Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Aryl-isoquinoline as a Potential Scaffold for Novel Antitumor Agents against Glioblastoma Cells

Author(s): Thais Batista Fernandes, Rosania Yang, Glaucio Monteiro Ferreira, Priscila Oliveira de Souza, Vitor Galvão Lopes, Mônica Franco Zannini Junqueira Toledo, Gabriela Gonçalves Roliano, Gabriela Nogueira Debom, Sandra Valeria Vassiliades, Neuza Mariko Aymoto Hassimotto, Mario Hiroyuki Hirata, Elizandra Braganhol and Roberto Parise-Filho*

Volume 21, Issue 5, 2024

Published on: 22 February, 2023

Page: [948 - 960] Pages: 13

DOI: 10.2174/1570180820666230131111033

Price: $65

Abstract

Background: Glioblastoma is one of the most aggressive types of tumors, which occurs in the central nervous system, and has a high fatality rate. Among the cellular changes observed in glioblastoma is the overexpression of certain anti-apoptotic proteins, such as Bcl-xL. Recently, the alkaloid sanguinarine (SAN) was identified as a potent inhibitor of this class of proteins.

Objective: In this work, the antitumor activity of ten aryl-isoquinolines that were synthesized based on molecular simplification of SAN was investigated.

Methods: The SAN derivatives were prepared by Suzuki reaction and bimolecular nucleophilic substitution. The compounds were tested against glioblastoma (U87MG) and melanoma (A375) tumor lines in the MTT and SRB assay. The cell death mechanism was evaluated by flow cytometry. The molecular modeling study was used to evaluate the interactions between the prepared compounds and the Bcl-xL protein.

Results: Analogues presented IC50 values against glioblastoma lower than temozolomide. Evaluation against astrocytes and fibroblasts indicated that the analogues were significantly superior to SAN regarding selectivity. The most active compound, 2e, induced phosphatidylserine externalization and mitochondrial membrane depolarization, indicating apoptotic death by the intrinsic pathway. In addition, 2e provides cell cycle arrest at the G2/M phase. Molecular dynamics suggested that 2e interacts with Bcl-xL mainly by hydrophobic interactions.

Conclusion: In our study, aryl-isoquinoline represents a relevant scaffold to be explored by medicinal chemists to develop potential anti-glioblastoma agents.

Keywords: Glioma, tumor brain, Bcl-xL, sanguinarine, aryl-isoquinoline, molecular simplification, cytotoxicity, molecular dynamics.

Graphical Abstract
[1]
Oh, S.J.; Yang, J.I.; Kim, O.; Ahn, E.J.; Kang, W.D.; Lee, J.H.; Moon, K.S.; Lee, K.H.; Cho, D. Human U87 glioblastoma cells with stemness features display enhanced sensitivity to natural killer cell cytotoxicity through altered expression of NKG2D ligand. Cancer Cell Int., 2017, 17(1), 22 .https://cancerci.biomedcentral.com/articles/10.1186/s12935-017-0397-7 [Internet
[PMID: 28203118]
[2]
Hottinger, A.F.; Abdullah, K.G.; Stupp, R. Current standards of care in glioblastoma therapy. In: Glioblastoma; Elsevier: Amsterdam, 2016; pp. 73-80.
[3]
Alonso, M.M.; Gomez-Manzano, C.; Bekele, B.N.; Yung, W.K.A.; Fueyo, J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res., 2007, 67(24), 11499-11504.
[PMID: 18089777]
[4]
Baer, J.C.; Freeman, A.A.; Newlands, E.S.; Watson, A.J.; Rafferty, J.A.; Margison, G.P. Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells. Br. J. Cancer, 1993, 67(6), 1299-1302.
[5]
Kanzawa, T.; Germano, I.M.; Kondo, Y.; Ito, H.; Kyo, S.; Kondo, S. Inhibition of telomerase activity in malignant glioma cells correlates with their sensitivity to temozolomide. Br. J. Cancer, 2003, 89(5), 922-929.
[6]
Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis., 2016, 3(3), 198-210.
[PMID: 30258889]
[7]
Jiang, Z.; Zheng, X.; Rich, K.M. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J. Neurochem., 2003, 84(2), 273-281.
[PMID: 12558990]
[8]
Valdés-Rives, S.A.; Casique-Aguirre, D.; Germán-Castelán, L.; Velasco-Velázquez, M.A.; González-Arenas, A. Apoptotic signaling pathways in glioblastoma and therapeutic implications. BioMed Res. Int., 2017, 2017, 7403747.
[PMID: 29259986]
[9]
Saeed, M.E.M.; Mahmoud, N.; Sugimoto, Y.; Efferth, T.; Abdel-Aziz, H. Molecular determinants of sensitivity or resistance of cancer cells toward sanguinarine. Front. Pharmacol., 2018, 9, 136.
[PMID: 29535628]
[10]
Malíková, J. Zdařilová, A.; Hlobilková, A.; Ulrichová, J. The effect of chelerythrine on cell growth, apoptosis, and cell cycle in human normal and cancer cells in comparison with sanguinarine. Cell Biol. Toxicol., 2006, 22(6), 439-453.
[11]
Slaninová, I.; Slunská, Z.; Šinkora, J.; Vlková, M.; Táborská, E.; Slaninov, I. Screening of Minor Benzo(c.) phenanthridine alkaloids for antiproliferative and apoptotic activities. Pharm. Biol., 2008, 45(2), 131-139 .https://www.tandfonline.com/doi/abs/10.1080/13880200601113099 [Internet
[12]
Yang, R.; Tavares, M.T.; Teixeira, S.F.; Azevedo, R.A.; C Pietro, D. Fernandes, T.B.; Ferreira, A.K.; Trossini, G.H.G.; Barbuto, J.A.M.; Parise-Filho, R. Toward chelerythrine optimization: Analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells. Bioorg. Med. Chem., 2016, 24(19), 4600-4610.
[PMID: 27561984]
[13]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[PMID: 3486233]
[14]
Zanotto-Filho, A.; Braganhol, E.; Klafke, K.; Figueiró, F.; Terra, S.R.; Paludo, F.J.; Morrone, M.; Bristot, I.J.; Battastini, A.M.; Forcelini, C.M.; Bishop, A.J.R.; Gelain, D.P.; Moreira, J.C.F. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett., 2015, 358(2), 220-231.
[PMID: 25542083]
[15]
Somensi, N.; Brum, P.O.; de Miranda Ramos, V.; Gasparotto, J.; Zanotto-Filho, A.; Rostirolla, D.C.; da Silva Morrone, M.; Moreira, J.C.F.; Pens Gelain, D. Extracellular HSP70 activates ERK1/2, NF-kB and pro-Inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cell. Physiol. Biochem., 2017, 42(6), 2507-2522.
[PMID: 28848092]
[16]
Kanipandian, N.; Li, D.; Kannan, S. Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity. Biotechnol. Rep. (Amst.), 2019, 23, e00339.
[PMID: 31467862]
[17]
Webb, B.; Sali, A. comparative protein structure modeling using MODELLER. Curr Protoc Bioinforma, 2016, 54(1), 5-6.
[18]
Mukherjee, H.; Su, N.; Belmonte, M.A.; Hargreaves, D.; Patel, J.; Tentarelli, S.; Aquila, B.; Grimster, N.P. Discovery and optimization of covalent Bcl-xL antagonists. Bioorg. Med. Chem. Lett., 2019, 29(23), 126682.
[PMID: 31606346]
[19]
Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1993, 17, 490-519.
[20]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[PMID: 9126849]
[21]
Fischer, A.; Smieško, M.; Sellner, M.; Lill, M.A. Decision making in structure-based drug discovery: Visual inspection of docking results. J. Med. Chem., 2021, 64(5), 2489-2500.
[PMID: 33617246]
[22]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[PMID: 26584231]
[23]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1998, 79(2), 926.
[24]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[25]
Isigkeit, L.; Chaikuad, A.; Merk, D. A consensus compound/bioactivity dataset for data-driven drug design and chemogenomics. Molecules, 2022, 27(8), 2513.
[26]
Noonepalle, S.; Shen, S. Ptáček, J.; Tavares, M.T.; Zhang, G.; Stránský, J.; Pavlíček, J.; Ferreira, G.M.; Hadley, M.; Pelaez, G.; Bařinka, C.; Kozikowski, A.P.; Villagra, A. Rational design of suprastat: A novel selective histone deacetylase 6 inhibitor with the ability to potentiate immunotherapy in melanoma models. J. Med. Chem., 2020, 63(18), 10246-10262.
[PMID: 32815366]
[27]
Rao, X.; Liu, C.; Qiu, J.; Jin, Z. A highly efficient and aerobic protocol for the synthesis of N-heteroaryl substituted 9-arylcarbazolyl derivatives via a palladium-catalyzed ligand-free Suzuki reaction. Org. Biomol. Chem., 2012, 10(39), 7875-7883.
[PMID: 22890246]
[28]
Kelley, C.; Zhang, Y.; Parhi, A.; Kaul, M.; Pilch, D.S.; LaVoie, E.J. 3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents. Bioorg. Med. Chem., 2012, 20(24), 7012-7029.
[PMID: 23127490]
[29]
Zou, Y.; Young, D.D.; Cruz-Montanez, A.; Deiters, A. Synthesis of anthracene and azaanthracene fluorophores via [2+2+2] cyclotrimerization reactions. Org. Lett., 2008, 10(20), 4661-4664.
[PMID: 18816125]
[30]
Lennox, A.J.J.; Lloyd-Jones, G.C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev., 2014, 43(1), 412-443.
[PMID: 24091429]
[31]
Bureš, F. Quaternary ammonium compounds: Simple in structure, complex in application. Top. Curr. Chem., 2019, 377(3), 1-21. Available from: https://link.springer.com/article/10.1007/s41061-019-0239-2
[32]
Jiao, Y.; Niu, L.N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci., 2017, 71, 53-90.
[PMID: 32287485]
[33]
Nishino, M.; Matsuzaki, I.; Musangile, F.Y.; Takahashi, Y.; Iwahashi, Y.; Warigaya, K.; Kinoshita, Y.; Kojima, F.; Murata, S.I. Measurement and visualization of cell membrane surface charge in fixed cultured cells related with cell morphology. PLoS One, 2020, 15(7), e0236373.
[PMID: 32702063]
[34]
Olie, R.A.; Hafner, C.; Küttel, R.; Sigrist, B.; Willers, J.; Dummer, R.; Hall, J.; Stahel, R.A.; Zangemeister-Wittke, U. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J. Invest. Dermatol., 2002, 118(3), 505-512.
[PMID: 11874491]
[35]
Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery.In: Methods in Plant Biochemistry: Assays for Bioactivity. London:; Academic Press Inc., 1991, pp. 71-133.
[36]
Virrey, J.J.; Golden, E.B.; Sivakumar, W.; Wang, W.; Pen, L.; Schönthal, A.H.; Hofman, F.M.; Chen, T.C. Glioma-associated endothelial cells are chemoresistant to temozolomide. J. Neurooncol., 2009, 95(1), 13-22.
[PMID: 19381445]
[37]
Balvan, J.; Krizova, A.; Gumulec, J.; Raudenska, M.; Sladek, Z.; Sedlackova, M.; Babula, P.; Sztalmachova, M.; Kizek, R.; Chmelik, R.; Masarik, M. Multimodal holographic microscopy: Distinction between apoptosis and oncosis. PLoS One, 2015, 10(3), e0121674.
[PMID: 25803711]
[38]
D’Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[PMID: 30958602]
[39]
Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143.
[PMID: 33111928]
[40]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674 .http://www.cell.com/article/S0092867411001279/fulltext [Internet
[PMID: 21376230]
[41]
De Stefano, I.; Raspaglio, G.; Zannoni, G.F.; Travaglia, D.; Prisco, M.G.; Mosca, M.; Ferlini, C.; Scambia, G.; Gallo, D. Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem. Pharmacol., 2009, 78(11), 1374-1381.
[PMID: 19643088]
[42]
Sun, M.; Lou, W.; Chun, J.Y.; Cho, D.S.; Nadiminty, N.; Evans, C.P.; Chen, J.; Yue, J.; Zhou, Q.; Gao, A.C. Sanguinarine suppresses prostate tumor growth and inhibits survivin expression. Genes Cancer, 2010, 1(3), 283-292 .http://www.ncbi.nlm.nih.gov/pubmed/21318089 [Internet
[PMID: 21318089]
[43]
Achkar, I.W.; Mraiche, F.; Mohammad, R.M.; Uddin, S. Anticancer potential of sanguinarine for various human malignancies. Future Med. Chem., 2017, 9(9), 933-950.
[PMID: 28636454]
[44]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[PMID: 17562483]
[45]
Adhami, V.M.; Aziz, M.H.; Reagan-Shaw, S.R.; Nihal, M.; Mukhtar, H.; Ahmad, N. Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol. Cancer Ther., 2004, 3(8), 933-940 .http://aacrjournals.org/mct/article-pdf/3/8/933/1868422/933-940.pdf [Internet
[PMID: 15299076]
[46]
Lin, Q.H.; Que, F.C.; Gu, C.P.; Zhong, D.S.; Zhou, D.; Kong, Y. ABT-263 induces G1/G0-phase arrest, apoptosis and autophagy in human esophageal cancer cells in vitro. Acta Pharmacol. Sin., 2017, 38(12), 1632-1641. https://www.nature.com/articles/aps201778
[47]
Attenello, F.; Raza, S.M.; Dimeco, F.; Olivi, A. Chemotherapy for brain tumors with polymer drug delivery. Handb. Clin. Neurol., 2012, 104, 339-353.
[PMID: 22230452]
[48]
Clifford, B.; Beljin, M.; Stark, G.R.; Taylor, W.R.G. G2 arrest in response to topoisomerase II inhibitors: The role of p53. Cancer Res., 2003, 63(14), 4074-4081.
[PMID: 12874009]
[49]
Holy, J.; Lamont, G.; Perkins, E. Disruption of nucleocytoplasmic trafficking of cyclin D1 and topoisomerase II by sanguinarine. BMC Cell Biol., 2006, 7(1), 13.
[PMID: 16512916]
[50]
Wang, L.K.; Johnson, R.K.; Hecht, S.M. Inhibition of topoisomerase I function by nitidine and fagaronine. Chem. Res. Toxicol., 1993, 6(6), 813-818.
[PMID: 8117920]
[51]
Comoë, L.; Carpentier, Y.; Desoize, B.; Jardillier, J.C. Effect of fagaronine on cell cycle progression of human erythroleukemia K562 cells. Leuk. Res., 1988, 12(8), 667-672.
[PMID: 3184983]
[52]
Prado, S.; Michel, S.; Tillequin, F.; Koch, M.; Pfeiffer, B.; Pierré, A.; Léonce, S.; Colson, P.; Baldeyrou, B.; Lansiaux, A.; Bailly, C. Synthesis and cytotoxic activity of benzo[c][1,7] and [1,8]phenanthrolines analogues of nitidine and fagaronine. Bioorg. Med. Chem., 2004, 12(14), 3943-3953.
[PMID: 15210161]
[53]
Lee, E.F.; Douglas Fairlie, W. The structural biology of Bcl-XL. Int. J. Mol. Sci., 2019, 20(9), 2234-2252.
[PMID: 31067648]
[54]
Lama, D.; Modi, V.; Sankararamakrishnan, R. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: Clues for its ability to bind diverse BH3 ligands from MD simulations. PLoS One, 2013, 8(2), e54397.
[PMID: 23468841]
[55]
Lopes, V.G.; Filho, A.B.C.; Yoshinaga, M.Y.; Hirata, M.H.; Ferreira, G.M. Carnitine palmitoyl transferase I: Conformational changes induced by long-chain fatty acyl CoA ligands. J. Mol. Graph. Model., 2022, 112, 108125.
[PMID: 35101729]
[56]
Wakui, N.; Yoshino, R.; Yasuo, N.; Ohue, M.; Sekijima, M. Exploring the selectivity of inhibitor complexes with Bcl-2 and Bcl-XL: A molecular dynamics simulation approach. J. Mol. Graph. Model., 2018, 79, 166-174.
[PMID: 29197725]
[57]
de-Sá-Júnior, P.L.; Pasqualoto, K.F.M.; Ferreira, A.K.; Tavares, M.T.; Damião, M.C.F.C.B.; de Azevedo, R.A.; Câmara, D.A.; Pereira, A.; de Souza, D.M.; Parise Filho, R. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells. Toxicol. Appl. Pharmacol., 2013, 266(3), 385-398.
[PMID: 23238560]
[58]
Analysis of the applicability and use of Lipinski’s rule for central nervous system drugs. Lett. Drug Des. Discov., 2016, 13(10), 999-1006.
[59]
van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[PMID: 25791797]
[60]
Fernandes, T.B.; Cunha, M.R.; Sakata, R.P.; Candido, T.M.; Baby, A.R.; Tavares, M.T.; Barbosa, E.G.; Almeida, W.P.; Parise-Filho, R. Synthesis, molecular modeling, and evaluation of novel sulfonylhydrazones as Acetylcholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. (Weinheim), 2017, 350(11), 1700163.
[PMID: 28940630]
[61]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Reports, 2017, 7(1), 1-13.

© 2024 Bentham Science Publishers | Privacy Policy