Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Chimeric Antigen Receptor T-cell Therapy in Cancer: A Critical Review

Author(s): Ravikant Sharma, Lalitha Suravarjhula, Madhuparna Banerjee, Gautam Kumar and Nitesh Kumar*

Volume 15, Issue 3, 2023

Published on: 21 March, 2023

Page: [241 - 261] Pages: 21

DOI: 10.2174/2589977515666230220092125

Price: $65

Open Access Journals Promotions 2
Abstract

Targeted cancer therapy acts on targeted molecules, is less toxic to normal cells, and acts more specifically on cancer cells. The two primary strategies for preventing malignancy growth are the blocking of T-cell repression signals or forwarding of T-cell to tumor target with both T and tumor-specific antibodies. The CAR comprises three domains, the extracellular antigen recognition domain and the intracellular T-cell signaling domain, which participate in activating T-cells. The two most common adverse effects of CAR T-cell treatment are cytokine release syndrome (CRS) and cell-associated neurotoxicity syndrome (CANS). The adaptability of intracellular signaling domains inside CARs allows the cell to counterbalance the downregulation of costimulatory molecules produced by tumor cells, either indirectly or directly. The major disadvantage of CAR-T cell therapy is off-target toxicity. Treatment with CARs expressing CD3, CD123, Lewis Y, CLL-1, CD44v6, FLT3, and folate receptors showed promising results in preclinical models of acute myeloid leukemia (AML). A recent study has revealed that B7-H3 CART cells exhibit significant anticancer efficacy in a variety of solid tumor preclinical models, including PDAC, ovarian cancer, neuroblastoma, and various pediatric malignancies. The notion of SUPRA CAR, with its unique capacity to alter targets without the need to re-engineer, is a recent innovation in CAR. Given the importance of NK cells in tumor development and metastatic defence, NK cell-based immunotherapies, including adoptive transfer of NK cells, have garnered a lot of interest. With the advancement of improved cellular manufacturing methods, novel cellular engineering strategies, precision genome editing technologies, and combination therapy approaches, we firmly believe that CAR-T cells will soon become an off-the-shelf, cost-effective, and potentially curative therapy for oncogenesis.

Keywords: CAR-T Cell, CD3, CD28, CD19, bispecific T-cell products, cancer.

Graphical Abstract
[1]
Echeverry G, Fischer GW, Mead E. Next generation of cancer treatments. Anesth Analg 2019; 129(2): 434-41.
[http://dx.doi.org/10.1213/ANE.0000000000004201] [PMID: 31124841]
[2]
Agadjanyan MG, Kim JJ, Trivedi N, et al. CD86 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses In Vivo. J Immunol 1999; 162(6): 3417-27.
[http://dx.doi.org/10.4049/jimmunol.162.6.3417] [PMID: 10092797]
[3]
Aleksic M, Liddy N, Molloy PE, et al. Different affinity windows for virus and cancer-specific T-cell receptors: Implications for therapeutic strategies. Eur J Immunol 2012; 42(12): 3174-9.
[http://dx.doi.org/10.1002/eji.201242606] [PMID: 22949370]
[4]
Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res 2017; 27(1): 38-58.
[http://dx.doi.org/10.1038/cr.2016.154] [PMID: 28025979]
[5]
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024-8.
[http://dx.doi.org/10.1073/pnas.86.24.10024] [PMID: 2513569]
[6]
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90(2): 720-4.
[http://dx.doi.org/10.1073/pnas.90.2.720] [PMID: 8421711]
[7]
Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-cd19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol 2017; 35(16): 1803-13.
[http://dx.doi.org/10.1200/JCO.2016.71.3024]
[8]
Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell lymphoma. N Engl J Med 2019; 380(1): 45-56.
[http://dx.doi.org/10.1056/NEJMoa1804980] [PMID: 30501490]
[9]
Borgert R. Improving outcomes and mitigating costs associated with CAR T-cell therapy. Am J Manag Care 2021; 27(13): S253-61.
[PMID: 34407361]
[10]
Asmamaw Dejenie T. Tiruneh G/Medhin M, Dessie Terefe G, Tadele Admasu F, Wale Tesega W, Chekol Abebe E. Current updates on generations, approvals, and clinical trials of CAR T-Cell therapy. Hum Vaccines Immunother 2022; 18(6): 2114254.
[11]
Kerkar SP, Muranski P, Kaiser A, et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lym-phodepleted hosts. Cancer Res 2010; 70(17): 6725-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0735] [PMID: 20647327]
[12]
Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 2014; 257(1): 83-90.
[http://dx.doi.org/10.1111/imr.12125] [PMID: 24329791]
[13]
Dustin ML, Choudhuri K. Signaling and polarized communication across the T Cell immunological synapse. Annu Rev Cell Dev Biol 2016; 32(1): 303-25.
[http://dx.doi.org/10.1146/annurev-cellbio-100814-125330] [PMID: 27501450]
[14]
Monks CRF, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395(6697): 82-6.
[http://dx.doi.org/10.1038/25764] [PMID: 9738502]
[15]
Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 2006; 443(7110): 462-5.
[http://dx.doi.org/10.1038/nature05071] [PMID: 17006514]
[16]
Kägi D, Ledermann B, Bürki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369(6475): 31-7.
[http://dx.doi.org/10.1038/369031a0] [PMID: 8164737]
[17]
Stalder T, Hahn S, Erb P. Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol 1994; 152(3): 1127-33.
[http://dx.doi.org/10.4049/jimmunol.152.3.1127] [PMID: 7507960]
[18]
Yasukawa M, Ohminami H, Arai J, Kasahara Y, Ishida Y, Fujita S. Granule exocytosis, and not the Fas/Fas ligand system, is the main pathway of cytotoxicity mediated by alloantigen-specific CD4+ as well as CD8+ cytotoxic T lymphocytes in humans. Blood 2000; 95(7): 2352-5.
[http://dx.doi.org/10.1182/blood.V95.7.2352.007k40_2352_2355] [PMID: 10733506]
[19]
Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malig-nancies. Blood 2015; 126(8): 983-92.
[http://dx.doi.org/10.1182/blood-2015-02-629527] [PMID: 26056165]
[20]
Peter ME, Hadji A, Murmann AE, et al. The role of CD95 and CD95 ligand in cancer. Cell Death Differ 2015; 22(4): 549-59.
[http://dx.doi.org/10.1038/cdd.2015.3] [PMID: 25656654]
[21]
Walczak H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol 2013; 5(5): a008698.
[22]
Waring P, Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol Cell Biol 1999; 77(4): 312-7.
[http://dx.doi.org/10.1046/j.1440-1711.1999.00837.x] [PMID: 10457197]
[23]
Kagoya Y, Tanaka S, Guo T, et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior anti-tumor effects. Nat Med 2018; 24(3): 352-9.
[http://dx.doi.org/10.1038/nm.4478] [PMID: 29400710]
[24]
Fry TJ, Shah NN, Orentas RJ, et al. C.L. CD22-Targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2017; 24: 20-8.
[25]
viaud S, Ma JSY, Hardy IR, et al. Switchable control over In Vivo CAR T expansion, B cell depletion, and induction of memory. Proc Natl Acad Sci USA 2018; 115(46): E10898-906.
[http://dx.doi.org/10.1073/pnas.1810060115] [PMID: 30373813]
[26]
Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T Cell responses. Cell 2018; 173(6): 1426-1438.e11.
[http://dx.doi.org/10.1016/j.cell.2018.03.038] [PMID: 29706540]
[27]
Ramos CA, Heslop HE, Brenner MK. CAR-T cell therapy for lymphoma. Annu Rev Med 2016; 67(1): 165-83.
[http://dx.doi.org/10.1146/annurev-med-051914-021702] [PMID: 26332003]
[28]
Bonini C, Mondino A. Adoptive T-cell therapy for cancer: The era of engineered T cells. Eur J Immunol 2015; 45(9): 2457-69.
[http://dx.doi.org/10.1002/eji.201545552] [PMID: 26202766]
[29]
Catalán E, Charni S, Jaime P, et al. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. OncoImmunology 2015; 4(1): e985924.
[http://dx.doi.org/10.4161/2162402X.2014.985924] [PMID: 25949869]
[30]
Duong CPM, Yong CSM, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Mol Immunol 2015; 67(2): 46-57.
[http://dx.doi.org/10.1016/j.molimm.2014.12.009] [PMID: 25595028]
[31]
Hillerdal V, Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs 2015; 29(2): 75-89.
[http://dx.doi.org/10.1007/s40259-015-0122-9] [PMID: 25859858]
[32]
Svane IM, Verdegaal EM. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: What is needed to achieve standard of care? Cancer Immunol Immunother 2014; 63(10): 1081-91.
[http://dx.doi.org/10.1007/s00262-014-1580-5] [PMID: 25099366]
[33]
Mechanisms of Resistance to NK Cell Immunotherapy Cancers 2020; 12.
[34]
Lee Y-H, Kim CH. Evolution of chimeric antigen receptor (CAR) T cell therapy: Current status and future perspectives. Arch Pharmacal Res 2019; 42: 607-16.
[35]
Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol 2019; 37(12): 1425-34.
[http://dx.doi.org/10.1038/s41587-019-0137-8] [PMID: 31160723]
[36]
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17(6): 600-12.
[http://dx.doi.org/10.1038/s41423-020-0470-3] [PMID: 32451454]
[37]
Heuser C, Hombach A, Lösch C, Manista K, Abken H. T-cell activation by recombinant immunoreceptors: Impact of the intracellular signalling domain on the stability of receptor expression and antigen-specific activation of grafted T cells. Gene Ther 2003; 10(17): 1408-19.
[http://dx.doi.org/10.1038/sj.gt.3302023] [PMID: 12900755]
[38]
Brocker T, Karjalainen K. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J Exp Med 1995; 181(5): 1653-9.
[http://dx.doi.org/10.1084/jem.181.5.1653] [PMID: 7722445]
[39]
Mak TW, Saunders ME. T Cell activation The Immune Response. Amsterdam: Elsevier 2006; pp. 373-401.
[40]
A safe and potent Anti-CD19 CAR T cell therapy. Nat Med 2019; 25: 947-53.
[41]
Wu Y, Yu XZ. Modelling CAR-T therapy in humanized mice. EBioMedicine 2019; 40: 25-6.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.029] [PMID: 30665855]
[42]
Duong MT, Collinson-Pautz MR, Morschl E, et al. Two-dimensional regulation of CAR-T cell therapy with orthogonal switches. Mol Ther Oncolytics 2019; 12: 124-37.
[http://dx.doi.org/10.1016/j.omto.2018.12.009] [PMID: 30740516]
[43]
Tasian SK. Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: How far up the road have we traveled? Ther Adv Hematol 2018; 9(6): 135-48.
[http://dx.doi.org/10.1177/2040620718774268] [PMID: 29899889]
[44]
B7-H4 Is inversely correlated with T-cell infiltration in clear cell but not serous or endometrioid ovarian cancer. Appl Immunohistochem Mol Morphol AIMM 2019; 27: 515-22.
[http://dx.doi.org/10.1097/PAI.0000000000000608] [PMID: 29189263]
[45]
Wei J, Guo Y, Wang Y, et al. Clinical development of CAR T cell therapy in China: 2020 update. Cell Mol Immunol 2021; 18(4): 792-804.
[http://dx.doi.org/10.1038/s41423-020-00555-x] [PMID: 32999455]
[46]
Guo ZS, Lotze MT, Zhu Z, Storkus WJ, Song XT. Bi- and tri-specific T Cell engager-armed oncolytic viruses: Next-generation cancer immunotherapy. Biomedicines 2020; 8(7): 204.
[http://dx.doi.org/10.3390/biomedicines8070204] [PMID: 32664210]
[47]
Tang X, Zhao S, Zhang Y, et al. B7-H3 as a novel CAR-T therapeutic target for glioblastoma. Mol Ther Oncolytics 2019; 14: 279-87.
[http://dx.doi.org/10.1016/j.omto.2019.07.002] [PMID: 31485480]
[48]
Collins M, Ling V, Carreno BM. The B7 family of immune-regulatory ligands. Genome Biol 2005; 6(6): 223.
[http://dx.doi.org/10.1186/gb-2005-6-6-223] [PMID: 15960813]
[49]
Majzner RG, Theruvath JL, Nellan A, et al. CAR T Cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 2019; 25(8): 2560-74.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0432] [PMID: 30655315]
[50]
Du H, Hirabayashi K, Ahn S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting b7-h3 via chimeric antigen receptor T cells. Cancer Cell 2019; 35(2): 221-237.e8.
[http://dx.doi.org/10.1016/j.ccell.2019.01.002] [PMID: 30753824]
[51]
Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin Cancer Res 2016; 22(14): 3425-31.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2428] [PMID: 27208063]
[52]
Yang D, Sun B, Dai H, et al. T cells expressing NKG2D chimeric antigen receptors efficiently eliminate glioblastoma and cancer stem cells. J Immunother Cancer 2019; 7(1): 171.
[http://dx.doi.org/10.1186/s40425-019-0642-9] [PMID: 31288857]
[53]
Stevens BM, Zhang W, Pollyea DA, et al. CD123 CAR T cells for the treatment of myelodysplastic syndrome. Exp Hematol 2019; 74: 52-63.e3.
[http://dx.doi.org/10.1016/j.exphem.2019.05.002] [PMID: 31136781]
[54]
Georgiadis C, Preece R, Nickolay L, et al. Long terminal repeat crispr-car-coupled “Universal” T Cells mediate potent anti-leukemic effects. Mol Ther 2018; 26(5): 1215-27.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.025] [PMID: 29605708]
[55]
Mehravar M, Roshandel E, Salimi M, et al. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226: 71-82.
[http://dx.doi.org/10.1016/j.imlet.2020.07.003] [PMID: 32687855]
[56]
Danylesko I, Chowers G, Shouval R, et al. Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia. Curr Res Transl Med 2020; 68(1): 17-22.
[http://dx.doi.org/10.1016/j.retram.2019.12.001] [PMID: 31882377]
[57]
Tahmasebi S, Elahi R, Khosh E, Esmaeilzadeh A. Programmable and multi-targeted CARs: A new breakthrough in cancer CAR-T cell therapy. Clin Transl Oncol 2021; 23(6): 1003-19.
[http://dx.doi.org/10.1007/s12094-020-02490-9] [PMID: 32997278]
[58]
Kuhn NF, Purdon TJ, van Leeuwen DG, et al. CD40 ligand-modified chimeric antigen receptor T Cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 2019; 35(3): 473-488.e6.
[http://dx.doi.org/10.1016/j.ccell.2019.02.006] [PMID: 30889381]
[59]
Wenthe J, Naseri S, Labani-Motlagh A, et al. Boosting CAR T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunol Immunother 2021; 70(10): 2851-65.
[http://dx.doi.org/10.1007/s00262-021-02895-7] [PMID: 33666760]
[60]
Thomas S, Straathof K, Himoudi N, Anderson J, Pule M. An optimized GD2-Targeting retroviral cassette for more potent and safer cellular therapy of neuroblastoma and other cancers. PLoS One 2016; 11(3): e0152196.
[http://dx.doi.org/10.1371/journal.pone.0152196] [PMID: 27030986]
[61]
Richards RM, Sotillo E, Majzner RG. CAR T cell therapy for neuroblastoma. Front Immunol 2018; 9: 2380.
[http://dx.doi.org/10.3389/fimmu.2018.02380] [PMID: 30459759]
[62]
Rodrigues JG, Balmaña M, Macedo JA, et al. Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333: 46-57.
[http://dx.doi.org/10.1016/j.cellimm.2018.03.007] [PMID: 29576316]
[63]
Tong G, Xu W, Zhang G, et al. The role of tissue and serum carcinoembryonic antigen in stages I to III of colorectal cancer-A retrospective cohort study. Cancer Med 2018; 7(11): 5327-38.
[http://dx.doi.org/10.1002/cam4.1814] [PMID: 30302946]
[64]
Chi X, Yang P, Zhang E, et al. Significantly increased anti‐tumor activity of carcinoembryonic antigen‐specific chimeric antigen receptor T cells in combination with recombinant human IL‐12. Cancer Med 2019; 8(10): 4753-65.
[http://dx.doi.org/10.1002/cam4.2361] [PMID: 31237116]
[65]
Valentino MA, Lin JE, Snook AE, et al. A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest 2011; 121(9): 3578-88.
[http://dx.doi.org/10.1172/JCI57925] [PMID: 21865642]
[66]
Aka AA, Rappaport JA, Pattison AM, Sato T, Snook AE, Waldman SA. Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Rev Clin Pharmacol 2017; 10(5): 549-57.
[http://dx.doi.org/10.1080/17512433.2017.1292124] [PMID: 28162021]
[67]
Frick GS, Pitari GM, Weinberg DS, Hyslop T, Schulz S, Waldman SA. Guanylyl cyclase C: A molecular marker for staging and postoperative surveillance of patients with colorectal cancer. Expert Rev Mol Diagn 2005; 5(5): 701-13.
[http://dx.doi.org/10.1586/14737159.5.5.701] [PMID: 16149873]
[68]
Dhar P, Wu JD. NKG2D and its ligands in cancer. Curr Opin Immunol 2018; 51: 55-61.
[http://dx.doi.org/10.1016/j.coi.2018.02.004] [PMID: 29525346]
[69]
Antonangeli F, Soriani A, Cerboni C, Sciumè G, Santoni A. How mucosal epithelia deal with stress: Role of NKG2D/NKG2D ligands during inflammation. Front Immunol 2017; 8: 1583.
[http://dx.doi.org/10.3389/fimmu.2017.01583] [PMID: 29209320]
[70]
Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 2013; 31(1): 413-41.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095951] [PMID: 23298206]
[71]
Waghray M, Yalamanchili M, Magliano MP, Simeone DM. Deciphering the role of stroma in pancreatic cancer. Curr Opin Gastroenterol 2013; 29(5): 537-43.
[http://dx.doi.org/10.1097/MOG.0b013e328363affe] [PMID: 23892539]
[72]
Sun Q, Zhou S, Zhao J, et al. Engineered T lymphocytes eliminate lung metastases in models of pancreatic cancer. Oncotarget 2018; 9(17): 13694-705.
[http://dx.doi.org/10.18632/oncotarget.24122] [PMID: 29568387]
[73]
Cherkassky L, Morello A, Villena-Vargas J, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016; 126(8): 3130-44.
[http://dx.doi.org/10.1172/JCI83092] [PMID: 27454297]
[74]
Agarwal S, June CH, Harnessing CAR. T-cell insights to develop treatments for hyperinflammatory responses in patients with COVID-19. Cancer Discov 2020; 10(6): 775-8.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0473] [PMID: 32303509]
[75]
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T cell therapy beyond oncology: Auto-immune diseases and viral infections. Biomedicines 2021; 9(1): 59.
[http://dx.doi.org/10.3390/biomedicines9010059] [PMID: 33435454]
[76]
Hu Y, Tan E, Yin S, Yang Y, Wu H. COVID-19 treatment: Close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int J Antimicrob Agents 2020.
[77]
Ortiz de Landazuri I, Egri N, Muñoz-Sánchez G, et al. Manufacturing and management of CAR T-cell therapy in “COVID-19’s Time”: Central versus point of care proposals. Front Immunol 2020; 11: 573179.
[http://dx.doi.org/10.3389/fimmu.2020.573179] [PMID: 33178200]
[78]
Khan H, Sureda A, Belwal T, et al. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 2019; 18(7): 647-57.
[http://dx.doi.org/10.1016/j.autrev.2019.05.001] [PMID: 31059841]
[79]
Sustained B cell depletion by CD19-Targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med 2019; 11.
[80]
Chen Y, Sun J, Liu H, Yin G, Xie Q. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. J Immunol Res 2019; 5727516.
[http://dx.doi.org/10.1155/2019/5727516]
[81]
Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor t cells for targeted therapy of autoimmune disease. Science 2016; 353: 179-84.
[82]
Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20(1): 62-8.
[http://dx.doi.org/10.1038/nm.3432] [PMID: 24362934]
[83]
Titov A, Valiullina A, Zmievskaya E, et al. Advancing CAR T-Cell therapy for solid tumors: Lessons learned from lymphoma treatment. Cancers (Basel) 2020; 12(1): 125.
[http://dx.doi.org/10.3390/cancers12010125] [PMID: 31947775]
[84]
Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J 2021; 11: 1-11.
[85]
Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2017; 4: 92-101.
[http://dx.doi.org/10.1016/j.omtm.2016.12.006] [PMID: 28344995]
[86]
Gardner R, Finney O, Smithers H, et al. CD19CAR T cell products of defined CD4:CD8 composition and transgene expression show prolonged persistence and durable MRD-Negative remission in pediatric and young adult B-Cell ALL. Blood 2016; 128(22): 219.
[http://dx.doi.org/10.1182/blood.V128.22.219.219]
[87]
Sotillo E, Barrett DM, Black KL, et al. convergence of Acquired Mutations and Alternative Splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015; 5(12): 1282-95.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1020] [PMID: 26516065]
[88]
Zhu H, Deng H, Mu J, Lyu C, Jiang Y, Deng Q. Anti-CD22 CART Cell therapy as a salvage treatment in B Cell malignancies refractory or relapsed after Anti-CD19 CAR-T therapy. OncoTargets Ther 2021; 14: 4023-37.
[http://dx.doi.org/10.2147/OTT.S312904] [PMID: 34239307]
[89]
FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. 2018.
[90]
CAR T Cell Toxicity: Current management and future directions. HemaSphere 2019; 3.
[91]
Locke FL, Neelapu SS, Bartlett NL, et al. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory,aggressive non-hodgkin lymphoma (NHL). Blood 2017; 130 (Suppl. 1): 1547-7.
[http://dx.doi.org/10.1182/blood.V130.Suppl_1.1547.1547]
[92]
chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: Clinical perspective and significance. J Immunother Cancer 2018; 6(1): 137.
[93]
Lei W, Xie M, Jiang Q, et al. Treatment-related adverse events of chimeric antigen receptor T-Cell (CAR T) in clinical trials: A systematic review and meta-analysis. Cancers 2021; 13: 3912.
[94]
Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagen-lecleucel. J Hematol Oncol 2018; 11: 1-12.
[95]
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[96]
Neelapu SS, Tummala S, Kebriaei P, et al. Toxicity management after chimeric antigen receptor T Cell therapy: One size does not fit “ALL”. Nat Rev Clin Oncol 2018; 15: 218-8.
[97]
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439-48.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[98]
Park JH, Rivière I, Gonen M, et al. Long-Term Follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449-59.
[http://dx.doi.org/10.1056/NEJMoa1709919] [PMID: 29385376]
[99]
Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018; 8(8): 958-71.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1319] [PMID: 29880584]
[100]
Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med 2017; 377(26): 2531-44.
[http://dx.doi.org/10.1056/NEJMoa1707447] [PMID: 29226797]
[101]
Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020; 396(10254): 839-52.
[http://dx.doi.org/10.1016/S0140-6736(20)31366-0] [PMID: 32888407]
[102]
Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020; 382(14): 1331-42.
[http://dx.doi.org/10.1056/NEJMoa1914347] [PMID: 32242358]
[103]
Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-Cell selection affects chimeric antigen receptor (CAR) T-Cell potency and toxicity: Updated results from a phase I Anti-CD22 CAR T-Cell trial. J Clin Oncol 2020; 38(17): 1938-50.
[http://dx.doi.org/10.1200/JCO.19.03279] [PMID: 32286905]
[104]
Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 2018; 11(1): 141.
[http://dx.doi.org/10.1186/s13045-018-0681-6] [PMID: 30572922]
[105]
Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126(6): 2123-38.
[http://dx.doi.org/10.1172/JCI85309] [PMID: 27111235]
[106]
Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33(6): 540-9.
[http://dx.doi.org/10.1200/JCO.2014.56.2025] [PMID: 25154820]
[107]
Neelapu SS. Managing the toxicities of CAR T‐cell therapy. Hematol Oncol 2019; 37 (Suppl. 1): 48-52.
[http://dx.doi.org/10.1002/hon.2595] [PMID: 31187535]
[108]
Wei J, Liu Y, Wang C, et al. The model of cytokine release syndrome in CAR T-Cell treatment for B-Cell non-hodgkin lymphoma. Signal Transduct Target Ther 2020; 5: 1-9.
[109]
Chabannon C, Kuball J, Mcgrath E, et al. CAR-T cells: The narrow path between hope and bankruptcy? Bone Marrow Transplant 2017; 52(12): 1588-9.
[http://dx.doi.org/10.1038/bmt.2017.241] [PMID: 29209061]
[110]
Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 2020; 19(3): 169-84.
[http://dx.doi.org/10.1038/s41573-019-0038-z] [PMID: 31492944]
[111]
Long-term safety and activity of axicabtagene ciloleucel in refractory large B-Cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. Lancet Oncol 2019; 20: 31-42.
[112]
Cordeiro A, Bezerra ED, Hirayama AV, et al. Late events after treatment with CD19-Targeted chimeric antigen receptor modified T cells. Biol Blood Marrow Transplant 2020; 26(1): 26-33.
[http://dx.doi.org/10.1016/j.bbmt.2019.08.003] [PMID: 31419568]
[113]
LJ. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-Cell lymphoma: Results from the US lymphoma CAR T consortium. J Clin Oncol 2020; 38: 3119-28.
[114]
Pasquini MC, Locke FL, Herrera AF, et al. Post-marketing use outcomes of an anti-cd19 chimeric antigen receptor (CAR) T Cell therapy, axicabtagene ciloleucel (Axi-Cel), for the treatment of large B Cell lymphoma (LBCL) in the United States (US). Blood 2019; 134 (Suppl. 1): 764-4.
[http://dx.doi.org/10.1182/blood-2019-124750]
[115]
Hill JA, Li D, Hay KA, et al. Infectious complications of CD19-targeted chimeric antigen receptor–modified T-cell immunotherapy. Blood 2018; 131(1): 121-30.
[http://dx.doi.org/10.1182/blood-2017-07-793760] [PMID: 29038338]
[116]
European Medicines Agency 2018.
[117]
Malard F, Genthon A, Brissot E, et al. COVID-19 outcomes in patients with hematologic disease. Bone Marrow Transplant 2020; 55(11): 2180-4.
[http://dx.doi.org/10.1038/s41409-020-0931-4] [PMID: 32376969]
[118]
Martín-Moro F, Marquet J, Piris M, et al. Survival study of hospitalised patients with concurrent COVID‐19 and haematological malignancies. Br J Haematol 2020; 190(1): e16-20.
[http://dx.doi.org/10.1111/bjh.16801] [PMID: 32379921]
[119]
Ljungman P, Mikulska M, de la Camara R, et al. The challenge of COVID-19 and hematopoietic cell transplantation; EBMT recommendations for management of hematopoietic cell transplant recipients, their donors, and patients undergoing CAR T-cell therapy. Bone Marrow Transplant 2020; 55(11): 2071-6.
[http://dx.doi.org/10.1038/s41409-020-0919-0] [PMID: 32404975]
[120]
Ardura M, Hartley D, Dandoy C, Lehmann L, Jaglowski S, Auletta JJ. Addressing the impact of the coronavirus disease 2019 (COVID-19) pandemic on hematopoietic cell transplantation: Learning networks as a means for sharing best practices. Biol Blood Marrow Transplant 2020; 26(7): e147-60.
[http://dx.doi.org/10.1016/j.bbmt.2020.04.018] [PMID: 32339662]
[121]
Bachanova V, Bishop MR, Dahi P, et al. Chimeric antigen receptor T Cell therapy during the COVID-19 pandemic. Biol Blood Marrow Transplant 2020; 26(7): 1239-46.
[http://dx.doi.org/10.1016/j.bbmt.2020.04.008]
[122]
Siddiqi T, Soumerai JD, Dorritie KA, et al. Rapid undetectable MRD (uMRD) responses in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) treated with lisocabtagene maraleucel (liso-cel), a CD19-Directed CAR T Cell product: Updated results from transcend CLL 004, a Phase 1/2 study including patients with high-risk disease previously treated with ibrutinib. Blood 2019; 134 (Suppl. 1): 503-3.
[http://dx.doi.org/10.1182/blood-2019-127603]
[123]
Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203(5): 1259-71.
[http://dx.doi.org/10.1084/jem.20052494] [PMID: 16636135]
[124]
The intersection of radiotherapy and immunotherapy: Mechanisms and clinical implications. Sci Immunol 2016; 1.
[125]
Qu C, Ping N, Kang L, et al. Radiation priming chimeric antigen receptor T-Cell therapy in relapsed/refractory diffuse large B-Cell lymphoma with high tumor burden. J Immunother 2020; 43(1): 32-7.
[http://dx.doi.org/10.1097/CJI.0000000000000284] [PMID: 31219975]
[126]
Hamlin PA, Zelenetz AD, Kewalramani T, et al. Age-adjusted international prognostic index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood 2003; 102(6): 1989-96.
[http://dx.doi.org/10.1182/blood-2002-12-3837] [PMID: 12676776]
[127]
Vose JM, Rizzo DJ, Tao-Wu J, et al. Autologous transplantation for diffuse aggressive Non-Hodgkin lymphoma in first relapse or second remission. Biol Blood Marrow Transplant 2004; 10(2): 116-27.
[http://dx.doi.org/10.1016/j.bbmt.2003.09.015] [PMID: 14750077]
[128]
Xiong D, Wang Y, Singavi AK, Mackinnon AC, George B, You M. Immunogenomic landscape contributes to hyperprogressive disease after Anti-PD-1 immunotherapy for cancer. iScience 2018; 9: 258-77.
[http://dx.doi.org/10.1016/j.isci.2018.10.021] [PMID: 30439581]
[129]
Hill BT, Roberts ZJ, Rossi JM, Smith MR. Marked re-expansion of chimeric antigen receptor (CAR) T Cells and tumor regression following nivolumab treatment in a patient treated with axicabtagene ciloleucel (Axi-Cel; KTE-C19) for refractory diffuse large b cell lymphoma (DLBCL). Blood 2017; 130: 2825-5.
[130]
Schmidbauer B, Menhart K, Hellwig D, Grosse J. Differentiated thyroid cancer—treatment: State of the art. Int J Mol Sci 2017; 18(6): 1292.
[http://dx.doi.org/10.3390/ijms18061292] [PMID: 28629126]
[131]
Patel M, Nowsheen S, Maraboyina S, Xia F. The role of poly(ADP-Ribose) polymerase inhibitors in the treatment of cancer and methods to overcome resistance: A review. Cell Biosci 2020; 10: 1-12.
[132]
Vinayak S, Tolaney SM, Schwartzberg LS, et al. TOPACIO/Keynote-162: Niraparib + pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J Clin Oncol 2018; 36 (Suppl. 15): 1011-1.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.1011]
[133]
Slamon DJ, Neven P, Chia S, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor–positive, human epidermal growth factor receptor 2–Negative advanced breast cancer: MONALEESA-3. J Clin Oncol 2018; 36(24): 2465-72.
[http://dx.doi.org/10.1200/JCO.2018.78.9909] [PMID: 29860922]
[134]
CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017; 548: 471-5.
[135]
Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhibitor abemaciclib induces a T Cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep 2018; 22(11): 2978-94.
[http://dx.doi.org/10.1016/j.celrep.2018.02.053] [PMID: 29539425]
[136]
More precisely defining risk Peri-HCT in pediatric ALL: Pre- vs post-MRD measures, serial positivity, and risk modeling. Blood Adv 2019; 3: 3393-405.
[137]
Pulsipher MA, Langholz B, Wall DA, et al. The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: A phase 3 children’s oncology group/Pediatric blood and marrow transplant consortium trial. Blood 2014; 123(13): 2017-25.
[http://dx.doi.org/10.1182/blood-2013-10-534297] [PMID: 24497539]
[138]
Ifversen M, Turkiewicz D, Marquart HV, et al. Low burden of minimal residual disease prior to transplantation in children with very high risk acute lymphoblastic leukaemia: The NOPHO ALL2008 experience. Br J Haematol 2019; 184(6): 982-93.
[http://dx.doi.org/10.1111/bjh.15761] [PMID: 30680711]
[139]
Pulsipher MA, Langholz B, Wall DA, et al. Risk factors and timing of relapse after allogeneic transplantation in pediatric ALL: For whom and when should interventions be tested? Bone Marrow Transplant 2015; 50(9): 1173-9.
[http://dx.doi.org/10.1038/bmt.2015.103] [PMID: 25961775]
[140]
Balduzzi A, Dalle JH, Wachowiak J, et al. Transplantation in children and adolescents with acute lymphoblastic leukemia from a matched donor versus an HLA-Identical sibling: Is the outcome comparable? Results from the international BFM ALL SCT 2007 study. Biol Blood Marrow Transplant 2019; 25(11): 2197-210.
[http://dx.doi.org/10.1016/j.bbmt.2019.07.011] [PMID: 31319153]
[141]
Diorio C, Maude SL. CAR T cells vs allogeneic HSCT for poor-risk ALL. Hematology 2020; 2020(1): 501-7.
[http://dx.doi.org/10.1182/hematology.2020000172] [PMID: 33275706]
[142]
Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006; 7(1): 21-33.
[http://dx.doi.org/10.1038/nrg1748] [PMID: 16369569]
[143]
A single dose of peripherally infused EGFRvIII-Directed CAR T Cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; 9.
[144]
Ghoneim HE, Fan Y, Moustaki A, et al. De Novo epigenetic programs Inhibit PD-1 blockade-mediated T Cell rejuvenation. Cell 2017; 170(1): 142-157.e19.
[http://dx.doi.org/10.1016/j.cell.2017.06.007] [PMID: 28648661]
[145]
Ladle BH, Li KP, Phillips MJ, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci USA 2016; 113(38): 10631-6.
[http://dx.doi.org/10.1073/pnas.1524490113] [PMID: 27582468]
[146]
Disruption of TET2 Promotes the Therapeutic Efficacy of CD19-Targeted T Cells Nature 2018; 558: 307-12.
[147]
Shen H, Laird PW. In epigenetic therapy, less is more. Cell Stem Cell 2012; 10(4): 353-4.
[http://dx.doi.org/10.1016/j.stem.2012.03.012] [PMID: 22482500]
[148]
Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 2014; 41(3): 354-65.
[http://dx.doi.org/10.1016/j.immuni.2014.09.005] [PMID: 25238093]
[149]
Caligiuri MA. Human natural killer cells. Blood 2008; 112(3): 461-9.
[http://dx.doi.org/10.1182/blood-2007-09-077438] [PMID: 18650461]
[150]
Lanier LL. Up on the tightrope: Natural killer cell activation and inhibition. Nat Immunol 2008; 9: 495-502.
[151]
Beldi-Ferchiou A, Lambert M, Dogniaux S, et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 2016; 7(45): 72961-77.
[http://dx.doi.org/10.18632/oncotarget.12150] [PMID: 27662664]
[152]
Marofi F, Al-Awad AS, Sulaiman Rahman H, et al. CAR-NK Cell: A new paradigm in tumor immunotherapy. Front Oncol 2021; 11: 673276.
[http://dx.doi.org/10.3389/fonc.2021.673276] [PMID: 34178661]
[153]
Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106(1): 376-83.
[http://dx.doi.org/10.1182/blood-2004-12-4797] [PMID: 15755898]
[154]
Shimasaki N, Fujisaki H, Cho D, et al. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malig-nancies. Cytotherapy 2012; 14(7): 830-40.
[http://dx.doi.org/10.3109/14653249.2012.671519] [PMID: 22458956]
[155]
Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced natural killer cells in CD19-Positive lymphoid tumors. N Engl J Med 2020; 382(6): 545-53.
[http://dx.doi.org/10.1056/NEJMoa1910607] [PMID: 32023374]
[156]
ClinicalTrials.gov. Umbilical & cord blood (CB) derived carengineered NK cells for B lymphoid malignancies. 2018. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03056339

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy