID: 33068777]
[226]
Scharner J, Aznarez I. Clinical applications of single-stranded oligonucleotides: Current landscape of approved and in-development therapeutics. Mol Ther 2021; 29(2): 540-54.
[http://dx.doi.org/10.1016/j.ymthe.2020.12.022] [PMID: 33359792]
[227]
Sekijima Y. Transthyretin (ATTR) amyloidosis: Clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry 2015; 86(9): 1036-43.
[http://dx.doi.org/10.1136/jnnp-2014-308724] [PMID: 25604431]
[228]
Ackermann EJ, Guo S, Benson MD, et al. Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides. Amyloid 2016; 23(3): 148-57.
[http://dx.doi.org/10.1080/13506129.2016.1191458] [PMID: 27355239]
[229]
Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet 2016; 17(1): 19-32.
[http://dx.doi.org/10.1038/nrg.2015.3] [PMID: 26593421]
[230]
Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2010; 35(3): 169-78.
[http://dx.doi.org/10.1016/j.tibs.2009.10.004] [PMID: 19959365]
[231]
Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther 2014; 24(1): 69-86.
[http://dx.doi.org/10.1089/nat.2013.0461] [PMID: 24506781]
[232]
van der Wal E, Bergsma AJ, Pijnenburg JM, van der Ploeg AT, Pijnappel WWMP. Antisense oligonucleotides promote exon inclusion and correct the common c.-32-13T> G GAA splicing variant in Pompe disease. Mol Ther Nucleic Acids 2017; 7: 90-100.
[http://dx.doi.org/10.1016/j.omtn.2017.03.001] [PMID: 28624228]
[233]
Havens MA, Duelli DM, Hastings ML. Targeting RNA splicing for disease therapy. Wiley Interdiscip Rev RNA 2013; 4(3): 247-66.
[http://dx.doi.org/10.1002/wrna.1158] [PMID: 23512601]
[234]
Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 2009; 19(1): 1-13.
[http://dx.doi.org/10.1089/oli.2008.0161] [PMID: 19125639]
[235]
Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 1993; 90(18): 8673-7.
[http://dx.doi.org/10.1073/pnas.90.18.8673] [PMID: 8378346]
[236]
Le BT, Paul S, Jastrzebska K, Langer H, Caruthers MH, Veedu RN. Thiomorpholino oligonucleotides as a robust class of next generation platforms for alternate mRNA splicing. Proc Natl Acad Sci USA 2022; 119(36): e2207956119.
[http://dx.doi.org/10.1073/pnas.2207956119] [PMID: 36037350]
[237]
Le BT, Agarwal S, Veedu RN. Evaluation of DNA segments in 2′-modified RNA sequences in designing efficient splice switching antisense oligonucleotides. RSC Advances 2021; 11(23): 14029-35.
[http://dx.doi.org/10.1039/D1RA00878A] [PMID: 35423918]
[238]
Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm 2009; 6(3): 651-8.
[http://dx.doi.org/10.1021/mp800134q] [PMID: 19115957]
[239]
Baumann V, Winkler J. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 2014; 6(17): 1967-84.
[http://dx.doi.org/10.4155/fmc.14.116] [PMID: 25495987]
[240]
Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv Drug Deliv Rev 2015; 81: 128-41.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[241]
Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021; 11(18): 8771-96.
[http://dx.doi.org/10.7150/thno.62642] [PMID: 34522211]
[242]
Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial MIRNAS as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA 2021; 12(4): e1640.
[http://dx.doi.org/10.1002/wrna.1640] [PMID: 33386705]
[243]
Segal M, Biscans A, Gilles ME, et al. Hydrophobically modified let-7b miRNA enhances biodistribution to NSCLC and downregulates HMGA2in vivo. Mol Ther Nucleic Acids 2020; 19: 267-77.
[http://dx.doi.org/10.1016/j.omtn.2019.11.008] [PMID: 31855835]
[244]
Su Y, Sun B, Gao X, et al. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front Pharmacol 2020; 11: 1165.
[http://dx.doi.org/10.3389/fphar.2020.01165] [PMID: 32848773]
[245]
Li Z, Rana TM. Therapeutic targeting of microRNAs: Current status and future challenges. Nat Rev Drug Discov 2014; 13(8): 622-38.
[http://dx.doi.org/10.1038/nrd4359] [PMID: 25011539]
[246]
Devulapally R, Paulmurugan R. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(1): 40-60.
[http://dx.doi.org/10.1002/wnan.1242] [PMID: 23996830]
[247]
Perinelli DR, Cespi M, Bonacucina G, Palmieri GF. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J Pharm Investig 2019; 49(4): 443-58.
[http://dx.doi.org/10.1007/s40005-019-00442-2]
[248]
Devulapally R, Sekar NM, Sekar TV, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 2015; 9(3): 2290-302.
[http://dx.doi.org/10.1021/nn507465d] [PMID: 25652012]
[249]
Li K, Pang L, Pan X, et al. GE11 modified PLGA/TPGS nanoparticles targeting delivery of Salinomycin to breast cancer cells. Technol Cancer Res Treat 2021; 20
[http://dx.doi.org/10.1177/15330338211004954] [PMID: 34056977]
[250]
Li Q, Hu Z, Rong X, Chang B, Liu X. Multifunctional polyplex micelles for efficient microRNA delivery and accelerated osteogenesis. Nanoscale 2021; 13(28): 12198-211.
[http://dx.doi.org/10.1039/D1NR02638K] [PMID: 34231613]
[251]
Garizo AR, Castro F, Martins C, et al. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J Control Release 2021; 337: 329-42.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.035] [PMID: 34311024]
[252]
Gallops C, Ziebarth J, Wang Y. A polymer physics perspective on why PEI is an effective nonviral gene delivery vector.ACS Publications 2020; pp. 1-12.
[http://dx.doi.org/10.1021/bk-2020-1350.ch001]
[253]
Wang S, Zhang J, Wang Y, Chen M. Hyaluronic acid-coated PEI- PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine 2016; 12(2): 411-20.
[http://dx.doi.org/10.1016/j.nano.2015.09.014] [PMID: 26711968]
[254]
Nishio H, Masumoto H, Sakamoto K, Yamazaki K, Ikeda T, Minatoya K. MicroRNA-145-loaded poly(lactic-co-glycolic acid) nanoparticles attenuate venous intimal hyperplasia in a rabbit model. J Thorac Cardiovasc Surg 2019; 157(6): 2242-51.
[http://dx.doi.org/10.1016/j.jtcvs.2018.08.115] [PMID: 30447962]
[255]
Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther 2019; 34(1): 34.
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[256]
Song S, Johnson KS, Lujan H, Pradhan SH, Sayes CM, Taube JH. Nanoliposomal Delivery of MicroRNA-203 Suppresses Migration of Triple-Negative Breast Cancer through Distinct Target Suppression. Noncoding RNA 2021; 7(3): 45.
[http://dx.doi.org/10.3390/ncrna7030045] [PMID: 34449670]
[257]
Albakr L, Alqahtani FY, Aleanizy FS, et al. Improved delivery of miR-1296 loaded cationic nanoliposomes for effective suppression of triple negative breast cancer. Saudi Pharm J 2021; 29(5): 446-55.
[http://dx.doi.org/10.1016/j.jsps.2021.04.007] [PMID: 34135670]
[258]
Beg MS, Brenner AJ, Sachdev J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 2017; 35(2): 180-8.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[259]
Yan Y, Li XQ, Duan JL, et al. Nanosized functional miRNA liposomes and application in the treatment of TNBC by silencing Slug gene. Int J Nanomedicine 2019; 14: 3645-67.
[http://dx.doi.org/10.2147/IJN.S207837] [PMID: 31190817]
[260]
Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 129-37.
[http://dx.doi.org/10.1016/j.addr.2016.01.022] [PMID: 26900977]
[261]
Di Rocco G, Baldari S, Toietta G. Exosomes and other extracellular vesicles-mediated microRNA delivery for cancer therapy. Transl Cancer Res 2017; 6(S8): S1321-30.
[http://dx.doi.org/10.21037/tcr.2017.09.29]
[262]
Li X, Wang K, Ai H. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles inhibit endometrial cancer cell proliferation and migration through delivery of exogenous miR-302a. Stem cells international 2019; 2019: 8108576.
[http://dx.doi.org/10.1155/2019/8108576]
[263]
Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018; 67(3): 940-54.
[http://dx.doi.org/10.1002/hep.29586] [PMID: 29023935]
[264]
Naseri Z, Kazemi Oskuee R, Jaafari MR, Forouzandeh M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine 2018; 13: 7727-47.
[http://dx.doi.org/10.2147/IJN.S182384] [PMID: 30538455]
[265]
Zhang H, Bai M, Deng T, et al. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma. Cancer Lett 2016; 375(2): 331-9.
[http://dx.doi.org/10.1016/j.canlet.2016.03.026] [PMID: 27000664]
[266]
Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2(100): ra81.
[http://dx.doi.org/10.1126/scisignal.2000610] [PMID: 19996457]
[267]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[268]
Dasgupta I, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc 2021; 4(1): 10.
[http://dx.doi.org/10.3390/mps4010010] [PMID: 33498244]
[269]
Vandenberghe L, Wilson J. AAV as an immunogen. Curr Gene Ther 2007; 7(5): 325-33.
[http://dx.doi.org/10.2174/156652307782151416] [PMID: 17979679]
[270]
Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus- like particles. FEBS J 2012; 279(7): 1198-208.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08512.x] [PMID: 22309233]
[271]
Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors (Basel) 2019; 19(23): 5311.
[http://dx.doi.org/10.3390/s19235311] [PMID: 31810313]
[272]
Shi Z, Zhou Y, Fan T, Lin Y, Zhang H, Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Materials in Medicine 2020.
[http://dx.doi.org/10.1016/j.smaim.2020.05.002]
[273]
Assali A, Akhavan O, Adeli M, et al. Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Nanomedicine 2018; 14(6): 1891-903.
[http://dx.doi.org/10.1016/j.nano.2018.05.016] [PMID: 29885900]
[274]
Wang Y, Xie Y, Kilchrist KV, Li J, Duvall CL, Oupický D. Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy. ACS Appl Mater Interfaces 2020; 12(4): 4308-22.
[http://dx.doi.org/10.1021/acsami.9b21214] [PMID: 31939276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy