Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Metal-Organic Framework in Pharmaceutical Drug Delivery

Author(s): Sudipto Kundu, Akey Krishna Swaroop and Jubie Selvaraj*

Volume 23, Issue 13, 2023

Published on: 02 March, 2023

Page: [1155 - 1170] Pages: 16

DOI: 10.2174/1568026623666230202122519

Price: $65

Open Access Journals Promotions 2
Abstract

Metal-organic frameworks (MOFs) are porous, crystalline materials made up of organic ligands and metal ions/metal clusters linked by coordinative bonds. This large family is becoming increasingly popular for drug delivery due to their tuneable porosity, chemical composition, size and shape, and ease of surface functionalization. There has been a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. Starting with the MOFs classification adapted for drug delivery systems (DDSs) based on the types of constituting metals and ligands. MOFs are appealing drug delivery vehicles because of their substantial drug absorption capacity and slow-release processes, which protect and convey sensitive drug molecules to target areas. Other guest materials have been incorporated into MOFs to create MOF-composite materials, which have added additional functionalities such as externally triggered drug release, improved pharmacokinetics, and diagnostic aids. Magnetic nanoparticles in MOFs for MRI image contrast and polymer coatings that increase blood circulation time are examples of synthetically adaptable MOF-composites. By including photosensitizers, which exert lethal effects on cancer cells by converting tumour oxygen into reactive singlet oxygen (1O2), metalorganic frameworks have been employed for photodynamic treatment (PDT) of malignancies among a multitude of nanosized therapies. Importantly, a variety of representative MOF applications are described from the perspectives of pharmaceutics, disease therapy, and advanced drug delivery systems. However, because of their weak conductivity, selectivity, and lack of modification sites, MOF materials' uses in electrochemical biosensing are restricted. MOF-based composites provide excellent electrical conductivity and robust catalytic activity by adding functionalized nanoparticles into MOF structures, which process benefits over single component MOFs.

Keywords: Metal organic framework, Drug delivery system, Photodynamic treatment, Antitumor agents, Biosensing, Biomedical application.

Next »
Graphical Abstract
[1]
Osterrieth, J.W.M.; Fairen-Jimenez, D. Metal-organic framework composites for theragnostics and drug delivery applications. Biotechnol. J., 2021, 16(2), 2000005.
[http://dx.doi.org/10.1002/biot.202000005] [PMID: 32330358]
[2]
He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; Gref, R.; Zhang, J. Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B, 2021, 11(8), 2362-2395.
[http://dx.doi.org/10.1016/j.apsb.2021.03.019] [PMID: 34522591]
[3]
Hoskins, B.F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc., 1989, 111(15), 5962-5964.
[http://dx.doi.org/10.1021/ja00197a079]
[4]
Tong, P.; Liang, J.; Jiang, X.; Li, J. Research progress on metal-organic framework composites in chemical sensors. Crit. Rev. Anal. Chem., 2020, 50(4), 376-392.
[http://dx.doi.org/10.1080/10408347.2019.1642732] [PMID: 31353929]
[5]
Liao, X.; Fu, H.; Yan, T.; Lei, J. Electroactive metal-organic framework composites: Design and biosensing application. Biosens. Bioelectron., 2019, 146, 111743.
[http://dx.doi.org/10.1016/j.bios.2019.111743] [PMID: 31586760]
[6]
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.C. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater., 2018, 30(37), 1704303.
[http://dx.doi.org/10.1002/adma.201704303] [PMID: 29430732]
[7]
Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin‐based metal-organic frameworks for biomedical applications. Angew. Chem. Int. Ed., 2021, 60(10), 5010-5035.
[http://dx.doi.org/10.1002/anie.201909880] [PMID: 31989749]
[8]
Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer. Pharmaceutics, 2020, 12(3), 232.
[http://dx.doi.org/10.3390/pharmaceutics12030232] [PMID: 32151012]
[9]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[10]
Carrasco, S. Metal-organic frameworks for the development of biosensors: A current overview. Biosensors (Basel), 2018, 8(4), 92.
[http://dx.doi.org/10.3390/bios8040092] [PMID: 30332786]
[11]
Wu, M.X.; Yang, Y.W. Metal-Organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1606134.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[12]
He, L.; Liu, Y.; Lau, J.; Fan, W.; Li, Q.; Zhang, C.; Huang, P.; Chen, X. Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine (Lond.), 2019, 14(10), 1343-1365.
[http://dx.doi.org/10.2217/nnm-2018-0347] [PMID: 31084393]
[13]
Ma, W.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem., 2013, 85(15), 7550-7557.
[http://dx.doi.org/10.1021/ac401576u] [PMID: 23815314]
[14]
Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. (Weinh.), 2019, 6(1), 1801526.
[http://dx.doi.org/10.1002/advs.201801526] [PMID: 30643728]
[15]
Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/Metal Organic Framework (MOF) nanocomposites for biomedical applications. Molecules, 2020, 25(1), 185.
[http://dx.doi.org/10.3390/molecules25010185] [PMID: 31906398]
[16]
Yang, Q.; Xu, Q.; Jiang, H.L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev., 2017, 46(15), 4774-4808.
[http://dx.doi.org/10.1039/C6CS00724D] [PMID: 28621344]
[17]
Kang, Z.; Xue, M.; Zhang, D.; Fan, L.; Pan, Y.; Qiu, S. Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorg. Chem. Commun., 2015, 58, 79-83.
[http://dx.doi.org/10.1016/j.inoche.2015.06.007]
[18]
Lan, Q.; Zhang, Z.M.; Qin, C.; Wang, X.L.; Li, Y.G.; Tan, H.Q.; Wang, E.B. Highly dispersed polyoxometalate-doped porous Co3 O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chemistry, 2016, 22(43), 15513-15520.
[http://dx.doi.org/10.1002/chem.201602127] [PMID: 27607355]
[19]
Rojas, S.; Devic, T.; Horcajada, P. Metal organic frameworks based on bioactive components. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(14), 2560-2573.
[http://dx.doi.org/10.1039/C6TB03217F] [PMID: 32264034]
[20]
Dongmei, L.; Zhiwei, W.; Qi, Z.; Fuyi, C.; Yujuan, S.; Xiaodong, L. Drinking water toxicity study of the environmental contaminant--Bromate. Regul. Toxicol. Pharmacol., 2015, 73(3), 802-810.
[http://dx.doi.org/10.1016/j.yrtph.2015.10.015] [PMID: 26496820]
[21]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[22]
Gao, X.; Cui, R.; Song, L.; Liu, Z. Hollow structural metal-organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans., 2019, 48(46), 17291-17297.
[http://dx.doi.org/10.1039/C9DT03287H] [PMID: 31714562]
[23]
Leng, X.; Dong, X.; Wang, W.; Sai, N.; Yang, C.; You, L.; Huang, H.; Yin, X.; Ni, J. Biocompatible Fe-based micropore metal-organic frameworks as sustained-release anticancer drug carriers. Molecules, 2018, 23(10), 2490.
[http://dx.doi.org/10.3390/molecules23102490] [PMID: 30274195]
[24]
Zhang, M.; Chen, Y.P.; Bosch, M.; Gentle, T., III; Wang, K.; Feng, D.; Wang, Z.U.; Zhou, H.C. Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. Angew. Chem. Int. Ed., 2014, 53(3), 815-818.
[http://dx.doi.org/10.1002/anie.201307340] [PMID: 24218230]
[25]
Bai, Y.; Dou, Y.; Xie, L.H.; Rutledge, W.; Li, J.R.; Zhou, H.C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev., 2016, 45(8), 2327-2367.
[http://dx.doi.org/10.1039/C5CS00837A] [PMID: 26886869]
[26]
He, Y.; Zhang, W.; Guo, T.; Zhang, G.; Qin, W.; Zhang, L.; Wang, C.; Zhu, W.; Yang, M.; Hu, X.; Singh, V.; Wu, L.; Gref, R.; Zhang, J. Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm. Sin. B, 2019, 9(1), 97-106.
[http://dx.doi.org/10.1016/j.apsb.2018.09.003] [PMID: 30766781]
[27]
Inoue, Y.; Nanri, A.; Murata, I.; Kanamoto, I. Characterization of inclusion complex of coenzyme Q10 with the new carrier CD-MOF-1 prepared by solvent evaporation. AAPS PharmSciTech, 2018, 19(7), 3048-3056.
[http://dx.doi.org/10.1208/s12249-018-1136-7] [PMID: 30088151]
[28]
Schnabel, J.; Ettlinger, R.; Bunzen, H. Zn‐MOF‐74 as pH‐responsive drug‐delivery system of arsenic trioxide. ChemNanoMat, 2020, 6(8), 1229-1236.
[http://dx.doi.org/10.1002/cnma.202000221]
[29]
Alsaiari, S.K.; Patil, S.; Alyami, M.; Alamoudi, K.O.; Aleisa, F.A.; Merzaban, J.S.; Li, M.; Khashab, N.M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc., 2018, 140(1), 143-146.
[http://dx.doi.org/10.1021/jacs.7b11754] [PMID: 29272114]
[30]
Anand, R.; Borghi, F.; Manoli, F.; Manet, I.; Agostoni, V.; Reschiglian, P.; Gref, R.; Monti, S. Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B, 2014, 118(29), 8532-8539.
[http://dx.doi.org/10.1021/jp503809w] [PMID: 24960194]
[31]
Li, X.; Semiramoth, N.; Hall, S.; Tafani, V.; Josse, J.; Laurent, F.; Salzano, G.; Foulkes, D.; Brodin, P.; Majlessi, L.; Ghermani, N.E.; Maurin, G.; Couvreur, P.; Serre, C.; Bernet-Camard, M.F.; Zhang, J.; Gref, R. Compartmentalized encapsulation of two antibiotics in porous nanoparticles: An efficient strategy to treat intracellular infections. Part. Part. Syst. Charact., 2019, 36(3), 1800360.
[http://dx.doi.org/10.1002/ppsc.201800360]
[32]
Agostoni, V.; Chalati, T.; Horcajada, P.; Willaime, H.; Anand, R.; Semiramoth, N.; Baati, T.; Hall, S.; Maurin, G.; Chacun, H.; Bouchemal, K.; Martineau, C.; Taulelle, F.; Couvreur, P.; Rogez-Kreuz, C.; Clayette, P.; Monti, S.; Serre, C.; Gref, R. Towards an improved anti-HIV activity of NRTI via metal-organic frameworks nanoparticles. Adv. Healthc. Mater., 2013, 2(12), 1630-1637.
[http://dx.doi.org/10.1002/adhm.201200454] [PMID: 23776182]
[33]
Marcos-Almaraz, M.T.; Gref, R.; Agostoni, V.; Kreuz, C.; Clayette, P.; Serre, C.; Couvreur, P.; Horcajada, P. Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(43), 8563-8569.
[http://dx.doi.org/10.1039/C7TB01933E] [PMID: 32264524]
[34]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed., 2006, 45(36), 5974-5978.
[http://dx.doi.org/10.1002/anie.200601878] [PMID: 16897793]
[35]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized frameworks with giant pores: are there limits to the possible? Acc. Chem. Res., 2005, 38(4), 217-225.
[http://dx.doi.org/10.1021/ar040163i] [PMID: 15835868]
[36]
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2008, 130(21), 6774-6780.
[http://dx.doi.org/10.1021/ja710973k] [PMID: 18454528]
[37]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[38]
Mínguez Espallargas, G.; Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev., 2018, 47(2), 533-557.
[http://dx.doi.org/10.1039/C7CS00653E] [PMID: 29112210]
[39]
Gordon, J.; Kazemian, H.; Rohani, S. MIL-53(Fe), MIL-101, and SBA-15 porous materials: Potential platforms for drug delivery. Mater. Sci. Eng. C, 2015, 47, 172-179.
[http://dx.doi.org/10.1016/j.msec.2014.11.046] [PMID: 25492186]
[40]
Kriesten, M.; Hoffmann, K.; Hartmann, M. Comment on “Insight into the reversible structural crystalline-state transformation from MIL-53(Al) to MIL-68(Al)” by A. Perea-Cachero, E. Romero, C. Téllez and J. Coronas. CrystEngComm, 2018, 20, 3117-3119.
[http://dx.doi.org/10.1039/C8CE00398J]
[41]
Rojas, S.; Carmona, F.J.; Maldonado, C.R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J.A.R.; Barea, E. Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem., 2016, 55(5), 2650-2663.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00045] [PMID: 26886572]
[42]
Bag, P.P.; Wang, D.; Chen, Z.; Cao, R. Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem. Commun. (Camb.), 2016, 52(18), 3669-3672.
[http://dx.doi.org/10.1039/C5CC09925K] [PMID: 26853858]
[43]
Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc., 2016, 138(3), 962-968.
[http://dx.doi.org/10.1021/jacs.5b11720] [PMID: 26710234]
[44]
Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H.; Meng, X. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials, 2018, 162, 132-143.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.022] [PMID: 29448141]
[45]
Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, X.; Xu, J.; Zhu, H.; Zhao, R.; He, F.; Gai, S.; Yang, P. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials, 2019, 223119473.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119473] [PMID: 31499255]
[46]
Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 2008, 130(42), 13850-13851.
[http://dx.doi.org/10.1021/ja8057953] [PMID: 18817383]
[47]
Lee, D.B.N.; Roberts, M.; Bluchel, C.G.; Odell, R.A. Zirconium: biomedical and nephrological applications. ASAIO J., 2010, 56(6), 550-556.
[http://dx.doi.org/10.1097/MAT.0b013e3181e73f20] [PMID: 21245802]
[48]
Abánades Lázaro, I.; Abánades Lázaro, S.; Forgan, R.S. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem. Commun. (Camb.), 2018, 54(22), 2792-2795.
[http://dx.doi.org/10.1039/C7CC09739E] [PMID: 29485148]
[49]
Röder, R.; Preiß, T.; Hirschle, P.; Steinborn, B.; Zimpel, A.; Höhn, M.; Rädler, J.O.; Bein, T.; Wagner, E.; Wuttke, S.; Lächelt, U. Multifunctional nanoparticles by coordinative self-assembly of histagged units with metal-organic frameworks. J. Am. Chem. Soc., 2017, 139(6), 2359-2368.
[http://dx.doi.org/10.1021/jacs.6b11934] [PMID: 28075125]
[50]
Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Marshall, R.J.; Sastre, B.; del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S. Surface-functionalization of Zr-fumarate MOF for selective cytotoxicity and immune system compatibility in nanoscale drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(37), 31146-31157.
[http://dx.doi.org/10.1021/acsami.8b11652] [PMID: 30136840]
[51]
Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A.M.; Behrens, P. Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater., 2012, 152, 64-70.
[http://dx.doi.org/10.1016/j.micromeso.2011.12.010]
[52]
Schaate, A.; Roy, P.; Preuße, T.; Lohmeier, S.J.; Godt, A.; Behrens, P. Porous interpenetrated zirconium-organic frameworks (PIZOFs): a chemically versatile family of metal-organic frameworks. Chemistry, 2011, 17(34), 9320-9325.
[http://dx.doi.org/10.1002/chem.201101015] [PMID: 21796692]
[53]
Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.Z.; Yaghi, O.M.; Stoddart, J.F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed., 2010, 49(46), 8630-8634.
[http://dx.doi.org/10.1002/anie.201002343] [PMID: 20715239]
[54]
Han, Y.; Liu, W.; Huang, J.; Qiu, S.; Zhong, H.; Liu, D.; Liu, J. Cyclodextrin-Based Metal-Organic Frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics, 2018, 10(4), 271.
[http://dx.doi.org/10.3390/pharmaceutics10040271] [PMID: 30545114]
[55]
Li, X.; Guo, T.; Lachmanski, L.; Manoli, F.; Menendez-Miranda, M.; Manet, I.; Guo, Z.; Wu, L.; Zhang, J.; Gref, R. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles. Int. J. Pharm., 2017, 531(2), 424-432.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.056] [PMID: 28554546]
[56]
Kritskiy, I.; Volkova, T.; Surov, A.; Terekhova, I. γ-Cyclodextrin-metal organic frameworks as efficient microcontainers for encapsulation of leflunomide and acceleration of its transformation into teriflunomide. Carbohydr. Polym., 2019, 216, 224-230.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.037] [PMID: 31047061]
[57]
Hu, X.; Wang, C.; Wang, L.; Liu, Z.; Wu, L.; Zhang, G.; Yu, L.; Ren, X.; York, P.; Sun, L.; Zhang, J.; Li, H. Nanoporous CD-MOF particles with uniform and inhalable size for pulmonary delivery of budesonide. Int. J. Pharm., 2019, 564, 153-161.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.030] [PMID: 30981874]
[58]
He, Y.; Xu, J.; Sun, X.; Ren, X.; Maharjan, A.; York, P.; Su, Y.; Li, H.; Zhang, J. Cuboidal tethered cyclodextrin frameworks tailored for hemostasis and injured vessel targeting. Theranostics, 2019, 9(9), 2489-2504.
[http://dx.doi.org/10.7150/thno.31159] [PMID: 31131049]
[59]
Hartlieb, K.J.; Ferris, D.P.; Holcroft, J.M.; Kandela, I.; Stern, C.L.; Nassar, M.S.; Botros, Y.Y.; Stoddart, J.F. Encapsulation of Ibuprofen in CD-MOF and related bioavailability studies. Mol. Pharm., 2017, 14(5), 1831-1839.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00168] [PMID: 28355489]
[60]
Li, H.; Lv, N.; Li, X.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Fraser Stoddart, J.; Gref, R.; Zhang, J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 2017, 9(22), 7454-7463.
[http://dx.doi.org/10.1039/C6NR07593B] [PMID: 28530283]
[61]
Lu, W.; Wei, Z.; Gu, Z.Y.; Liu, T.F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T., III; Bosch, M.; Zhou, H.C. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev., 2014, 43(16), 5561-5593.
[http://dx.doi.org/10.1039/C4CS00003J] [PMID: 24604071]
[62]
Bala, S.; Bhattacharya, S.; Goswami, A.; Adhikary, A.; Konar, S.; Mondal, R. Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties: Structural correlation with magnetic and photocatalytic activity. Cryst. Growth Des., 2014, 14(12), 6391-6398.
[http://dx.doi.org/10.1021/cg501226v]
[63]
Xu, H.; Cai, J.; Xiang, S.; Zhang, Z.; Wu, C.; Rao, X.; Cui, Y.; Yang, Y.; Krishna, R.; Chen, B.; Qian, G. A cationic microporous metal-organic framework for highly selective separation of small hydrocarbons at room temperature. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(34), 9916.
[http://dx.doi.org/10.1039/c3ta12086d]
[64]
Gramaccioli, C.M. The crystal structure of zinc glutamate dihydrate. Acta Crystallogr., 1966, 21(4), 600-605.
[http://dx.doi.org/10.1107/S0365110X66003529] [PMID: 5953453]
[65]
Miller, S.R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J.M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. (Camb.), 2010, 46(25), 4526-4528.
[http://dx.doi.org/10.1039/c001181a] [PMID: 20467672]
[66]
Levine, D.J.; Runčevski, T.; Kapelewski, M.T.; Keitz, B.K.; Oktawiec, J.; Reed, D.A.; Mason, J.A.; Jiang, H.Z.H.; Colwell, K.A.; Legendre, C.M.; FitzGerald, S.A.; Long, J.R. Olsalazine-based metal-organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. J. Am. Chem. Soc., 2016, 138(32), 10143-10150.
[http://dx.doi.org/10.1021/jacs.6b03523] [PMID: 27486905]
[67]
Saraf, M.; Rajak, R.; Mobin, S.M. A fascinating multitasking CuMOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(42), 16432-16445.
[http://dx.doi.org/10.1039/C6TA06470A]
[68]
Song, Y.; Gong, C.; Su, D.; Shen, Y.; Song, Y.; Wang, L. A novel ascorbic acid electrochemical sensor based on spherical MOF-5 arrayed on a three-dimensional porous carbon electrode. Anal. Methods, 2016, 8(10), 2290-2296.
[http://dx.doi.org/10.1039/C6AY00136J]
[69]
Zhao, D.; Wan, X.; Song, H.; Hao, L.; Su, Y.; Lv, Y. Metal-organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sens. Actuators B Chem., 2014, 197, 50-57.
[http://dx.doi.org/10.1016/j.snb.2014.02.070]
[70]
Xin, W.L.; Jiang, L.F.; Zong, L.P.; Zeng, H.B.; Shu, G.F.; Marks, R.; Zhang, X.; Shan, D. MoS2 quantum dots-combined zirconiummetalloporphyrin frameworks: Synergistic effect on electron transfer and application for bioassay. Sens. Actuators B Chem., 2018, 273, 566-573.
[http://dx.doi.org/10.1016/j.snb.2018.06.090]
[71]
Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev., 2017, 46(11), 3386-3401.
[http://dx.doi.org/10.1039/C7CS00058H] [PMID: 28451673]
[72]
Shieh, F.K.; Wang, S.C.; Yen, C.I.; Wu, C.C.; Dutta, S.; Chou, L.Y.; Morabito, J.V.; Hu, P.; Hsu, M.H.; Wu, K.C.W.; Tsung, C.K. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc., 2015, 137(13), 4276-4279.
[http://dx.doi.org/10.1021/ja513058h] [PMID: 25781479]
[73]
Maranescu, B.; Visa, A. Applications of metal-organic frameworks as drug delivery systems. Int. J. Mol. Sci., 2022, 23(8), 4458.
[http://dx.doi.org/10.3390/ijms23084458] [PMID: 35457275]
[74]
Hu, S.; Ouyang, W.; Guo, L.; Lin, Z.; Jiang, X.; Qiu, B.; Chen, G. Facile synthesis of Fe3O4/g-C 3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron., 2017, 92, 718-723.
[http://dx.doi.org/10.1016/j.bios.2016.10.006] [PMID: 27856163]
[75]
Ma, Y.; Xu, G.; Wei, F.; Cen, Y.; Xu, X.; Shi, M.; Cheng, X.; Chai, Y.; Sohail, M.; Hu, Q. One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine b modified carbon dots in metal-organic framework for enhanced HClO sensing. ACS Appl. Mater. Interfaces, 2018, 10(24), 20801-20805.
[http://dx.doi.org/10.1021/acsami.8b05643] [PMID: 29856924]
[76]
Jhung, S.H.; Lee, J.H.; Forster, P.M.; Férey, G.; Cheetham, A.K.; Chang, J.S. Microwave synthesis of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization. Chemistry, 2006, 12(30), 7899-7905.
[http://dx.doi.org/10.1002/chem.200600270] [PMID: 16871506]
[77]
Sun, C.Y.; Qin, C.; Wang, X.L.; Su, Z.M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv., 2013, 10(1), 89-101.
[http://dx.doi.org/10.1517/17425247.2013.741583] [PMID: 23140545]
[78]
Sun, Y.; Zhou, H.C. Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater., 2015, 16(5), 054202.
[http://dx.doi.org/10.1088/1468-6996/16/5/054202] [PMID: 27877831]
[79]
Das, A.K.; Vemuri, R.S.; Kutnyakov, I.; McGrail, B.P.; Motkuri, R.K. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance. Sci. Rep., 2016, 6(1), 28050.
[http://dx.doi.org/10.1038/srep28050] [PMID: 27306598]
[80]
Juan-Alcañiz, J.; Gascon, J.; Kapteijn, F. Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J. Mater. Chem., 2012, 22(20), 10102.
[http://dx.doi.org/10.1039/c2jm15563j]
[81]
Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev., 2011, 40(1), 291-305.
[http://dx.doi.org/10.1039/C0CS00042F] [PMID: 21107481]
[82]
Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R.A.; Wöll, C. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc., 2007, 129(49), 15118-15119.
[http://dx.doi.org/10.1021/ja076210u] [PMID: 18020338]
[83]
Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865), 939-943.
[http://dx.doi.org/10.1126/science.1152516] [PMID: 18276887]
[84]
Sha, J.; Yang, X.; Sun, L.; Zhang, X.; Li, S.; Li, J.; Sheng, N. Unprecedented α-cyclodextrin metal-organic frameworks with chirality: Structure and drug adsorptions. Polyhedron, 2017, 127, 396-402.
[http://dx.doi.org/10.1016/j.poly.2016.10.012]
[85]
Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem., 2011, 21(7), 2220-2227.
[http://dx.doi.org/10.1039/C0JM03563G]
[86]
Lee, J-H. Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull. Korean Chem. Soc., 2005, 26(6), 880-881.
[http://dx.doi.org/10.5012/bkcs.2005.26.6.880]
[87]
Liu, B.; He, Y.; Han, L.; Singh, V.; Xu, X.; Guo, T.; Meng, F.; Xu, X.; York, P.; Liu, Z.; Zhang, J. Microwave-assisted rapid synthesis of γ-cyclodextrin metal-organic frameworks for size control and efficient drug loading. Cryst. Growth Des., 2017, 17(4), 1654-1660.
[http://dx.doi.org/10.1021/acs.cgd.6b01658]
[88]
Yang, D.A.; Cho, H.Y.; Kim, J.; Yang, S.T.; Ahn, W.S. CO 2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci., 2012, 5(4), 6465-6473.
[http://dx.doi.org/10.1039/C1EE02234B]
[89]
Jones, W.D.; Kosar, W.P. Carbon-hydrogen bond activation by ruthenium for the catalytic synthesis of indoles. J. Am. Chem. Soc., 1986, 108(18), 5640-5641.
[http://dx.doi.org/10.1021/ja00278a054]
[90]
Kim, J.; Yang, S.T.; Choi, S.B.; Sim, J.; Kim, J.; Ahn, W.S. Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem., 2011, 21(9), 3070.
[http://dx.doi.org/10.1039/c0jm03318a]
[91]
Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wu, S. Porous iron-carboxylate metal-organic framework: A novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS Appl. Mater. Interfaces, 2017, 9(22), 19248-19257.
[http://dx.doi.org/10.1021/acsami.7b04810] [PMID: 28558188]
[92]
Sava Gallis, D.F.; Butler, K.S.; Agola, J.O.; Pearce, C.J.; McBride, A.A. Antibacterial countermeasures via metal-organic framework-supported sustained therapeutic release. ACS Appl. Mater. Interfaces, 2019, 11(8), 7782-7791.
[http://dx.doi.org/10.1021/acsami.8b21698] [PMID: 30682243]
[93]
Zhang, X.; Liu, L.; Huang, L.; Zhang, W.; Wang, R.; Yue, T.; Sun, J.; Li, G.; Wang, J. The highly efficient elimination of intracellular bacteria via a metal organic framework (MOF)-based three-in-one delivery system. Nanoscale, 2019, 11(19), 9468-9477.
[http://dx.doi.org/10.1039/C9NR01284B] [PMID: 31044197]
[94]
Mohamed, N.A.; Davies, R.P.; Lickiss, P.D.; Ahmetaj-Shala, B.; Reed, D.M.; Gashaw, H.H.; Saleem, H.; Freeman, G.R.; George, P.M.; Wort, S.J.; Morales-Cano, D.; Barreira, B.; Tetley, T.D.; Chester, A.H.; Yacoub, M.H.; Kirkby, N.S.; Moreno, L.; Mitchell, J.A. Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: relevance to pulmonary arterial hypertension therapy. Pulm. Circ., 2017, 7(3), 643-653.
[http://dx.doi.org/10.1177/2045893217710224] [PMID: 28447910]
[95]
Simon-Yarza, T.; Giménez-Marqués, M.; Mrimi, R.; Mielcarek, A.; Gref, R.; Horcajada, P.; Serre, C.; Couvreur, P. A smart metal-organic framework nanomaterial for lung targeting. Angew. Chem. Int. Ed., 2017, 56(49), 15565-15569.
[http://dx.doi.org/10.1002/anie.201707346] [PMID: 28960750]
[96]
Duan, Y.; Ye, F.; Huang, Y.; Qin, Y.; He, C.; Zhao, S. One-pot synthesis of a metal-organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem. Commun. (Camb.), 2018, 54(42), 5377-5380.
[http://dx.doi.org/10.1039/C8CC02708K] [PMID: 29745409]
[97]
Yang, X.X.; Feng, P.; Cao, J.; Liu, W.; Tang, Y. Composition-engineered metal-organic framework-based microneedles for glucose-mediated transdermal insulin delivery. ACS Appl. Mater. Interfaces, 2020, 12(12), 13613-13621.
[http://dx.doi.org/10.1021/acsami.9b20774] [PMID: 32138507]
[98]
Jiang, W.; Zhang, H.; Wu, J.; Zhai, G.; Li, Z.; Luan, Y.; Garg, S. CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy. ACS Appl. Mater. Interfaces, 2018, 10(40), 34513-34523.
[http://dx.doi.org/10.1021/acsami.8b13487] [PMID: 30215253]
[99]
Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; Liang, X.J.; Zhang, J. Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.007] [PMID: 29913389]
[100]
Meng, X.; Deng, J.; Liu, F.; Guo, T.; Liu, M.; Dai, P.; Fan, A.; Wang, Z.; Zhao, Y. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Lett., 2019, 19(11), 7866-7876.
[http://dx.doi.org/10.1021/acs.nanolett.9b02904] [PMID: 31594301]
[101]
Min, H.; Wang, J.; Qi, Y.; Zhang, Y.; Han, X.; Xu, Y.; Xu, J.; Li, Y.; Chen, L.; Cheng, K.; Liu, G.; Yang, N.; Li, Y.; Nie, G. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater., 2019, 31(15), 1808200.
[http://dx.doi.org/10.1002/adma.201808200] [PMID: 30773718]
[102]
Ku, M.S.; Dulin, W. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-of-Concept. Pharm. Dev. Technol., 2012, 17(3), 285-302.
[http://dx.doi.org/10.3109/10837450.2010.535826] [PMID: 21121705]
[103]
Moussa, Z.; Hmadeh, M.; Abiad, M.G.; Dib, O.H.; Patra, D. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem., 2016, 212, 485-494.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.013] [PMID: 27374559]
[104]
Liang, K.; Coghlan, C.J.; Bell, S.G.; Doonan, C.; Falcaro, P. Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. (Camb.), 2016, 52(3), 473-476.
[http://dx.doi.org/10.1039/C5CC07577G] [PMID: 26548587]
[105]
Lim, E.K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.M.; Lee, K. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev., 2015, 115(1), 327-394.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[106]
Baeza, A.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin. Drug Deliv., 2015, 12(2), 319-337.
[http://dx.doi.org/10.1517/17425247.2014.953051] [PMID: 25421898]
[107]
Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H.C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc., 2016, 138(10), 3518-3525.
[http://dx.doi.org/10.1021/jacs.6b00007] [PMID: 26894555]
[108]
Duan, D.; Liu, H.; Xu, M.; Chen, M.; Han, Y.; Shi, Y.; Liu, Z. Size-controlled synthesis of drug-loaded zeolitic imidazolate framework in aqueous solution and size effect on their cancer theranostics in vivo. ACS Appl. Mater. Interfaces, 2018, 10(49), 42165-42174.
[http://dx.doi.org/10.1021/acsami.8b17660] [PMID: 30457318]
[109]
Qi, X.; Chang, Z.; Zhang, D.; Binder, K.J.; Shen, S.; Huang, Y.Y.S.; Bai, Y.; Wheatley, A.E.H.; Liu, H. Harnessing surface-functionalized metal-organic frameworks for selective tumor cell capture. Chem. Mater., 2017, 29(19), 8052-8056.
[http://dx.doi.org/10.1021/acs.chemmater.7b03269]
[110]
Li, S.Y.; Xie, B.R.; Cheng, H.; Li, C.X.; Zhang, M.K.; Qiu, W.X.; Liu, W.L.; Wang, X.S.; Zhang, X.Z. A biomimetic theranostic O2 -meter for cancer targeted photodynamic therapy and phosphorescence imaging. Biomaterials, 2018, 151, 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.021] [PMID: 29040939]
[111]
Tang, L.; Shi, J.; Wang, X.; Zhang, S.; Wu, H.; Sun, H.; Jiang, Z. Coordination polymer nanocapsules prepared using metal-organic framework templates for pH-responsive drug delivery. Nanotechnology, 2017, 28(27), 275601.
[http://dx.doi.org/10.1088/1361-6528/aa7379] [PMID: 28510533]
[112]
Zhang, X.; Zeng, Y.; Zheng, A.; Cai, Z.; Huang, A.; Zeng, J.; Liu, X.; Liu, J. A fluorescence based immunoassay for galectin-4 using gold nanoclusters and a composite consisting of glucose oxidase and a metal-organic framework. Mikrochim. Acta, 2017, 184(7), 1933-1940.
[http://dx.doi.org/10.1007/s00604-017-2204-5]
[113]
Dong, Z.; Sun, Y.; Chu, J.; Zhang, X.; Deng, H. Multivariate metal-organic frameworks for dialing-in the binding and programming the release of drug molecules. J. Am. Chem. Soc., 2017, 139(40), 14209-14216.
[http://dx.doi.org/10.1021/jacs.7b07392] [PMID: 28898070]
[114]
Cai, H.; Li, M.; Lin, X.R.; Chen, W.; Chen, G.H.; Huang, X.C.; Li, D. Spatial, hysteretic, and adaptive host-guest chemistry in a metal-organic framework with open watson-crick sites. Angew. Chem. Int. Ed., 2015, 54(36), 10454-10459.
[http://dx.doi.org/10.1002/anie.201502045] [PMID: 26178173]
[115]
An, J.; Farha, O.K.; Hupp, J.T.; Pohl, E.; Yeh, J.I.; Rosi, N.L. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun., 2012, 3(1), 604.
[http://dx.doi.org/10.1038/ncomms1618] [PMID: 22215079]
[116]
Cao, J.; Li, X.; Tian, H. Metal-Organic Framework (MOF)-based drug delivery. Curr. Med. Chem., 2020, 27(35), 5949-5969.
[http://dx.doi.org/10.2174/0929867326666190618152518] [PMID: 31215374]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy