Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

New Perspectives of Taxifolin in Neurodegenerative Diseases

Author(s): Rong Yang, Xinxing Yang and Feng Zhang*

Volume 21, Issue 10, 2023

Published on: 19 June, 2023

Page: [2097 - 2109] Pages: 13

DOI: 10.2174/1570159X21666230203101107

Price: $65

Abstract

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), cerebral amyloid angiopathy (CAA), and Huntington’s disease (HD) are characterized by cognitive and motor dysfunctions and neurodegeneration. These diseases have become more severe over time and cannot be cured currently. Until now, most treatments for these diseases are only used to relieve the symptoms. Taxifolin (TAX), 3,5,7,3,4-pentahydroxy flavanone, also named dihydroquercetin, is a compound derived primarily from Douglas fir and Larix gemelini. TAX has been confirmed to exhibit various pharmacological activities, including anti-inflammation, anti-cancer, anti-virus, and regulation of oxidative stress effects. In the central nervous system, TAX has been demonstrated to inhibit Aβ fibril formation, protect neurons and improve cerebral blood flow, cognitive ability, and dyskinesia. At present, TAX is only applied as a health additive in clinical practice. This review aimed to summarize the application of TAX in neurodegenerative diseases and the underlying neuroprotective mechanisms, such as suppressing inflammation, attenuating oxidative stress, preventing Aβ protein formation, maintaining dopamine levels, and thus reducing neuronal loss.

Keywords: Taxifolin, neurodegenerative disease, neuroinflammation, oxidative stress, neuroprotection, Parkinson’s disease, Alzheimer’s disease.

Graphical Abstract
[1]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Ghosh, R.; Tabrizi, S.J. Clinical features of huntington’s disease. Adv. Exp. Med. Biol., 2018, 1049, 1-28.
[http://dx.doi.org/10.1007/978-3-319-71779-1_1] [PMID: 29427096]
[3]
Heemels, M.T. Neurodegenerative diseases. Nature, 2016, 539(7628), 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[4]
Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 2019, 166, 112066.
[http://dx.doi.org/10.1016/j.phytochem.2019.112066]
[5]
Kim, N.C.; Graf, T.N.; Sparacino, C.M.; Wani, M.C.; Wall, M.E. Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum) Electronic supplementary information (ESI) available: HPLC chromatograms of isolates and extracts. See http://www.rsc.org/suppdata/ob/b3/b300099k/. Org. Biomol. Chem., 2003, 1(10), 1684-1689.
[http://dx.doi.org/10.1039/b300099k] [PMID: 12926355]
[6]
Weidmann, A.E. Dihydroquercetin: More than just an impurity? Eur. J. Pharmacol., 2012, 684(1-3), 19-26.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.035] [PMID: 22513183]
[7]
Guo, H.; Zhang, X.; Cui, Y.; Zhou, H.; Xu, D.; Shan, T.; Zhang, F.; Guo, Y.; Chen, Y.; Wu, D. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Toxicol. Appl. Pharmacol., 2015, 287(2), 168-177.
[http://dx.doi.org/10.1016/j.taap.2015.06.002] [PMID: 26051872]
[8]
Li, J.; Hu, L.; Zhou, T.; Gong, X.; Jiang, R.; Li, H.; Kuang, G.; Wan, J.; Li, H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci., 2019, 232, 116617.
[http://dx.doi.org/10.1016/j.lfs.2019.116617] [PMID: 31260685]
[9]
Zhan, Z.Y.; Wu, M.; Shang, Y.; Jiang, M.; Liu, J.; Qiao, C.Y.; Ye, H.; Lin, Y.C.; Piao, M.H.; Sun, R.H.; Zhang, Z.H.; Jiao, J.Y.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis. Food Funct., 2021, 12(1), 362-372.
[http://dx.doi.org/10.1039/D0FO02653K] [PMID: 33325949]
[10]
Ahiskali, I.; Pinar, C.L.; Kiki, M.; Cankaya, M.; Kunak, C.S.; Altuner, D. Effect of taxifolin on methanol-induced oxidative and inflammatory optic nerve damage in rats. Cutan. Ocul. Toxicol., 2019, 38(4), 384-389.
[http://dx.doi.org/10.1080/15569527.2019.1637348] [PMID: 31242797]
[11]
Bernatova, I.; Liskova, S. Mechanisms modified by (−)-epicatechin and taxifolin relevant for the treatment of hypertension and viral infection: Knowledge from preclinical studies. Antioxidants, 2021, 10(3), 467.
[http://dx.doi.org/10.3390/antiox10030467] [PMID: 33809620]
[12]
Artem’eva, O.A.; Pereselkova, D.A.; Fomichev, Y.P. Dihydroquercetin, the bioactive substance, to be used against pathogenic microorganisms as an alternative to antibiotics. Sh. Biol., 2015, 50(4), 513-519.
[http://dx.doi.org/10.15389/agrobiology.2015.4.513eng]
[13]
Tanaka, M.; Saito, S.; Inoue, T.; Satoh-Asahara, N.; Ihara, M. Novel therapeutic potentials of taxifolin for amyloid-β-associated neurodegenerative diseases and other diseases: Recent advances and future perspectives. Int. J. Mol. Sci., 2019, 20(9), 2139.
[http://dx.doi.org/10.3390/ijms20092139] [PMID: 31052203]
[14]
Ullah, H.; Khan, H. Anti-parkinson potential of silymarin: Mechanistic insight and therapeutic standing. Front. Pharmacol., 2018, 9, 422.
[http://dx.doi.org/10.3389/fphar.2018.00422] [PMID: 29755356]
[15]
Akinmoladun, A.C.; Famusiwa, C.D.; Josiah, S.S.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A. Dihydroquercetin improves rotenone‐induced parkinsonism by regulating NF‐κB‐mediated inflammation pathway in rats. J. Biochem. Mol. Toxicol., 2022, 36(5), e23022.
[http://dx.doi.org/10.1002/jbt.23022] [PMID: 35187747]
[16]
de Oliveira, N.K.S.; Almeida, M.R.S.; Pontes, F.M.M.; Barcelos, M.P.; Silva, G.M.; de Paula da Silva, C.H.T.; Cruz, R.A.S.; da Silva Hage-Melim, L.I. Molecular docking, physicochemical properties, pharmacokinetics and toxicity of flavonoids present in euterpe oleracea martius. Curr. Computeraided Drug Des., 2021, 17(4), 589-617.
[http://dx.doi.org/10.2174/1573409916666200619122803] [PMID: 32560610]
[17]
Pew, J.C. A flavonone from Douglas-fir heartwood. J. Am. Chem. Soc., 1948, 70(9), 3031-3034.
[http://dx.doi.org/10.1021/ja01189a059] [PMID: 18882535]
[18]
Kiehlmann, E.; Li, E.P.M. Isomerization of dihydroquercetin. J. Nat. Prod., 1995, 58(3), 450-455.
[http://dx.doi.org/10.1021/np50117a018]
[19]
Rogozhin, V.V.; Peretolchin, D.V. Kinetic regulations of dihydroquercetin oxidation with horseradish peroxide. Russ. J. Bioorganic Chem., 2009, 35(5), 576-580.
[http://dx.doi.org/10.1134/S1068162009050069] [PMID: 19915641]
[20]
Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U.M.; Gülçin, İ.; Alwasel, S.H. Antioxidant activity of taxifolin: An activity–structure relationship. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 674-683.
[http://dx.doi.org/10.3109/14756366.2015.1057723] [PMID: 26147349]
[21]
Calabrese, V.; Guagliano, E.; Sapienza, M.; Mancuso, C.; Butterfield, D.A.; Stella, A.M. Redox regulation of cellular stress response in neurodegenerative disorders. Ital. J. Biochem., 2006, 55(3-4), 263-282.
[PMID: 17274531]
[22]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[23]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida, S.A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[24]
Akinmoladun, A.C.; Olaniyan, O.O.; Famusiwa, C.D.; Josiah, S.S.; Olaleye, M.T. Ameliorative effect of quercetin, catechin, and taxifolin on rotenone-induced testicular and splenic weight gain and oxidative stress in rats. J. Basic Clin. Physiol. Pharmacol., 2020.
[http://dx.doi.org/10.1515/jbcpp-2018-0230]
[25]
Islam, J.; Shree, A.; Vafa, A.; Afzal, S.M.; Sultana, S. Taxifolin ameliorates Benzo[a]pyrene-induced lung injury possibly via stimulating the Nrf2 signalling pathway. Int. Immunopharmacol., 2021, 96, 107566.
[http://dx.doi.org/10.1016/j.intimp.2021.107566] [PMID: 33813368]
[26]
Zhang, C.; Zhan, J.; Zhao, M.; Dai, H.; Deng, Y.; Zhou, W.; Zhao, L. Protective mechanism of Taxifolin for chlorpyrifos neurotoxicity in BV2 cells. Neurotoxicology, 2019, 74, 74-80.
[http://dx.doi.org/10.1016/j.neuro.2019.05.010] [PMID: 31152760]
[27]
Turovskaya, M.V.; Gaidin, S.G.; Mal’tseva, V.N.; Zinchenko, V.P.; Turovsky, E.A. Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol. Cell. Neurosci., 2019, 96, 10-24.
[http://dx.doi.org/10.1016/j.mcn.2019.01.005] [PMID: 30776416]
[28]
Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53.
[http://dx.doi.org/10.1016/j.phymed.2018.01.026] [PMID: 29519318]
[29]
Kuang, H.; Tang, Z.; Zhang, C.; Wang, Z.; Li, W.; Yang, C.; Wang, Q.; Yang, B.; Kong, A.N. Taxifolin activates the Nrf2 anti-oxidative stress pathway in mouse skin epidermal JB6 P+ cells through epigenetic modifications. Int. J. Mol. Sci., 2017, 18(7), 1546.
[http://dx.doi.org/10.3390/ijms18071546] [PMID: 28714938]
[30]
Ye, Y.; Wang, X.; Cai, Q.; Zhuang, J.; Tan, X.; He, W. Zhao. M. Protective effect of taxifolin on H2O2-induced H9C2 cell pyroptosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2017, 42(12), 1367-1374.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2017.12.003] [PMID: 29317576]
[31]
Li, Z.; Yu, Y.; Li, Y.; Ma, F.; Fang, Y.; Ni, C.; Wu, K.; Pan, P.; Ge, R.S. Taxifolin attenuates the developmental testicular toxicity induced by di-n-butyl phthalate in fetal male rats. Food Chem. Toxicol., 2020, 142, 111482.
[http://dx.doi.org/10.1016/j.fct.2020.111482] [PMID: 32525071]
[32]
Yang, C.L.; Lin, Y.S.; Liu, K.F.; Peng, W.H.; Hsu, C.M. Hepatoprotective mechanisms of taxifolin on carbon tetrachloride-induced acute liver injury in mice. Nutrients, 2019, 11(11), 2655.
[http://dx.doi.org/10.3390/nu11112655] [PMID: 31689986]
[33]
Unver, E.; Tosun, M.; Olmez, H.; Kuzucu, M.; Cimen, F.K.; Suleyman, Z. The effect of taxifolin on cisplatin-induced pulmonary damage in rats: A biochemical and histopathological evaluation. Mediators Inflamm., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/3740867] [PMID: 30992689]
[34]
Kurt, N.; Gunes, O.; Suleyman, B.; Bakan, N. The effect of taxifolin on high-dose-cisplatin-induced oxidative liver injury in rats. Adv. Clin. Exp. Med., 2021, 30(10), 1025-1030.
[http://dx.doi.org/10.17219/acem/138318] [PMID: 34435476]
[35]
Cao, X.; Bi, R.; Hao, J.; Wang, S.; Huo, Y.; Demoz, R.M.; Banda, R.; Tian, S.; Xin, C.; Fu, M.; Pi, J.; Liu, J. A study on the protective effects of taxifolin on human umbilical vein endothelial cells and THP-1 cells damaged by hexavalent chromium: A probable mechanism for preventing cardiovascular disease induced by heavy metals. Food Funct., 2020, 11(5), 3851-3859.
[http://dx.doi.org/10.1039/D0FO00567C] [PMID: 32319486]
[36]
Xie, X.; Feng, J.; Kang, Z.; Zhang, S.; Zhang, L.; Zhang, Y.; Li, X.; Tang, Y. Taxifolin protects RPE cells against oxidative stressinduced apoptosis. Mol. Vis., 2017, 23, 520-528.
[PMID: 28761325]
[37]
Cai, J.; Shi, G.; Zhang, Y.; Zheng, Y.; Yang, J.; Liu, Q.; Gong, Y.; Yu, D.; Zhang, Z. Taxifolin ameliorates DEHP-induced cardiomyocyte hypertrophy via attenuating mitochondrial dysfunction and glycometabolism disorder in chicken. Environ. Pollut., 2019, 255(Pt 1), 113155.
[http://dx.doi.org/10.1016/j.envpol.2019.113155] [PMID: 31539850]
[38]
Hu, C.; Ye, J.; Zhao, L.; Li, X.; Wang, Y.; Liu, X.; Pan, L.; You, L.; Chen, L.; Jia, Y.; Zhang, J. 5,7,3′4′-flavan-on-ol (taxifolin) protects against acetaminophen-induced liver injury by regulating the glutathione pathway. Life Sci., 2019, 236, 116939.
[http://dx.doi.org/10.1016/j.lfs.2019.116939] [PMID: 31593705]
[39]
Hämäläinen, M.; Nieminen, R.; Asmawi, M.; Vuorela, P.; Vapaatalo, H.; Moilanen, E. Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages. Planta Med., 2011, 77(13), 1504-1511.
[http://dx.doi.org/10.1055/s-0030-1270762] [PMID: 21341175]
[40]
Kwon, J.H.; Kim, S.B.; Park, K.H.; Lee, M.W. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch. Pharm. Res., 2011, 34(9), 1459-1466.
[http://dx.doi.org/10.1007/s12272-011-0907-4] [PMID: 21975807]
[41]
Kim, Y.J.; Choi, S.E.; Lee, M.W.; Lee, C.S. Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid. J. Pharm. Pharmacol., 2010, 60(11), 1465-1472.
[http://dx.doi.org/10.1211/jpp.60.11.0007] [PMID: 18957167]
[42]
Yuan, X.; Li, N.; Zhang, M.; Lu, C.; Du, Z.; Zhu, W.; Wu, D. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways. Biomed. Pharmacother., 2020, 123, 109747.
[http://dx.doi.org/10.1016/j.biopha.2019.109747] [PMID: 31881484]
[43]
Lektemur, A.A.; Kızıldağ, A.; Özdede, M.; Karakan, N.C.; Özmen, Ö. The effects of taxifolin on alveolar bone in experimental periodontitis in rats. Arch. Oral Biol., 2020, 117, 104823.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104823] [PMID: 32593876]
[44]
Salama, S.A.; Kabel, A.M. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration. Chem. Biol. Interact., 2020, 330, 109230.
[http://dx.doi.org/10.1016/j.cbi.2020.109230] [PMID: 32828744]
[45]
Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α‐amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem., 2019, 120(1), 425-438.
[http://dx.doi.org/10.1002/jcb.27398] [PMID: 30191607]
[46]
Zhao, Y.; Huang, W.; Wang, J.; Chen, Y.; Huang, W.; Zhu, Y. Taxifolin attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Am. J. Transl. Res., 2018, 10(4), 1205-1210.
[PMID: 29736213]
[47]
Zhang, Y.; Jin, Q.; Li, X.; Jiang, M.; Cui, B.W.; Xia, K.L.; Wu, Y.L.; Lian, L.H.; Nan, J.X. Amelioration of alcoholic liver steatosis by dihydroquercetin through the modulation of AMPK-dependent lipogenesis mediated by P2X7R-NLRP3-inflammasome activation. J. Agric. Food Chem., 2018, 66(19), 4862-4871.
[http://dx.doi.org/10.1021/acs.jafc.8b00944] [PMID: 29706079]
[48]
Gao, L.; Yuan, P.; Zhang, Q.; Fu, Y.; Hou, Y.; Wei, Y.; Zheng, X.; Feng, W. Taxifolin improves disorders of glucose metabolism and water-salt metabolism in kidney via PI3K/AKT signaling pathway in metabolic syndrome rats. Life Sci., 2020, 263, 118713.
[http://dx.doi.org/10.1016/j.lfs.2020.118713] [PMID: 33157091]
[49]
Liu, X.; Liu, W.; Ding, C.; Zhao, Y.; Chen, X.; Ling, D.; Zheng, Y.; Cheng, Z. Taxifolin, extracted from waste larix olgensis roots, attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/] mTOR and TGF-β1/smads signaling pathways. Drug Des. Devel. Ther., 2021, 15, 871-887.
[http://dx.doi.org/10.2147/DDDT.S281369] [PMID: 33664566]
[50]
Galochkina, A.V.; Zarubaev, V.V.; Kiselev, O.I.; Babkin, V.A.; Ostroukhova, L.A. Antiviral activity of the dihydroquercetin during the Coxsackievirus В4 replication in vitro. Probl. Virol., 2016, 61(1), 27-31.
[http://dx.doi.org/10.18821/0507-4088-2016-61-1-27-31] [PMID: 27145597]
[51]
Al-Karmalawy, A.A.; Farid, M.M.; Mostafa, A.; Ragheb, A.Y.; H Mahmoud, S.; Shehata, M.; Shama, N.M.A.; GabAllah, M.; Mostafa-Hedeab, G.; Marzouk, M.M. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules, 2021, 26(21), 6559.
[http://dx.doi.org/10.3390/molecules26216559] [PMID: 34770969]
[52]
Kabel, A.M.; Salama, S.A. Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats. Hum. Exp. Toxicol., 2021, 40(10), 1767-1780.
[http://dx.doi.org/10.1177/09603271211010906] [PMID: 33882723]
[53]
Hou, J.; Hu, M.; Zhang, L.; Gao, Y.; Ma, L.; Xu, Q. Dietary taxifolin protects against dextran sulfate sodium-induced colitis via NF-κB signaling, enhancing intestinal barrier and modulating gut microbiota. Front. Immunol., 2021, 11, 631809.
[http://dx.doi.org/10.3389/fimmu.2020.631809] [PMID: 33664740]
[54]
Wang, L.; Wang, G.; Qu, H.; Wang, K.; Jing, S.; Guan, S.; Su, L.; Li, Q.; Wang, D. Taxifolin, an inhibitor of sortase a, interferes with the adhesion of methicillin-resistant Staphylococcal aureus. Front. Microbiol., 2021, 12, 686864.
[http://dx.doi.org/10.3389/fmicb.2021.686864] [PMID: 34295320]
[55]
Stenger, M.F.C.; Cechinel-Filho, V.; Greco, F.A.; Venzon, L.; Meurer, M.C.; França, T.C.S.; Longo, B.; Somensi, L.B.; Mariano, L.N.B.; Cruz, A.B.; Macchiarulo, A.; Schoubben, A.; Ricci, M.; Belle, B.T.M.; da Silva, L.M. Taxifolin and gastro-adhesive microparticles containing taxifolin promotes gastric healing in vivo, inhibits Helicobacter pylori in vitro and proton pump reversibly in silico. Chem. Biol. Interact., 2021, 339, 109445.
[http://dx.doi.org/10.1016/j.cbi.2021.109445] [PMID: 33741339]
[56]
Moon, S.H.; Lee, C.M.; Nam, M.J. Cytoprotective effects of taxifolin against cadmium-induced apoptosis in human keratinocytes. Hum. Exp. Toxicol., 2019, 38(8), 992-1003.
[http://dx.doi.org/10.1177/0960327119846941] [PMID: 31079487]
[57]
Wang, Y.J.; Zhang, H.Q.; Han, H.L.; Zou, Y.Y.; Gao, Q.L.; Yang, G.T. Taxifolin enhances osteogenic differentiation of human bone marrow mesenchymal stem cells partially via NF-κB pathway. Biochem. Biophys. Res. Commun., 2017, 490(1), 36-43.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.002] [PMID: 28579433]
[58]
Tang, Z.; Yang, C.; Zuo, B.; Zhang, Y.; Wu, G.; Wang, Y.; Wang, Z. Taxifolin protects rat against myocardial ischemia/reperfusion injury by modulating the mitochondrial apoptosis pathway. PeerJ, 2019, 7, e6383.
[http://dx.doi.org/10.7717/peerj.6383] [PMID: 30723634]
[59]
Živković, L.; Bajić, V.; Topalović, D.; Bruić, M.; Spremo-Potparević, B. Antigenotoxic effects of biochaga and dihydroquercetin (Taxifolin) on H2O2-induced dna damage in human whole blood cells. Oxid. Med. Cell. Longev., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/5039372] [PMID: 31814882]
[60]
Rajnochová Svobodová, A.; Ryšavá, A.; Psotová, M.; Kosina, P.; Zálešák, B.; Ulrichová, J.; Vostálová, J. The phototoxic potential of the flavonoids, taxifolin and quercetin. Photochem. Photobiol., 2017, 93(5), 1240-1247.
[http://dx.doi.org/10.1111/php.12755] [PMID: 28303596]
[61]
Amalinei, R.L.; Trifan, A.; Cioanca, O.; Miron, S.D.; Mihai, C.T.; Rotinberg, P.; Miron, A. Polyphenol-rich extract from Pinus sylvestris L. bark-chemical and antitumor studies. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2014, 118(2), 551-557.
[PMID: 25076730]
[62]
Jomová, K.; Hudecova, L.; Lauro, P.; Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Valko, M. A switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3′,4′-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper(II) ions: A spectroscopic, absorption titration and dna damage study. Molecules, 2019, 24(23), 4335.
[http://dx.doi.org/10.3390/molecules24234335] [PMID: 31783535]
[63]
Haque, M.W.; Bose, P.; Siddique, M.U.M.; Sunita, P.; Lapenna, A.; Pattanayak, S.P. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/] PTEN pathway. Biomed. Pharmacother., 2018, 105, 27-36.
[http://dx.doi.org/10.1016/j.biopha.2018.05.114] [PMID: 29843042]
[64]
Ge, F.; Tian, E.; Wang, L.; Li, X.; Zhu, Q.; Wang, Y.; Zhong, Y.; Ge, R.S. Taxifolin suppresses rat and human testicular androgen biosynthetic enzymes. Fitoterapia, 2018, 125, 258-265.
[http://dx.doi.org/10.1016/j.fitote.2018.01.017] [PMID: 29402482]
[65]
Chen, H.J.; Chung, Y.L.; Li, C.Y.; Chang, Y.T.; Wang, C.; Lee, H.Y.; Lin, H.Y.; Hung, C.C. Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of p-glycoprotein function. Molecules, 2018, 23(12), 3055.
[http://dx.doi.org/10.3390/molecules23123055] [PMID: 30469543]
[66]
Butt, S.S.; Khan, K.; Badshah, Y.; Rafiq, M.; Shabbir, M. Evaluation of pro-apoptotic potential of taxifolin against liver cancer. PeerJ, 2021, 9, e11276.
[http://dx.doi.org/10.7717/peerj.11276] [PMID: 34113483]
[67]
Wang, R.; Zhu, X.; Wang, Q.; Li, X.; Wang, E.; Zhao, Q.; Wang, Q.; Cao, H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med., 2020, 8(9), 590.
[http://dx.doi.org/10.21037/atm-20-3329] [PMID: 32566617]
[68]
Haque, M.W.; Pattanayak, S.P. Taxifolin inhibits 7,12-dimethylbenz(a)anthracene-induced breast carcinogenesis by regulating AhR/CYP1A1 signaling pathway. Pharmacogn. Mag., 2018, 13, S749-S755.
[http://dx.doi.org/10.4103/pm.pm_315_17] [PMID: 29491628]
[69]
Oi, N.; Chen, H.; Ok Kim, M.; Lubet, R.A.; Bode, A.M.; Dong, Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res., 2012, 5(9), 1103-1114.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0397] [PMID: 22805054]
[70]
Xie, J.; Pang, Y.; Wu, X. Taxifolin suppresses the malignant progression of gastric cancer by regulating the AhR/CYP1A1 signaling pathway. Int. J. Mol. Med., 2021, 48(5), 197.
[http://dx.doi.org/10.3892/ijmm.2021.5030] [PMID: 34490474]
[71]
Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alkholief, M.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/β -catenin signaling pathway. BMC Cancer, 2018, 18(1), 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[72]
Ahiskali, I.; Pinar, C.L.; Kiki, M.; Mammadov, R.; Ozbek Bilgin, A.; Hacimuftuoglu, A.; Cankaya, M.; Keskin Cimen, F.; Altuner, D. Effect of taxifolin on development of retinopathy in alloxan-induced diabetic rats. Cutan. Ocul. Toxicol., 2019, 38(3), 227-232.
[http://dx.doi.org/10.1080/15569527.2019.1588289] [PMID: 30897968]
[73]
Su, H.; Ruan, Y.T.; Li, Y.; Chen, J.G.; Yin, Z.P.; Zhang, Q.F. in vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. Int. J. Biol. Macromol., 2020, 150, 31-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.027] [PMID: 32035149]
[74]
Yoon, K.D.; Lee, J.Y.; Kim, T.Y.; Kang, H.; Ha, K.S.; Ham, T.H.; Ryu, S.N.; Kang, M.Y.; Kim, Y.H.; Kwon, Y.I. In vitro and in vivo anti-hyperglycemic activities of taxifolin and its derivatives isolated from pigmented rice (Oryzae sativa L. cv. Superhongmi). J. Agric. Food Chem., 2020, 68(3), 742-750.
[http://dx.doi.org/10.1021/acs.jafc.9b04962] [PMID: 31880937]
[75]
Harris, C.; Beaulieu, L.P.; Fraser, M.H.; McIntyre, K.; Owen, P.; Martineau, L.; Cuerrier, A.; Johns, T.; Haddad, P.; Bennett, S.; Arnason, J. Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity. Planta Med., 2011, 77(2), 196-204.
[http://dx.doi.org/10.1055/s-0030-1250161] [PMID: 20717877]
[76]
Muramatsu, D.; Uchiyama, H.; Kida, H.; Iwai, A. Cell cytotoxity and anti-glycation activity of taxifolin-rich extract from Japanese larch, Larix kaempferi. Heliyon, 2019, 5(7), e02047.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02047] [PMID: 31338467]
[77]
Adachi, S.; Nihei, K.; Ishihara, Y.; Yoshizawa, F.; Yagasaki, K. Anti-hyperuricemic effect of taxifolin in cultured hepatocytes and model mice. Cytotechnology, 2017, 69(2), 329-336.
[http://dx.doi.org/10.1007/s10616-016-0061-4] [PMID: 28101741]
[78]
Wu, C.; Cao, S.; Hong, T.; Dong, Y.; Li, C.; Wang, Q.; Sun, J.; Ge, R.S. Taxifolin inhibits rat and human 11β-hydroxysteroid dehydrogenase 2. Fitoterapia, 2017, 121, 112-117.
[http://dx.doi.org/10.1016/j.fitote.2017.07.004] [PMID: 28709706]
[79]
Zhang, H.Q.; Wang, Y.J.; Yang, G.T.; Gao, Q.L.; Tang, M.X. Taxifolin inhibits receptor activator of NF-κB Ligand-induced osteoclastogenesis of human bone marrow-derived macrophages in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Pharmacology, 2019, 103(1-2), 101-109.
[http://dx.doi.org/10.1159/000495254] [PMID: 30522105]
[80]
Muramatsu, D.; Uchiyama, H.; Kida, H.; Iwai, A. in vitro anti-inflammatory and anti-lipid accumulation properties of taxifolinrich extract from the Japanese larch, Larix kaempferi. Heliyon, 2020, 6(12), e05505.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05505] [PMID: 33336091]
[81]
Su, H.; Wang, W.J.; Zheng, G.D.; Yin, Z.P.; Li, J.E.; Chen, L.L.; Zhang, Q.F. The anti‐obesity and gut microbiota modulating effects of taxifolin in C57BL / 6J mice fed with a high‐fat diet. J. Sci. Food Agric., 2022, 102(4), 1598-1608.
[http://dx.doi.org/10.1002/jsfa.11496] [PMID: 34409603]
[82]
Bucak, M.N.; Keskin, N.; Ili, P.; Bodu, M.; Akalın, P.P.; Öztürk, A.E.; Özkan, H.; Topraggaleh, T.R.; Sari, F.; Başpınar, N.; Dursun, Ş. Decreasing glycerol content by co-supplementation of trehalose and taxifolin hydrate in ram semen extender: Microscopic, oxidative stress, and gene expression analyses. Cryobiology, 2020, 96, 19-29.
[http://dx.doi.org/10.1016/j.cryobiol.2020.09.001] [PMID: 32890464]
[83]
Di, T.; Zhai, C.; Zhao, J.; Wang, Y.; Chen, Z.; Li, P. Taxifolin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like mouse model via regulating cytoplasmic phospholipase A2 and PPAR-γ pathway. Int. Immunopharmacol., 2021, 99, 107900.
[http://dx.doi.org/10.1016/j.intimp.2021.107900] [PMID: 34233233]
[84]
Pan, S.; Zhao, X.; Ji, N.; Shao, C.; Fu, B.; Zhang, Z.; Wang, R.; Qiu, Y.; Jin, M.; Kong, D. Inhibitory effect of taxifolin on mast cell activation and mast cell-mediated allergic inflammatory response. Int. Immunopharmacol., 2019, 71, 205-214.
[http://dx.doi.org/10.1016/j.intimp.2019.03.038] [PMID: 30925321]
[85]
Micek, I.; Nawrot, J.; Seraszek-Jaros, A.; Jenerowicz, D.; Schroeder, G.; Spiżewski, T.; Suchan, A.; Pawlaczyk, M.; Gornowicz-Porowska, J. Taxifolin as a promising ingredient of cosmetics for adult skin. Antioxidants, 2021, 10(10), 1625.
[http://dx.doi.org/10.3390/antiox10101625] [PMID: 34679758]
[86]
Shubina, V.S.; Shatalin, Y.V. Skin regeneration after chemical burn under the effect of taxifolin-based preparations. Bull. Exp. Biol. Med., 2012, 154(1), 152-157.
[http://dx.doi.org/10.1007/s10517-012-1897-z] [PMID: 23330113]
[87]
Liu, X.; Ma, Y.; Luo, L.; Zong, D.; Li, H.; Zeng, Z.; Cui, Y.; Meng, W.; Chen, Y. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway. Phytomedicine, 2022, 96, 153894.
[http://dx.doi.org/10.1016/j.phymed.2021.153894] [PMID: 34942457]
[88]
Chowdhury, S.; Bhuiya, S.; Haque, L.; Das, S. In-depth investigation of the binding of flavonoid taxifolin with bovine hemoglobin at physiological pH: Spectroscopic and molecular docking studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 225, 117513.
[http://dx.doi.org/10.1016/j.saa.2019.117513] [PMID: 31521000]
[89]
Kozhikkadan Davis, C.; Nasla, K.; Anjana, A.K.; Rajanikant, G.K. Taxifolin as dual inhibitor of Mtb DNA gyrase and isoleucyl-tRNA synthetase: in silico molecular docking, dynamics simulation and in vitro assays. In Silico Pharmacol., 2018, 6(1), 8.
[http://dx.doi.org/10.1007/s40203-018-0045-5] [PMID: 30607321]
[90]
Lee, C.W.; Park, N.H.; Kim, J.W.; Um, B.H.; Shpatov, A.V.; Shults, E.E.; Sorokina, I.V.; Popov, S.A. Study of skin anti-ageing and anti-inflammatory effects of dihydroquercetin, natural triterpenoinds, and their synthetic derivatives. Russ. J. Bioorganic Chem., 2012, 38(3), 328-334.
[http://dx.doi.org/10.1134/S1068162012030028] [PMID: 22997710]
[91]
Muraleva, N.A.; Ofitserov, E.N.; Tikhonov, V.P.; Kolosova, N.G. Efficacy of glucosamine alendronate alone & in combination with dihydroquercetin for treatment of osteoporosis in animal model. Indian J. Med. Res., 2012, 135(2), 221-227.
[PMID: 22446865]
[92]
Zhang, Z.R.; Al Zaharna, M.; Wong, M.M.K.; Chiu, S.K.; Cheung, H.Y. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. PLoS One, 2013, 8(1), e54577.
[http://dx.doi.org/10.1371/journal.pone.0054577] [PMID: 23382917]
[93]
Pirgozliev, V.; Mansbridge, S.C.; Whiting, I.M.; Arthur, C.; Rose, S.P.; Atanasov, A.G. Antioxidant status and growth performance of broiler chickens fed diets containing graded levels of supplementary dihydroquercetin. Res. Vet. Sci., 2021, 141, 63-65.
[http://dx.doi.org/10.1016/j.rvsc.2021.10.001] [PMID: 34688041]
[94]
Awad, E.; Awaad, A.S.; Esteban, M.A. Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 2015, 43(1), 43-50.
[http://dx.doi.org/10.1016/j.fsi.2014.12.009] [PMID: 25530582]
[95]
Gopikrishnan, V.; Radhakrishnan, M.; Shanmugasundaram, T.; Ramakodi, M.P.; Balagurunathan, R. Isolation, characterization and identification of antibiofouling metabolite from mangrove derived Streptomyces sampsonii PM33. Sci. Rep., 2019, 9(1), 12975.
[http://dx.doi.org/10.1038/s41598-019-49478-2] [PMID: 31506555]
[96]
Okkay, U.; Ferah Okkay, I.; Cicek, B.; Aydin, I.C.; Ozkaraca, M. Hepatoprotective and neuroprotective effect of taxifolin on hepatic encephalopathy in rats. Metab. Brain Dis., 2022, 37(5), 1541-1556.
[http://dx.doi.org/10.1007/s11011-022-00952-3] [PMID: 35298730]
[97]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[98]
Cabreira, V.; Massano, J. Parkinson’s disease: Clinical review and update. Acta Med. Port., 2019, 32(10), 661-670.
[http://dx.doi.org/10.20344/amp.11978] [PMID: 31625879]
[99]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm., 2017, 124(8), 901-905.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[100]
Nakaoka, S.; Ishizaki, T.; Urushihara, H.; Satoh, T.; Ikeda, S.; Yamamoto, M.; Nakayama, T. Prescribing pattern of anti-Parkinson drugs in Japan: A trend analysis from 2005 to 2010. PLoS One, 2014, 9(6), e99021.
[http://dx.doi.org/10.1371/journal.pone.0099021] [PMID: 24906013]
[101]
Pajares, M.; I Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[102]
Yasuhara, T. Neurobiology research in parkinson’s disease. Int. J. Mol. Sci., 2020, 21(3), 793.
[http://dx.doi.org/10.3390/ijms21030793] [PMID: 31991804]
[103]
Nam, Y.J.; Lee, D.H.; Shin, Y.K.; Sohn, D.S.; Lee, C.S. Flavanonol taxifolin attenuates proteasome inhibition-induced apoptosis in differentiated PC12 cells by suppressing cell death process. Neurochem. Res., 2015, 40(3), 480-491.
[http://dx.doi.org/10.1007/s11064-014-1493-x] [PMID: 25476842]
[104]
Pérez-H, J.; Carrillo-S, C.; García, E.; Ruiz-Mar, G.; Pérez-Tamayo, R.; Chavarría, A. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's disease. Toxicology, 2014, 319, 38-43.
[http://dx.doi.org/10.1016/j.tox.2014.02.009]
[105]
Kim, A.; Nam, Y.J.; Lee, C.S. Taxifolin reduces the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF-κB activation-mediated cell death. Brain Res. Bull., 2017, 134, 63-71.
[http://dx.doi.org/10.1016/j.brainresbull.2017.07.008] [PMID: 28710022]
[106]
Abushouk, A.I.; Negida, A.; Ahmed, H.; Abdel-Daim, M.M. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. Biomed. Pharmacother., 2017, 85, 635-645.
[http://dx.doi.org/10.1016/j.biopha.2016.11.074] [PMID: 27890431]
[107]
Dok-Go, H.; Lee, K.H.; Kim, H.J.; Lee, E.H.; Lee, J.; Song, Y.S.; Lee, Y.H.; Jin, C.; Lee, Y.S.; Cho, J. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res., 2003, 965(1-2), 130-136.
[http://dx.doi.org/10.1016/S0006-8993(02)04150-1] [PMID: 12591129]
[108]
Xu, Q.; Park, Y.; Huang, X.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Diabetes and risk of Parkinson’s disease. Diabetes Care, 2011, 34(4), 910-915.
[http://dx.doi.org/10.2337/dc10-1922] [PMID: 21378214]
[109]
Wirdefeldt, K.; Weibull, C.E.; Chen, H.; Kamel, F.; Lundholm, C.; Fang, F.; Ye, W. Parkinson’s disease and cancer: A register-based family study. Am. J. Epidemiol., 2014, 179(1), 85-94.
[http://dx.doi.org/10.1093/aje/kwt232] [PMID: 24142916]
[110]
An, S.M.; Kim, H.J.; Kim, J.E.; Boo, Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res., 2008, 22(9), 1200-1207.
[http://dx.doi.org/10.1002/ptr.2435] [PMID: 18729255]
[111]
Liu, T.; Zhou, N.; Cao, Y.; Xu, R.; Liu, Z.; Zheng, X.; Feng, W. Investigating the basis for the antidepressant effects of Gleditsiae spina using an integrated metabolomic strategy. Iran. J. Basic Med. Sci., 2021, 24(4), 524-530.
[http://dx.doi.org/10.22038/ijbms.2021.51975.11781] [PMID: 34094035]
[112]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[113]
Selkoe, D.J. Alzheimer’s disease. Cold Spring Harb. Perspect. Biol., 2011, 3(7), a004457.
[http://dx.doi.org/10.1101/cshperspect.a004457] [PMID: 21576255]
[114]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[115]
Mintun, M.A.; Lo, A.C.; Duggan, E.C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; Apostolova, L.G.; Salloway, S.P.; Skovronsky, D.M. Donanemab in early Alzheimer’s disease. N. Engl. J. Med., 2021, 384(18), 1691-1704.
[http://dx.doi.org/10.1056/NEJMoa2100708] [PMID: 33720637]
[116]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[117]
Bate, C.; Williams, A. cAMP-inhibits cytoplasmic phospholipase A2 and protects neurons against amyloid-β-induced synapse damage. Biology, 2015, 4(3), 591-606.
[http://dx.doi.org/10.3390/biology4030591] [PMID: 26389963]
[118]
Bate, C.; Williams, A. α-Synuclein-induced synapse damage in cultured neurons is mediated by cholesterol-sensitive activation of cytoplasmic phospholipase A2. Biomolecules, 2015, 5(1), 178-193.
[http://dx.doi.org/10.3390/biom5010178] [PMID: 25761116]
[119]
Wang, Y.; Wang, Q.; Bao, X.; Ding, Y.; Shentu, J.; Cui, W.; Chen, X.; Wei, X.; Xu, S. Taxifolin prevents β-amyloid-induced impairments of synaptic formation and deficits of memory via the inhibition of cytosolic phospholipase A2/prostaglandin E2 content. Metab. Brain Dis., 2018, 33(4), 1069-1079.
[http://dx.doi.org/10.1007/s11011-018-0207-5] [PMID: 29542038]
[120]
Ginex, T.; Trius, M.; Luque, F.J. Computational study of the azamichael addition of the flavonoid (+)-taxifolin in the inhibition of β-amyloid fibril aggregation. Chemistry, 2018, 24(22), 5813-5824.
[121]
Mahdavimehr, M.; Meratan, A.A.; Ghobeh, M.; Ghasemi, A.; Saboury, A.A.; Nemat-Gorgani, M. Inhibition of HEWL fibril formation by taxifolin: Mechanism of action. PLoS One, 2017, 12(11), e0187841.
[http://dx.doi.org/10.1371/journal.pone.0187841] [PMID: 29131828]
[122]
Mahdavimehr, M.; Katebi, B.; Meratan, A.A. Effect of fibrillation conditions on the anti-amyloidogenic properties of polyphenols and their involved mechanisms. Int. J. Biol. Macromol., 2018, 118(Pt A), 552-560.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.109]
[123]
Ambrose, C.T. Neuroangiogenesis: A vascular basis for Alzheimer’s disease and cognitive decline during aging. J. Alzheimers Dis., 2012, 32(3), 773-788.
[http://dx.doi.org/10.3233/JAD-2012-120067] [PMID: 22850316]
[124]
Plotnikov, M.B.; Plotnikov, D.M.; Aliev, O.I.; Maslov, M.Y.; Vasiliev, A.S.; Alifirova, V.M.; Tyukavkina, N.A. Hemorheological and antioxidant effects of Ascovertin in patients with sclerosis of cerebral arteries. Clin. Hemorheol. Microcirc., 2004, 30(3-4), 449-452.
[PMID: 15258384]
[125]
Plotnikov, M.B.; Plotnikov, D.M.; Alifirova, V.M.; Aliev, O.I.; Maslov, M.I.; Vasil’ev, A.S.; Tiukavkina, N.A. Clinical efficacy of a novel hemorheological drug ascovertin in patients with vascular encephalopathy. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2004, 104(12), 33-37.
[PMID: 15847324]
[126]
Gunesch, S.; Hoffmann, M.; Kiermeier, C.; Fischer, W.; Pinto, A.F.M.; Maurice, T.; Maher, P.; Decker, M. 7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol., 2020, 29, 101378.
[http://dx.doi.org/10.1016/j.redox.2019.101378] [PMID: 31926632]
[127]
Sato, M.; Murakami, K.; Uno, M.; Ikubo, H.; Nakagawa, Y.; Katayama, S.; Akagi, K.; Irie, K. Structure-activity relationship for (+)-taxifolin isolated from silymarin as an inhibitor of amyloid β aggregation. Biosci. Biotechnol. Biochem., 2013, 77(5), 1100-1103.
[http://dx.doi.org/10.1271/bbb.120925] [PMID: 23649236]
[128]
Sato, M.; Murakami, K.; Uno, M.; Nakagawa, Y.; Katayama, S.; Akagi, K.; Masuda, Y.; Takegoshi, K.; Irie, K. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J. Biol. Chem., 2013, 288(32), 23212-23224.
[http://dx.doi.org/10.1074/jbc.M113.464222] [PMID: 23792961]
[129]
Das, S.; Majumder, T.; Sarkar, A.; Mukherjee, P.; Basu, S. Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. Int. J. Biol. Macromol., 2020, 165(Pt A), 1323-117.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.232]
[130]
Park, S.Y.; Kim, H.Y.; Park, H.J.; Shin, H.K.; Hong, K.W.; Kim, C.D. Concurrent treatment with taxifolin and cilostazol on the lowering of β-amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NF-κB/BACE1 signaling pathways. PLoS One, 2016, 11(12), e0168286.
[http://dx.doi.org/10.1371/journal.pone.0168286] [PMID: 27977755]
[131]
Inoue, T.; Saito, S.; Tanaka, M.; Yamakage, H.; Kusakabe, T.; Shimatsu, A.; Ihara, M.; Satoh-Asahara, N. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 10031-10038.
[http://dx.doi.org/10.1073/pnas.1901659116] [PMID: 31036637]
[132]
Huang, Y.W.A.; Zhou, B.; Wernig, M.; Südhof, T.C. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell, 2017, 168(3), 427-441.e21.
[http://dx.doi.org/10.1016/j.cell.2016.12.044] [PMID: 28111074]
[133]
Gocer, H.; Topal, F.; Topal, M.; Küçük, M.; Teke, D.; Gülçin, İ.; Alwasel, S.H.; Supuran, C.T. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J. Enzyme Inhib. Med. Chem., 2015, 31(3), 1-7.
[http://dx.doi.org/10.3109/14756366.2015.1036051] [PMID: 25893707]
[134]
Kim, J.W.; Im, S.; Jeong, H.R.; Jung, Y.S.; Lee, I.; Kim, K.J.; Park, S.K.; Kim, D.O. Neuroprotective effects of korean red pine (Pinus densiflora) bark extract and its phenolics. J. Microbiol. Biotechnol., 2018, 28(5), 679-687.
[http://dx.doi.org/10.4014/jmb.1801.01053] [PMID: 29539881]
[135]
Weber, S.A.; Patel, R.K.; Lutsep, H.L. Cerebral amyloid angiopathy: Diagnosis and potential therapies. Expert Rev. Neurother., 2018, 18(6), 503-513.
[http://dx.doi.org/10.1080/14737175.2018.1480938] [PMID: 29792540]
[136]
Kozberg, M.G.; Perosa, V.; Gurol, M.E.; van Veluw, S.J. A practical approach to the management of cerebral amyloid angiopathy. Int. J. Stroke, 2021, 16(4), 356-369.
[http://dx.doi.org/10.1177/1747493020974464] [PMID: 33252026]
[137]
Jäkel, L.; Van Nostrand, W.E.; Nicoll, J.A.R.; Werring, D.J.; Verbeek, M.M. Animal models of cerebral amyloid angiopathy. Clin. Sci., 2017, 131(19), 2469-2488.
[http://dx.doi.org/10.1042/CS20170033] [PMID: 28963121]
[138]
Greenberg, S.M.; Bacskai, B.J.; Hernandez-Guillamon, M.; Pruzin, J.; Sperling, R.; van Veluw, S.J. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat. Rev. Neurol., 2020, 16(1), 30-42.
[http://dx.doi.org/10.1038/s41582-019-0281-2] [PMID: 31827267]
[139]
Saito, S.; Yamamoto, Y.; Maki, T.; Hattori, Y.; Ito, H.; Mizuno, K.; Harada-Shiba, M.; Kalaria, R.N.; Fukushima, M.; Takahashi, R.; Ihara, M. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy. Acta Neuropathol. Commun., 2017, 5(1), 26.
[http://dx.doi.org/10.1186/s40478-017-0429-5] [PMID: 28376923]
[140]
Saito, S.; Ihara, M. New therapeutic approaches for Alzheimer’s disease and cerebral amyloid angiopathy. Front. Aging Neurosci., 2014, 6, 290.
[http://dx.doi.org/10.3389/fnagi.2014.00290] [PMID: 25368578]
[141]
Saito, S.; Tanaka, M.; Satoh-Asahara, N.; Carare, R.O.; Ihara, M. Taxifolin: A potential therapeutic agent for cerebral amyloid angiopathy. Front. Pharmacol., 2021, 12, 643357.
[http://dx.doi.org/10.3389/fphar.2021.643357] [PMID: 33643053]
[142]
Park, L.; Koizumi, K.; El Jamal, S.; Zhou, P.; Previti, M.L.; Van Nostrand, W.E.; Carlson, G.; Iadecola, C. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke, 2014, 45(6), 1815-1821.
[http://dx.doi.org/10.1161/STROKEAHA.114.005179] [PMID: 24781082]
[143]
Fassler, M.; Rappaport, M.S.; Cuño, C.B.; George, J. Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer’s disease models. J. Neuroinflammation, 2021, 18(1), 19.
[http://dx.doi.org/10.1186/s12974-020-01980-5] [PMID: 33422057]
[144]
Walker, F.O. Huntington’s disease. Lancet, 2007, 369(9557), 218-228.
[http://dx.doi.org/10.1016/S0140-6736(07)60111-1] [PMID: 17240289]
[145]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[146]
Björkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; Magnusson, A.; Woodman, B.; Landles, C.; Pouladi, M.A.; Hayden, M.R.; Khalili-Shirazi, A.; Lowdell, M.W.; Brundin, P.; Bates, G.P.; Leavitt, B.R.; Möller, T.; Tabrizi, S.J. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med., 2008, 205(8), 1869-1877.
[http://dx.doi.org/10.1084/jem.20080178] [PMID: 18625748]
[147]
Qi, L.; Zhang, X.D.; Wu, J.C.; Lin, F.; Wang, J.; DiFiglia, M.; Qin, Z.H. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS One, 2012, 7(10), e46834.
[http://dx.doi.org/10.1371/journal.pone.0046834] [PMID: 23071649]
[148]
Wu, Z.; Parry, M.; Hou, X.Y.; Liu, M.H.; Wang, H.; Cain, R.; Pei, Z.F.; Chen, Y.C.; Guo, Z.Y.; Abhijeet, S.; Chen, G. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat. Commun., 2020, 11(1), 1105.
[http://dx.doi.org/10.1038/s41467-020-14855-3] [PMID: 32107381]
[149]
Maksimovich, N.Y.; Dremza, I.K.; Troyan, E.I.; Maksimovich, Y.N.; Borodinskiĭ, A.N. The correcting effects of dihydroquercetin in cerebral ischemia-reperfusion injury. Biomed. Khim., 2014, 60(6), 643-650.
[http://dx.doi.org/10.18097/PBMC20146006643] [PMID: 25552503]
[150]
Stegner, D.; Klaus, V.; Nieswandt, B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front. Immunol., 2019, 10, 2505.
[http://dx.doi.org/10.3389/fimmu.2019.02505] [PMID: 31736950]
[151]
Wang, Y.H.; Wang, W.Y.; Chang, C.C.; Liou, K.T.; Sung, Y.J.; Liao, J.F.; Chen, C.F.; Chang, S.; Hou, Y.C.; Chou, Y.C.; Shen, Y.C. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J. Biomed. Sci., 2006, 13(1), 127-141.
[http://dx.doi.org/10.1007/s11373-005-9031-0] [PMID: 16283433]
[152]
Shubina, V.S.; Shatalin, Y.V. Antioxidant and iron-chelating properties of taxifolin and its condensation product with glyoxylic acid. J. Food Sci. Technol., 2017, 54(6), 1467-1475.
[http://dx.doi.org/10.1007/s13197-017-2573-0] [PMID: 28559605]
[153]
Murach, E.I.; Baranov, I.A.; Erlykina, E.I.; Koryagin, A.S.; Mochalova, A.E.; Smirnova, L.A. Adaptogenic effects of dihydroquercetin-chitosan composition during modeling of acute hypoxia. Bull. Exp. Biol. Med., 2014, 156(3), 306-309.
[http://dx.doi.org/10.1007/s10517-014-2336-0] [PMID: 24771363]
[154]
Zu, Y.; Wu, W.; Zhao, X.; Li, Y.; Zhong, C.; Zhang, Y. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method. Int. J. Pharm., 2014, 477(1-2), 148-158.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.027] [PMID: 25455767]
[155]
Zinchenko, V.P.; Kim, IuA.; Tarakhovskiĭ, IuS.; Bronnikov, G.E. Biological activity of water-soluble nanostructures of dihydroquercetin with cyclodextrins. Biofizika, 2011, 56(3), 433-438.
[PMID: 21786696]
[156]
Yang, P.; Xu, F.; Li, H.F.; Wang, Y.; Li, F.C.; Shang, M.Y.; Liu, G.X.; Wang, X.; Cai, S.Q. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MSn. Molecules, 2016, 21(9), 1209.
[http://dx.doi.org/10.3390/molecules21091209] [PMID: 27649117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy