Review Article

揭示microrna在三阴性乳腺癌转移中的作用:从治疗到输送

卷 24, 期 6, 2023

发表于: 05 May, 2023

页: [509 - 520] 页: 12

弟呕挨: 10.2174/1389450124666230308154551

价格: $65

摘要

三阴性乳腺癌是恶性的异质肿瘤,组织学分级高,复发率高,癌症相关死亡率高。TNBC向脑、肺、肝和淋巴结的转移是一个复杂的过程,受上皮向间质转移、内渗、外渗、干细胞生态位和迁移的调节。mirna的异常表达,也被称为基因的转录调节因子,可能作为癌基因或肿瘤抑制因子。在这篇综述中,我们系统地阐明了miRNA在靶向TNBC细胞远处转移中的生物发生和肿瘤抑制作用,以及上述潜在的疾病复杂化机制。除了它们的治疗意义,mirna作为预后标志物的新角色也被讨论。为了克服递送瓶颈,RNA纳米颗粒、纳米金刚石、外泌体和介孔二氧化硅纳米颗粒介导的mirna递送已经被考虑。总之,本综述揭示了miRNA在对抗TNBC细胞远处转移中的潜在作用,并强调了其作为预后标志物的临床意义和可能的药物递送策略,以提高miRNA为基础的治疗对该疾病的可能结果。

关键词: miRNAs,转移,预后,治疗,输送,干细胞。

图形摘要
[1]
Hong HC, Chuang CH, Huang WC, et al. A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse. Theranostics 2020; 10(19): 8771-89.
[http://dx.doi.org/10.7150/thno.46142] [PMID: 32754277]
[2]
Thomsen KG, Terp MG, Lund RR, et al. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations. Oncotarget 2015; 6(30): 29224-39.
[http://dx.doi.org/10.18632/oncotarget.4942] [PMID: 26317550]
[3]
Li Y, Deng X, Zeng X, Peng X. The role of Mir-148a in cancer. J Cancer 2016; 7(10): 1233-41.
[http://dx.doi.org/10.7150/jca.14616] [PMID: 27390598]
[4]
Delgir S, Ilkhani K, Safi A, et al. The Expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with margin tissues of patients with breast cancer. BMC Med Genomics 2021; 14(1): 1-2.
[5]
Koleckova M, Janikova M, Kolar Z. MicroRNAs in triple-negative breast cancer. Neoplasma 2018; 65(1): 1-13.
[http://dx.doi.org/10.4149/neo_2018_170115N36] [PMID: 29322783]
[6]
Wu X, Ding M, Lin J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. Oncol Lett 2020; 19(1): 301-8.
[PMID: 31897142]
[7]
Angius A, Cossu-Rocca P, Arru C, et al. Modulatory Role of microRNAs in triple negative breast cancer with basal-like phenotype. Cancers (Basel) 2020; 12(11): 3298.
[http://dx.doi.org/10.3390/cancers12113298] [PMID: 33171872]
[8]
Mehrgou A, Akouchekian M. Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease. J Res Med Sci 2017; 22: 130.
[9]
Li J, Lai Y, Ma J, et al. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer 2017; 17(1): 745.
[http://dx.doi.org/10.1186/s12885-017-3674-x] [PMID: 29126392]
[10]
Gupta I, Rizeq B, Vranic S, Moustafa AEA, Al Farsi H. Circulating miRNAs in HER2-positive and triple negative breast cancers: Potential biomarkers and therapeutic targets. Int J Mol Sci 2020; 21(18): 6750.
[http://dx.doi.org/10.3390/ijms21186750] [PMID: 32942528]
[11]
Abdel-Sater F, Najar M, Fayyad-Kazan H. Triple negative breast cancer: MicroRNA expression profile and novel discriminators according to BRCA1 status. J Cell Physiol 2020; 235(6): 5204-12.
[http://dx.doi.org/10.1002/jcp.29398] [PMID: 31736084]
[12]
Mei J, Hao L, Wang H, et al. Systematic characterization of non- coding RNAs in triple-negative breast cancer. Cell Prolif 2020; 53(5): e12801.
[http://dx.doi.org/10.1111/cpr.12801] [PMID: 32249490]
[13]
Sabit H, Cevik E, Tombuloglu H, Abdel-Ghany S, Tombuloglu G, Esteller M. Triple negative breast cancer in the era of miRNA. Crit Rev Oncol Hematol 2021; 157: 103196.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103196] [PMID: 33307198]
[14]
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101(9): 2999-3004.
[http://dx.doi.org/10.1073/pnas.0307323101] [PMID: 14973191]
[15]
Cascione L, Gasparini P, Lovat F, et al. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One 2013; 8(2): e55910.
[http://dx.doi.org/10.1371/journal.pone.0055910] [PMID: 23405235]
[16]
Chang YY, Kuo WH, Hung JH, et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer 2015; 14(1): 36.
[http://dx.doi.org/10.1186/s12943-015-0301-9] [PMID: 25888956]
[17]
Cantini L, Bertoli G, Cava C, et al. Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res 2019; 47(5): 2205-15.
[http://dx.doi.org/10.1093/nar/gkz016] [PMID: 30657980]
[18]
D’Ippolito E, Iorio M. MicroRNAs and triple negative breast cancer. Int J Mol Sci 2013; 14(11): 22202-20.
[http://dx.doi.org/10.3390/ijms141122202] [PMID: 24284394]
[19]
Umeh-Garcia M, Simion C, Ho PY, et al. A novel bioengineered miR-127 prodrug suppresses the growth and metastatic potential of triple-negative breast cancer cells. Cancer Res 2020; 80(3): 418-29.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0656] [PMID: 31694904]
[20]
Tang Q, Ouyang H, He D, Yu C, Tang G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 2800-9.
[http://dx.doi.org/10.1080/21691401.2019.1638791] [PMID: 31284781]
[21]
Kabil N. miR-484 functions as an Onco-miR in triple negative breast cancer. 2018.
[22]
Balkrishna A, Mittal R, Arya V. Unveiling role of MicroRNAs as treatment strategy and prognostic markers in triple negative breast cancer. Curr Pharm Biotechnol 2020; 21(15): 1569-75.
[http://dx.doi.org/10.2174/1389201021666200627201535] [PMID: 32593278]
[23]
Althoff K, Lindner S, Odersky A, et al. miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin. Int J Cancer 2015; 136(6): 1308-20.
[http://dx.doi.org/10.1002/ijc.29091] [PMID: 25046253]
[24]
Phan B, Majid S, Ursu S, et al. Tumor suppressor role of microRNA-1296 in triple-negative breast cancer. Oncotarget 2016; 7(15): 19519-30.
[http://dx.doi.org/10.18632/oncotarget.6961] [PMID: 26799586]
[25]
Bayraktar R, Pichler M, Kanlikilicer P, et al. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget 2017; 8(7): 11641-58.
[http://dx.doi.org/10.18632/oncotarget.14264] [PMID: 28036267]
[26]
Dong L, Zhou D, Xin C, Liu B, Sun P. MicroRNA-139 suppresses the tumorigenicity of triple negative breast cancer cells by targeting SOX8. Cancer Manag Res 2020; 12: 9417-28.
[http://dx.doi.org/10.2147/CMAR.S268378] [PMID: 33061629]
[27]
Rhodes LV, Martin EC, Segar HC, et al. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget 2015; 6(18): 16638-52.
[http://dx.doi.org/10.18632/oncotarget.3184] [PMID: 26062653]
[28]
Wang J, Li M, Han X, et al. MiR-1976 knockdown promotes epithelial–mesenchymal transition and cancer stem cell properties inducing triple-negative breast cancer metastasis. Cell Death Dis 2020; 11(7): 500.
[http://dx.doi.org/10.1038/s41419-020-2711-x] [PMID: 32620748]
[29]
Han M, Wang Y, Liu M, et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 2012; 103(6): 1058-64.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02281.x] [PMID: 22435731]
[30]
Teo AYT, Xiang X, Le MTN, et al. Tiny miRNAs play a big role in the treatment of breast cancer metastasis. Cancers 2021; 13(2): 337.
[http://dx.doi.org/10.3390/cancers13020337] [PMID: 33477629]
[31]
Keklikoglou I, Koerner C, Schmidt C, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 2012; 31(37): 4150-63.
[http://dx.doi.org/10.1038/onc.2011.571] [PMID: 22158050]
[32]
Xu X, Zhang Y, Jasper J, et al. MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer. Oncotarget 2016; 7(15): 20381-94.
[http://dx.doi.org/10.18632/oncotarget.7953] [PMID: 26967387]
[33]
Yan M, Ye L, Feng X, et al. MicroRNA-590-3p inhibits invasion and metastasis in triple-negative breast cancer by targeting Slug. Am J Cancer Res 2020; 10(3): 965-74.
[PMID: 32266103]
[34]
Gan L, Yang H, Xiong Z, Yang Z, Wang T, Lyu G. miR-518a-3p suppresses triple-negative breast cancer invasion and migration through regulation of TMEM2. Technol Cancer Res Treat 2020; 19
[http://dx.doi.org/10.1177/1533033820977523] [PMID: 33251982]
[35]
Mekala JR, Naushad SM, Ponnusamy L, Arivazhagan G, Sakthiprasad V, Pal-Bhadra M. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene 2018; 641: 248-58.
[http://dx.doi.org/10.1016/j.gene.2017.10.018] [PMID: 29038000]
[36]
Chen H, Li Z, Zhang L, et al. MicroRNA-200c inhibits the metastasis of triple-negative breast cancer by targeting ZEB2, an epithelial-mesenchymal transition regulator. Ann Clin Lab Sci 2020; 50(4): 519-27.
[PMID: 32826250]
[37]
Qiao EQ, Yang HJ, Zhang XP. Screening of miRNAs associated with lymph node metastasis in Her-2-positive breast cancer and their relationship with prognosis. J Zhejiang Uni SCI B 2020; 21(6): 495-508.
[38]
Wang J, Song C, Tang H, et al. miR-629-3p may serve as a novel biomarker and potential therapeutic target for lung metastases of triple-negative breast cancer. Breast Cancer Res 2017; 19(1): 72.
[http://dx.doi.org/10.1186/s13058-017-0865-y] [PMID: 28629464]
[39]
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs orchestrate pathophysiology of breast cancer brain metastasis: Advances in therapy. Mol Cancer 2020; 19(1): 29.
[http://dx.doi.org/10.1186/s12943-020-1140-x] [PMID: 32059676]
[40]
Pan JK, Lin CH, Kuo YL, et al. MiR-211 determines brain metastasis specificity through SOX11/NGN2 axis in triple-negative breast cancer. Oncogene 2021; 40(9): 1737-51.
[http://dx.doi.org/10.1038/s41388-021-01654-3] [PMID: 33536579]
[41]
Dong Y, Qiu GB. Biological functions of miR-590 and its role in carcinogenesis. Front Lab Med 2017; 1(4): 173-6.
[http://dx.doi.org/10.1016/j.flm.2017.11.002]
[42]
Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F, Brinkmann U. The role of micro RNAs in breast cancer metastasis: preclinical validation and potential therapeutic targets. Cancer Genomics Proteomics 2018; 15(1): 17-39.
[PMID: 29275360]
[43]
Zografos E, Zagouri F, Kalapanida D, et al. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10(67): 7156-78.
[http://dx.doi.org/10.18632/oncotarget.27327] [PMID: 31903173]
[44]
Ding L, Gu H, Xiong X, et al. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance, and applications in human triple-negative breast cancer. Cells 2019; 8(12): 1492.
[http://dx.doi.org/10.3390/cells8121492] [PMID: 31766744]
[45]
AbdulAziz AA, MdSalleh MS, Mohamad I, Bhavaraju VMK, Gan SH, Ankathil R. microRNA expression and recurrence risk prediction in triple negative breast cancer patients. Ann Oncol 2017; 28: ix79.
[http://dx.doi.org/10.1093/annonc/mdx697.022]
[46]
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144(8): 1401-11.
[http://dx.doi.org/10.1007/s00432-018-2689-2] [PMID: 29923083]
[47]
Humphries B, Wang Z, Oom AL, et al. MicroRNA-200b targets protein kinase Cα and suppresses triple-negative breast cancer metastasis. Carcinogenesis 2014; 35(10): 2254-63.
[http://dx.doi.org/10.1093/carcin/bgu133] [PMID: 24925028]
[48]
Li D, Wang H, Song H, et al. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget 2017; 8(49): 85276-89.
[http://dx.doi.org/10.18632/oncotarget.19205] [PMID: 29156719]
[49]
Jang MH, Kim HJ, Gwak JM, Chung YR, Park SY. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum Pathol 2017; 68: 69-78.
[http://dx.doi.org/10.1016/j.humpath.2017.08.026] [PMID: 28882698]
[50]
Yao L, Liu Y, Cao Z, et al. MicroRNA-493 is a prognostic factor in triple-negative breast cancer. Cancer Sci 2018; 109(7): 2294-301.
[http://dx.doi.org/10.1111/cas.13644] [PMID: 29777630]
[51]
Terkelsen T, Russo F, Gromov P, et al. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22(1): 73.
[http://dx.doi.org/10.1186/s13058-020-01295-6] [PMID: 32605588]
[52]
Miller-Kleinhenz JM, Bozeman EN, Yang L. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(6): 797-816.
[http://dx.doi.org/10.1002/wnan.1343] [PMID: 25966677]
[53]
Shu D, Li H, Shu Y, et al. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 2015; 9(10): 9731-40.
[http://dx.doi.org/10.1021/acsnano.5b02471] [PMID: 26387848]
[54]
Yin H, Xiong G, Guo S, et al. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol Ther 2019; 27(7): 1252-61.
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[55]
Xia Y, Deng X, Cao M, et al. Nanodiamond-based layer-by-layer nanohybrids mediate targeted delivery of miR-34a for triple negative breast cancer therapy. RSC Advances 2018; 8(25): 13789-97.
[http://dx.doi.org/10.1039/C8RA00907D] [PMID: 35539318]
[56]
Gong C, Tian J, Wang Z, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology 2019; 17(1): 93.
[http://dx.doi.org/10.1186/s12951-019-0526-7] [PMID: 31481080]
[57]
Ahir M, Upadhyay P, Ghosh A, et al. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater Sci 2020; 8(10): 2939-54.
[http://dx.doi.org/10.1039/D0BM00015A] [PMID: 32319481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy