Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Lithium and Microorganisms: Biological Effects and Mechanisms

Author(s): Evgenii Plotnikov*, Dariya Pukhnyarskaya and Anna Chernova

Volume 24, Issue 13, 2023

Published on: 22 March, 2023

Page: [1623 - 1629] Pages: 7

DOI: 10.2174/1389201024666230302153849

Price: $65

Abstract

This review covers the lithium effects on microorganisms, including gut and soil bacteria. Available studies of the biological effects of lithium salts have revealed a wide range of different effects of lithium cations on various microorganisms, but so far, the study of this direction has not been summarized enough. Here we consider the confirmed and various plausible mechanisms of lithium action on microorganisms. Special emphasis is placed on assessing the effect of lithium ions under oxidative stress and adverse environmental conditions. The impact of lithium on the human microbiome is also being reviewed and discussed. Controversial effects of lithium have been shown, including the inhibitory and stimulating effects of lithium on bacterial growth.

Keywords: Lithium, bacteria, biological effect, inhibition, cytoprotection, microbiome, biotechnology.

Graphical Abstract
[1]
Davis, J.M.; Fann, W.E. Lithium. Annu. Rev. Pharmacol., 1971, 11(1), 285-302.
[http://dx.doi.org/10.1146/annurev.pa.11.040171.001441] [PMID: 4948500]
[2]
Birch, N.J. Inorganic pharmacology of lithium. Chem. Rev., 1999, 99(9), 2659-2682.
[http://dx.doi.org/10.1021/cr9804240] [PMID: 11749496]
[3]
Mikosha, A.S.; Kovzun, O.I.; Tronko, M.D. Biological effects of lithium – fundamental and medical aspects. Ukr. Biochem. J., 2017, 89(3), 5-16.
[http://dx.doi.org/10.15407/ubj89.03.005]
[4]
Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment - A literature review. Ecotoxicol. Environ. Saf., 2008, 70(3), 349-356.
[http://dx.doi.org/10.1016/j.ecoenv.2008.02.026] [PMID: 18456327]
[5]
Anke, M.; Arnhold, W.; Groppel, B.; Krause, U. The biological importance of lithium; Lithium Biol. Med, 1991, pp. 149-167.
[6]
Jakobsson, E.; Argüello-Miranda, O.; Chiu, S.W.; Fazal, Z.; Kruczek, J.; Nunez-Corrales, S.; Pandit, S.; Pritchet, L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol., 2017, 250(6), 587-604.
[http://dx.doi.org/10.1007/s00232-017-9998-2] [PMID: 29127487]
[7]
Tondo, L.; Alda, M.; Bauer, M.; Bergink, V.; Grof, P.; Hajek, T.; Lewitka, U.; Licht, R.W.; Manchia, M.; Müller-Oerlinghausen, B.; Nielsen, R.E.; Selo, M.; Simhandl, C.; Baldessarini, R.J. International group for studies of lithium (IGSLi). Clinical use of lithium salts: Guide for users and prescribers. Int. J. Bipolar Disord., 2019, 7(1), 16.
[http://dx.doi.org/10.1186/s40345-019-0151-2] [PMID: 31328245]
[8]
Plotnikov, E.Y.; Silachev, D.N.; Zorova, L.D.; Pevzner, I.B.; Jankauskas, S.S.; Zorov, S.D.; Babenko, V.A.; Skulachev, M.V.; Zorov, D.B. Lithium salts - Simple but magic. Biochemistry, 2014, 79(8), 740-749.
[http://dx.doi.org/10.1134/S0006297914080021] [PMID: 25365484]
[9]
Plotnikov, E.; Korotkova, E.; Voronova, O.; Dorozhko, E.; Bohan, N.; Plotnikov, S. Lithium-based antioxidants: Electrochemical properties and influence on immune cells. Physiol pharmacol., 2015, 19, 107-113.
[10]
Plotnikov, E.; Korotkova, E.; Voronova, O. Lithium salts of Krebs cycle substrates as potential normothymic antioxidant agents. J Pharm Bioall Sci., 10, 240-245.
[http://dx.doi.org/10.4103/JPBS.JPBS_140_18]
[11]
Galochkin, V.A.; Ostrenko, K.S.; Galochkina, V.P. Increasing the productivity of broilers due to lithium ascorbate. Poultry, 2018, 6, 28-32.
[12]
Birch, N.J. In: Lithium and the Cell: Pharmacology and Biochemistry; Academic Press: London, 1991.
[13]
Won, E.; Kim, Y.K. An oldie but goodie: Lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2679.
[http://dx.doi.org/10.3390/ijms18122679] [PMID: 29232923]
[14]
Zadeh-Haghighi, H.; Simon, C. Entangled radicals may explain lithium effects on hyperactivity. Sci. Rep., 2021, 11(1), 12121.
[http://dx.doi.org/10.1038/s41598-021-91388-9] [PMID: 34108537]
[15]
Nespital, T.; Neuhaus, B.; Mesaros, A.; Pahl, A.; Partridge, L. Lithium can mildly increase health during ageing but not lifespan in mice. Aging Cell, 2021, 20(10), e13479.
[http://dx.doi.org/10.1111/acel.13479] [PMID: 34532960]
[16]
Dudev, T.; Mazmanian, K.; Weng, W.H.; Grauffel, C.; Lim, C. Free and bound therapeutic lithium in brain signaling. Acc. Chem. Res., 2019, 52(10), 2960-2970.
[http://dx.doi.org/10.1021/acs.accounts.9b00389] [PMID: 31556294]
[17]
Espanhol, J.C.L.; Vieira-Coelho, M.A. Effects of lithium use on the white matter of patients with bipolar disorder - A systematic review. Nord. J. Psychiatry, 2022, 76(1), 1-11.
[http://dx.doi.org/10.1080/08039488.2021.1921264] [PMID: 33969798]
[18]
Gubert, C.; Andrejew, R.; Figueiro, F.; Bergamin, L.; Kapczinski, F.; Magalhães, P.V.S.; Battastini, A.M.O. Lithium-induced neuroprotective activity in neuronal and microglial cells: A purinergic perspective. Psychiatry Res., 2021, 295, 113562.
[http://dx.doi.org/10.1016/j.psychres.2020.113562] [PMID: 33213934]
[19]
Machado-Vieira, R. Lithium, stress, and resilience in bipolar disorder: Deciphering this key homeostatic synaptic plasticity regulator. J. Affect. Disord., 2018, 233, 92-99.
[http://dx.doi.org/10.1016/j.jad.2017.12.026] [PMID: 29310970]
[20]
Avila-Arias, H.; Nies, L.F.; Gray, M.B.; Turco, R.F. Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci. Total Environ., 2019, 652, 202-211.
[http://dx.doi.org/10.1016/j.scitotenv.2018.10.189] [PMID: 30366321]
[21]
Mehri, A. Trace elements in human nutrition (II) - An update. Int. J. Prev. Med., 2020, 11(1), 2.
[PMID: 32042399]
[22]
Martínez, F.L.; Orce, I.G.; Rajal, V.B.; Irazusta, V.P. Salar del Hombre Muerto, source of lithium-tolerant bacteria. Environ. Geochem. Health, 2019, 41(2), 529-543.
[http://dx.doi.org/10.1007/s10653-018-0148-2] [PMID: 29995192]
[23]
Naylor, C.E.; Bagnéris, C.; DeCaen, P.G.; Sula, A.; Scaglione, A.; Clapham, D.E.; Wallace, B.A. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J., 2016, 35(8), 820-830.
[http://dx.doi.org/10.15252/embj.201593285] [PMID: 26873592]
[24]
Maity, P.; Saha, B.; Kumar, G.S.; Karmakar, S. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes. Biochim. Biophys. Acta Biomembr., 2016, 1858(4), 706-714.
[http://dx.doi.org/10.1016/j.bbamem.2016.01.012] [PMID: 26802251]
[25]
Li, H.R.; Liu, W.M.; Cheng, S.J.; Jiang, Y. Effect of lithium on growth process of environmental microorganism by microcalorimetry and SEM. Adv. Mat. Res., 2014, 955-959, 445-449.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.955-959.445]
[26]
Plotnikov, E.V.; Martemyanov, D.V.; Mytnikov, A.V.; Korotkova, E.I.; Astashkina, A.P.; Voronova, O.A. Composition with antioxidant and antibacterial activity. Rus. Patent No. 2535140, 2014.
[27]
Ishag, H.Z.A.; Wu, Y.; Liu, M.; Xiong, Q.; Feng, Z.; Yang, R.; Shao, G. In vitro protective efficacy of Lithium chloride against Mycoplasma hyopneumoniae infection. Res. Vet. Sci., 2016, 106, 93-96.
[http://dx.doi.org/10.1016/j.rvsc.2016.03.013] [PMID: 27234543]
[28]
Chen, K.; Wu, Y.; Zhu, M.; Deng, Q.; Nie, X.; Li, M.; Wu, M.; Huang, X. Lithium chloride promotes host resistance against Pseudomonas aeruginosa keratitis. Mol. Vis., 2013, 19, 1502-1514.
[PMID: 23878501]
[29]
Harrison, S.M.; Tarpey, I.; Rothwell, L.; Kaiser, P.; Hiscox, J.A. Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture. Avian Pathol., 2007, 36(2), 109-114.
[http://dx.doi.org/10.1080/03079450601156083] [PMID: 17479370]
[30]
Feng, Z.V.; Miller, B.R.; Linn, T.G.; Pho, T.; Hoang, K.N.L.; Hang, M.N.; Mitchell, S.L.; Hernandez, R.T.; Carlson, E.E.; Hamers, R.J. Biological impact of nanoscale lithium intercalating complex metal oxides to model bacterium B. subtilis. Environ. Sci. Nano, 2019, 6(1), 305-314.
[http://dx.doi.org/10.1039/C8EN00995C] [PMID: 31572614]
[31]
Hang, M.N.; Gunsolus, I.L.; Wayland, H.; Melby, E.S.; Mensch, A.C.; Hurley, K.R.; Pedersen, J.A.; Haynes, C.L.; Hamers, R.J. Impact of nanoscale lithium nickel manganese cobalt oxide (NMC) on the bacterium Shewanella oneidensis MR-1. Chem. Mater., 2016, 28(4), 1092-1100.
[http://dx.doi.org/10.1021/acs.chemmater.5b04505]
[32]
Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf., 2000, 45(3), 198-207.
[http://dx.doi.org/10.1006/eesa.1999.1860] [PMID: 10702338]
[33]
Cubillos, C.F.; Aguilar, P.; Grágeda, M.; Dorador, C. Microbial communities from the World’s largest lithium reserve, Salar de Atacama, Chile: Life at high LiCl concentrations. J. Geophys. Res. Biogeosci., 2018, 123(12), 3668-3681.
[http://dx.doi.org/10.1029/2018JG004621]
[34]
Heydarian, A.; Mousavi, S.M.; Vakilchap, F.; Baniasadi, M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources, 2018, 378(28), 19-30.
[http://dx.doi.org/10.1016/j.jpowsour.2017.12.009]
[35]
Tsuruta, T. Removal and recovery of lithium using various microorganisms. J. Biosci. Bioeng., 2005, 100(5), 562-566.
[http://dx.doi.org/10.1263/jbb.100.562] [PMID: 16384797]
[36]
Davtyan, T.; Mkhitaryan, L.; Gabrielyan, E. Design of iodine-lithium-α-dextrin liquid crystal with potent antimicrobial and anti-inflammatory properties. Curr. Pharm. Des., 2009, 15(11), 1172-1186.
[http://dx.doi.org/10.2174/138161209787846829] [PMID: 19355958]
[37]
Bren, A.; Hart, Y.; Dekel, E.; Koster, D.; Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol., 2013, 7(1), 27.
[http://dx.doi.org/10.1186/1752-0509-7-27] [PMID: 23531321]
[38]
Motoi, Y.; Shimada, K.; Ishiguro, K.; Hattori, N. Lithium and autophagy. ACS Chem. Neurosci., 2014, 5(6), 434-442.
[http://dx.doi.org/10.1021/cn500056q] [PMID: 24738557]
[39]
Imlay, J.A. Diagnosing oxidative stress in bacteria: Not as easy as you might think. Curr. Opin. Microbiol., 2015, 24, 124-131.
[http://dx.doi.org/10.1016/j.mib.2015.01.004] [PMID: 25666086]
[40]
Porter, T.A. Effects of lithium on sediment microbial activity. J. Young Investig., 2010, 20.
[41]
Lv, Q.; Guo, Y.; Zhu, M.; Geng, R.; Cheng, X.; Bao, C.; Wang, Y.; Huang, X.; Zhang, C.; Hao, Y.; Li, Z.; Yi, Z. Predicting individual responses to lithium with oxidative stress markers in drug-free bipolar disorder. World J. Biol. Psychiatry, 2019, 20(10), 778-789.
[http://dx.doi.org/10.1080/15622975.2019.1663929] [PMID: 31595816]
[42]
Plotnikov, E.; Losenkov, I.; Epimakhova, E.; Bohan, N. Protective effects of pyruvic acid salt against lithium toxicity and oxidative damage in human blood mononuclear cells. Adv. Pharm. Bull., 2019, 9(2), 302-306.
[http://dx.doi.org/10.15171/apb.2019.035] [PMID: 31380257]
[43]
Epimakhova, E.; Losenkov, I.; Plotnikov, E.P. 459 Cytoprotective and antioxidant properties of lithium organic salts in peripheral blood mononuclear cells of patients with depressive disorders. Eur. Neuropsychopharmacol., 2019, 29(6), S325.
[http://dx.doi.org/10.1016/j.euroneuro.2019.09.471]
[44]
Plotnikov, E.; Voronova, O.; Linert, W.; Martemianov, D.; Korotkova, E.; Dorozhko, E.; Astashkina, A.; Martemianova, I.; Ivanova, S.; Bokhan, N. Antioxidant and immunotropic properties of some lithium salts. J. App. Pharm. Sci., 2016, 6(1), 086-089.
[45]
Wang, J.; Li, G.; Yin, H.; An, T. Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. Environ. Res., 2020, 185, 109451.
[http://dx.doi.org/10.1016/j.envres.2020.109451] [PMID: 32251912]
[46]
Lam, P.L.; Wong, R.S.M.; Lam, K.H.; Hung, L.K.; Wong, M.M.; Yung, L.H.; Ho, Y.W.; Wong, W.Y.; Hau, D.K.P.; Gambari, R.; Chui, C.H. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Biol. Interact., 2020, 320, 109023.
[http://dx.doi.org/10.1016/j.cbi.2020.109023] [PMID: 32097615]
[47]
Rodríguez-Rojas, A.; Kim, J.J.; Johnston, P.R.; Makarova, O.; Eravci, M.; Weise, C.; Hengge, R.; Rolff, J. Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress. PLoS Genet., 2020, 16(3), e1008649.
[http://dx.doi.org/10.1371/journal.pgen.1008649] [PMID: 32163413]
[48]
Chernova, A.P.; Plotnikov, E.V.; Birukov, M.M. Method for increasing productivity of Escherichia coli bacteria. Patent RU2707118, 2019.
[49]
Reith, P.; Braam, S.; Welkenhuysen, N.; Lecinski, S.; Shepherd, J.; MacDonald, C.; Leake, M.C.; Hohmann, S.; Shashkova, S.; Cvijovic, M. The effect of lithium on the budding yeast Saccharomyces cerevisiae upon stress adaptation. Microorganisms, 2022, 10(3), 590.
[http://dx.doi.org/10.3390/microorganisms10030590] [PMID: 35336166]
[50]
Umeda, K.; Shiota, S.; Futai, M.; Tsuchiya, T. Inhibitory effect of Li+ on cell growth and pyruvate kinase activity of Escherichia coli. J. Bacteriol., 1984, 160(2), 812-814.
[http://dx.doi.org/10.1128/jb.160.2.812-814.1984] [PMID: 6389501]
[51]
Poe, R.W.; Sangadala, V.S.; Brewer, J.M. Effects of various salts on the steady-state enzymatic activity of E. coli alkaline phosphatase. J. Inorg. Biochem., 1993, 50(3), 173-180.
[http://dx.doi.org/10.1016/0162-0134(93)80023-3] [PMID: 8501463]
[52]
Garcia-Olalla, C.; Garrido-Pertierra, A. Purification and kinetic properties of pyruvate kinase isoenzymes of Salmonella typhimurium. Biochem. J., 1987, 241(2), 573-581.
[http://dx.doi.org/10.1042/bj2410573] [PMID: 3297035]
[53]
Inaba, K.; Kuroda, T.; Shimamoto, T.; Kayahara, T.; Tsuda, M.; Tsuchiya, T. Lithium toxicity and Na+(Li+)/H+ antiporter in Escherichia coli. Biol. Pharm. Bull., 1994, 17(3), 395-398.
[http://dx.doi.org/10.1248/bpb.17.395] [PMID: 8019504]
[54]
Tsuchiya, T.; Yamane, Y.; Shiota, S.; Kawasaki, T. Cotransport of proline and Li+ in Escherichia coli. FEBS Lett., 1984, 168(2), 327-330.
[http://dx.doi.org/10.1016/0014-5793(84)80272-0] [PMID: 6327369]
[55]
Inaba, K.; Utsugi, J.; Kuroda, T.; Tsuda, M.; Tsuchiya, T. Na+(Li+)/H+ antiporter in Pseudomonas aeruginosa and effect of Li+ on cell growth. Biol. Pharm. Bull., 1997, 20(6), 621-624.
[http://dx.doi.org/10.1248/bpb.20.621] [PMID: 9212978]
[56]
Yamaguchi, A.; Yanai, M.; Tomiyama, N.; Sawai, T. Effects of magnesium and sodium ions on the outer membrane permeability of cephalosporins in Escherichia coli. FEBS Lett., 1986, 208(1), 43-47.
[http://dx.doi.org/10.1016/0014-5793(86)81528-9] [PMID: 3533634]
[57]
Markitziu, A.; Friedman, S.; Steinberg, D.; Sela, M.N. The in vitro effect of lithium on growth and adherence of Streptococcus mutans 6715. J. Trace Elem. Electrolytes Health Dis., 1988, 2(4), 199-203.
[PMID: 2980816]
[58]
Cox, L.J.; Dooley, D.; Beumer, R. Effect of lithium chloride and other inhibitors on the growth of Listeria spp. Food Microbiol., 1990, 7(4), 311-325.
[http://dx.doi.org/10.1016/0740-0020(90)90036-H]
[59]
Bingjun, Q.; Jung, J.; Zhao, Y. Impact of acidity and metal ion on the antibacterial activity and mechanisms of β- and α-chitosan.. Appl. Biochem. Biotechnol., 2015, 175(6), 2972-2985.
[http://dx.doi.org/10.1007/s12010-014-1413-1] [PMID: 25578156]
[60]
Ugbenyen, A.; Cosa, S.; Mabinya, L.; Babalola, O.O.; Aghdasi, F.; Okoh, A. Thermostable bacterial bioflocculant produced by Cobetia spp. isolated from Algoa Bay (South Africa). Int. J. Environ. Res. Public Health, 2012, 9(6), 2108-2120.
[http://dx.doi.org/10.3390/ijerph9062108] [PMID: 22829793]
[61]
Ge, W.; Jakobsson, E. Systems biology understanding of the effects of lithium on cancer. Front. Oncol., 2019, 9, 296.
[http://dx.doi.org/10.3389/fonc.2019.00296] [PMID: 31114752]
[62]
Li, Z.; Stieglitz, K.A.; Shrout, A.L.; Wei, Y.; Weis, R.M.; Stec, B.; Roberts, M.F. Mobile loop mutations in an archaeal inositol monophosphatase: Modulating three-metal ion assisted catalysis and lithium inhibition. Protein Sci., 2010, 19(2), 309-318.
[http://dx.doi.org/10.1002/pro.315] [PMID: 20027624]
[63]
Lopez, F.; Leube, M.; Gil-Mascarell, R.; Navarro-Aviñó, J.P.; Serrano, R. The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair. Mol. Microbiol., 1999, 31(4), 1255-1264.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01267.x] [PMID: 10096091]
[64]
Asensio, J.; Ruiz-Argüeso, T.; Rodríguez-Navarro, A. Sensitivity of yeasts to lithium. Antonie van Leeuwenhoek, 1976, 42(1-2), 1-8.
[http://dx.doi.org/10.1007/BF00399443] [PMID: 782357]
[65]
Masuda, C.A.; Xavier, M.A.; Mattos, K.A.; Galina, A.; Montero-Lomelí, M. Phosphoglucomutase is an in vivo lithium target in yeast. J. Biol. Chem., 2001, 276(41), 37794-37801.
[http://dx.doi.org/10.1074/jbc.M101451200] [PMID: 11500487]
[66]
Csutora, P.; Strassz, A.; Boldizsár, F.; Németh, P.; Sipos, K.; Aiello, D.P.; Bedwell, D.M.; Miseta, A. Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae. Am. J. Physiol. Cell Physiol., 2005, 289(1), C58-C67.
[http://dx.doi.org/10.1152/ajpcell.00464.2004] [PMID: 15703203]
[67]
Petrezselyova, S.; Zahradka, J.; Sychrova, H. Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance. Fungal Biol., 2010, 114(2-3), 144-150.
[http://dx.doi.org/10.1016/j.funbio.2009.11.002] [PMID: 20960970]
[68]
Groisman, E.A.; Hollands, K.; Kriner, M.A.; Lee, E.J.; Park, S.Y.; Pontes, M.H. Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet., 2013, 47(1), 625-646.
[http://dx.doi.org/10.1146/annurev-genet-051313-051025] [PMID: 24079267]
[69]
Rudolph, W.; Brooker, M.H.; Pye, C.C. Hydration of lithium ion in aqueous solutions. J. Phys. Chem., 1995, 99(11), 3793-3797.
[http://dx.doi.org/10.1021/j100011a055]
[70]
Loeffler, H.H.; Rode, B.M. The hydration structure of the lithium ion. J. Chem. Phys., 2002, 117(1), 110-117.
[http://dx.doi.org/10.1063/1.1480875]
[71]
Chandrangsu, P.; Rensing, C.; Helmann, J.D. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol., 2017, 15(6), 338-350.
[http://dx.doi.org/10.1038/nrmicro.2017.15] [PMID: 28344348]
[72]
Flowers, S.A.; Ward, K.M.; Clark, C.T. The gut microbiome in bipolar disorder and pharmacotherapy management. Neuropsychobiology, 2020, 79(1), 43-49.
[http://dx.doi.org/10.1159/000504496] [PMID: 31722343]
[73]
Dempsey, J.L.; Little, M.; Cui, J.Y. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology, 2019, 75, 41-69.
[http://dx.doi.org/10.1016/j.neuro.2019.08.005] [PMID: 31454513]
[74]
Rhee, S.J.; Kim, H.; Lee, Y.; Lee, H.J.; Park, C.H.K.; Yang, J.; Kim, Y.K.; Kym, S.; Ahn, Y.M. Comparison of serum microbiome composition in bipolar and major depressive disorders. J. Psychiatr. Res., 2020, 123, 31-38.
[http://dx.doi.org/10.1016/j.jpsychires.2020.01.004] [PMID: 32028208]
[75]
Cussotto, S.; Strain, C.R.; Fouhy, F.; Strain, R.G.; Peterson, V.L.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology, 2019, 236(5), 1671-1685.
[http://dx.doi.org/10.1007/s00213-018-5006-5] [PMID: 30155748]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy