Review Article

基于肽的PROTACs:当前的挑战和未来展望

卷 31, 期 2, 2024

发表于: 20 March, 2023

页: [208 - 222] 页: 15

弟呕挨: 10.2174/0929867330666230130121822

价格: $65

摘要

蛋白水解靶向嵌合体 (PROTAC) 是一种针对以前不可成药或耐药突变蛋白的有吸引力的方法。虽然基于小分子的 PROTAC 很稳定并且可以穿过细胞膜,但能够将蛋白质招募到 E3 泛素连接酶进行降解的合适小分子弹头的可用性有限。随着结构生物学和计算机蛋白质结构预测的进步,现在定义适合 PROTAC 设计的高选择性肽变得越来越容易。因此,基于肽的 PROTAC 正在成为针对先前不适合小分子抑制的“不可成药”蛋白质的可行方案。在这篇综述中,我们总结了基于肽的 PROTAC 的设计和应用的最新进展,以及获得 PROTAC 候选肽的几种实用方法。我们还讨论了阻碍基于肽的 PROTAC 从实验室转化为临床的主要障碍,例如它们的递送和生物利用度,目的是激发关于如何在不久的将来最好地加速基于肽的 PROTAC 的临床开发的讨论。

关键词: 基于肽的PROTAC,靶向蛋白质降解,药物递送,不可成药蛋白质,E3泛素,突变蛋白

[1]
Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced- stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat. Rev. Clin. Oncol., 2021, 18(8), 473-487.
[http://dx.doi.org/10.1038/s41571-021-00492-2] [PMID: 33790428]
[2]
Hanzl, A.; Winter, G.E. Targeted protein degradation: current and future challenges. Curr. Opin. Chem. Biol., 2020, 56, 35-41.
[http://dx.doi.org/10.1016/j.cbpa.2019.11.012] [PMID: 31901786]
[3]
Waddell, A.R.; Liao, D. Assays for validating histone acetyltransferase inhibitors. J Vis Exp, 2020, 162, 61289.
[http://dx.doi.org/10.3791/61289]
[4]
Zhang, D.; Baek, S.H.; Ho, A.; Lee, H.; Jeong, Y.S.; Kim, K. Targeted degradation of proteins by small molecules: a novel tool for functional proteomics. Comb. Chem. High Throughput Screen., 2004, 7(7), 689-697.
[http://dx.doi.org/10.2174/1386207043328364] [PMID: 15578931]
[5]
Kashani, B.; Zandi, Z.; Kaveh, V.; Pourbagheri-Sigaroodi, A.; Ghaffari, S.H.; Bashash, D. Small molecules with huge impacts: the role of miRNA-regulated PI3K pathway in human malignancies. Mol. Biol. Rep., 2021, 48(12), 8045-8059.
[http://dx.doi.org/10.1007/s11033-021-06739-6] [PMID: 34689281]
[6]
Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E.; Li, S.; Wardwell, S.D.; Nadworny, S.; Ning, Y.; Zhang, S.; Huang, W.S.; Hu, Y.; Li, F.; Greenfield, M.T.; Zech, S.G.; Das, B.; Narasimhan, N.I.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Fitzgerald, M.; Chouitar, J.; Griffin, R.J.; Liu, S.; Wong, K.; Zhu, X.; Rivera, V.M. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in non–small cell lung cancer. Cancer Discov., 2021, 11(7), 1672-1687.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1683] [PMID: 33632773]
[7]
Li, Y.; Song, J.; Zhou, P.; Zhou, J.; Xie, S. Targeting undruggable transcription factors with PROTACs: Advances and perspectives. J. Med. Chem., 2022, 65(15), 10183-10194.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00691] [PMID: 35881047]
[8]
Zeng, S.; Huang, W.; Zheng, X.; Cheng, L.; Zhang, Z.; Wang, J.; Shen, Z. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur. J. Med. Chem., 2021, 210, 112981.
[http://dx.doi.org/10.1016/j.ejmech.2020.112981] [PMID: 33160761]
[9]
Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200.
[http://dx.doi.org/10.1038/s41573-021-00371-6] [PMID: 35042991]
[10]
Yang, Z.; Sun, Y.; Ni, Z.; Yang, C.; Tong, Y.; Liu, Y.; Li, H.; Rao, Y. Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently. Cell Res., 2021, 31(12), 1315-1318.
[http://dx.doi.org/10.1038/s41422-021-00533-6] [PMID: 34417569]
[11]
Guenette, R.G.; Yang, S.W.; Min, J.; Pei, B.; Potts, P.R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev., 2022, 51(14), 5740-5756.
[http://dx.doi.org/10.1039/D2CS00200K] [PMID: 35587208]
[12]
Au, Y.Z.; Wang, T.; Sigua, L.H.; Qi, J. Peptide-based PROTAC: The predator of pathological proteins. Cell Chem. Biol., 2020, 27(6), 637-639.
[http://dx.doi.org/10.1016/j.chembiol.2020.06.002] [PMID: 32559499]
[13]
Morris, M.C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol., 2001, 19(12), 1173-1176.
[http://dx.doi.org/10.1038/nbt1201-1173] [PMID: 11731788]
[14]
Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968.
[http://dx.doi.org/10.1074/jbc.M709525200] [PMID: 18230607]
[15]
Rana, S.; Mallareddy, J.R.; Singh, S.; Boghean, L.; Natarajan, A. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers (Basel), 2021, 13(21), 5506.
[http://dx.doi.org/10.3390/cancers13215506] [PMID: 34771669]
[16]
Zhao, Y.; Shu, Y.; Lin, J.; Chen, Z.; Xie, Q.; Bao, Y.; Lu, L.; Sun, N.; Wang, Y. Discovery of novel BTK PROTACs for B-Cell lymphomas. Eur. J. Med. Chem., 2021, 225, 113820.
[http://dx.doi.org/10.1016/j.ejmech.2021.113820] [PMID: 34509879]
[17]
Wang, H.; Li, C.; Liu, X.; Ma, M. Design, synthesis and activity study of a novel PI3K degradation by hijacking VHL E3 ubiquitin ligase. Bioorg. Med. Chem., 2022, 61, 116707.
[http://dx.doi.org/10.1016/j.bmc.2022.116707] [PMID: 35344835]
[18]
Xiang, W.; Zhao, L.; Han, X.; Qin, C.; Miao, B.; McEachern, D.; Wang, Y.; Metwally, H.; Kirchhoff, P.D.; Wang, L.; Matvekas, A.; He, M.; Wen, B.; Sun, D.; Wang, S. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. J. Med. Chem., 2021, 64(18), 13487-13509.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00900] [PMID: 34473519]
[19]
Duan, L.; Xu, X.; Xu, L.; Wen, C.; Ouyang, K.; Li, Z.; Liang, Y. ERα-targeting PROTAC as a chemical knockdown tool to investigate the estrogen receptor function in rat menopausal arthritis. Front. Pharmacol., 2021, 12, 764154.
[http://dx.doi.org/10.3389/fphar.2021.764154] [PMID: 34916941]
[20]
Backus, K.M.; Correia, B.E.; Lum, K.M.; Forli, S.; Horning, B.D.; González-Páez, G.E.; Chatterjee, S.; Lanning, B.R.; Teijaro, J.R.; Olson, A.J.; Wolan, D.W.; Cravatt, B.F. Proteome-wide covalent ligand discovery in native biological systems. Nature, 2016, 534(7608), 570-574.
[http://dx.doi.org/10.1038/nature18002] [PMID: 27309814]
[21]
Lee, K.Y.; Chau, C.H.; Price, D.K.; Figg, W.D. Drugging the undruggable: activity-based protein profiling offers opportunities for targeting the KLK activome. Cancer Biol. Ther., 2022, 23(1), 136-138.
[http://dx.doi.org/10.1080/15384047.2022.2033059] [PMID: 35129066]
[22]
Jiang, Y.; Deng, Q.; Zhao, H.; Xie, M.; Chen, L.; Yin, F.; Qin, X.; Zheng, W.; Zhao, Y.; Li, Z. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem. Biol., 2018, 13(3), 628-635.
[http://dx.doi.org/10.1021/acschembio.7b00985] [PMID: 29271628]
[23]
Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T.N. Structure-based design of inhibitors of protein-protein interactions: Mimicking peptide binding epitopes. Angew. Chem. Int. Ed., 2015, 54(31), 8896-8927.
[http://dx.doi.org/10.1002/anie.201412070] [PMID: 26119925]
[24]
Ledsgaard, L.; Ljungars, A.; Rimbault, C.; Sørensen, C.V.; Tulika, T.; Wade, J.; Wouters, Y.; McCafferty, J.; Laustsen, A.H. Advances in antibody phage display technology. Drug Discov. Today, 2022, 27(8), 2151-2169.
[http://dx.doi.org/10.1016/j.drudis.2022.05.002] [PMID: 35550436]
[25]
Jaroszewicz, W.; Morcinek-Orłowska, J.; Pierzynowska, K.; Gaffke, L.; Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev., 2022, 46(2), fuab052.
[http://dx.doi.org/10.1093/femsre/fuab052] [PMID: 34673942]
[26]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[27]
Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358.
[http://dx.doi.org/10.1074/mcp.T300009-MCP200] [PMID: 14525958]
[28]
Schneekloth, J.S., Jr; Fonseca, F.N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C.M. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc., 2004, 126(12), 3748-3754.
[http://dx.doi.org/10.1021/ja039025z] [PMID: 15038727]
[29]
Poongavanam, V.; Kihlberg, J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med. Chem., 2022, 14(3), 123-126.
[http://dx.doi.org/10.4155/fmc-2021-0208] [PMID: 34583518]
[30]
Klein, V.G.; Townsend, C.E.; Testa, A.; Zengerle, M.; Maniaci, C.; Hughes, S.J.; Chan, K.H.; Ciulli, A.; Lokey, R.S. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med. Chem. Lett., 2020, 11(9), 1732-1738.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00265] [PMID: 32939229]
[31]
McAndrews, K.M.; Xiao, F.; Chronopoulos, A.; LeBleu, V.S.; Kugeratski, F.G.; Kalluri, R. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic KrasG12D in pancreatic cancer. Life Sci. Alliance, 2021, 4(9), e202000875.
[http://dx.doi.org/10.26508/lsa.202000875] [PMID: 34282051]
[32]
Balantič, K.; Miklavčič, D.; Križaj, I.; Kramar, P. The good and the bad of cell membrane electroporation. Acta Chim. Slov., 2021, 68(4), 753-764.
[http://dx.doi.org/10.17344/acsi.2021.7198] [PMID: 34918751]
[33]
Chen, Z.; Ling, L.; Shi, X.; Li, W.; Zhai, H.; Kang, Z.; Zheng, B.; Zhu, J.; Ye, S.; Wang, H.; Tong, L.; Ni, J.; Huang, C.; Li, Y.; Zheng, K. Microinjection of antisense oligonucleotides into living mouse testis enables lncRNA function study. Cell Biosci., 2021, 11(1), 213.
[http://dx.doi.org/10.1186/s13578-021-00717-y] [PMID: 34920761]
[34]
Wender, P.A.; Mitchell, D.J.; Pattabiraman, K.; Pelkey, E.T.; Steinman, L.; Rothbard, J.B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13003-13008.
[http://dx.doi.org/10.1073/pnas.97.24.13003] [PMID: 11087855]
[35]
Kirschberg, T.A.; VanDeusen, C.L.; Rothbard, J.B.; Yang, M.; Wender, P.A. Arginine-based molecular transporters: the synthesis and chemical evaluation of releasable taxol-transporter conjugates. Org. Lett., 2003, 5(19), 3459-3462.
[http://dx.doi.org/10.1021/ol035234c] [PMID: 12967299]
[36]
Zhang, D.; Baek, S.H.; Ho, A.; Kim, K. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg. Med. Chem. Lett., 2004, 14(3), 645-648.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.042] [PMID: 14741260]
[37]
Lee, H.; Puppala, D.; Choi, E.Y.; Swanson, H.; Kim, K.B. Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. ChemBioChem, 2007, 8(17), 2058-2062.
[http://dx.doi.org/10.1002/cbic.200700438] [PMID: 17907127]
[38]
Bargagna-Mohan, P.; Baek, S.H.; Lee, H.; Kim, K.; Mohan, R. Use of PROTACS as molecular probes of angiogenesis. Bioorg. Med. Chem. Lett., 2005, 15(11), 2724-2727.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.008] [PMID: 15876533]
[39]
Rodriguez-Gonzalez, A.; Cyrus, K.; Salcius, M.; Kim, K.; Crews, C.M.; Deshaies, R.J.; Sakamoto, K.M. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27(57), 7201-7211.
[http://dx.doi.org/10.1038/onc.2008.320] [PMID: 18794799]
[40]
Montrose, K.; Krissansen, G.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun., 2014, 453(4), 735-740.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.006] [PMID: 25305486]
[41]
Henning, R.K.; Varghese, J.O.; Das, S.; Nag, A.; Tang, G.; Tang, K.; Sutherland, A.M.; Heath, J.R. Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci., 2016, 22(4), 196-200.
[http://dx.doi.org/10.1002/psc.2858] [PMID: 26880702]
[42]
Wang, X.; Feng, S.; Fan, J.; Li, X.; Wen, Q.; Luo, N. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol., 2016, 116, 200-209.
[http://dx.doi.org/10.1016/j.bcp.2016.07.017] [PMID: 27473774]
[43]
Chu, T.T.; Gao, N.; Li, Q.Q.; Chen, P.G.; Yang, X.F.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol., 2016, 23(4), 453-461.
[http://dx.doi.org/10.1016/j.chembiol.2016.02.016] [PMID: 27105281]
[44]
Hines, J.; Gough, J.D.; Corson, T.W.; Crews, C.M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 8942-8947.
[http://dx.doi.org/10.1073/pnas.1217206110] [PMID: 23674677]
[45]
Bauer, P.O.; Goswami, A.; Wong, H.K.; Okuno, M.; Kurosawa, M.; Yamada, M.; Miyazaki, H.; Matsumoto, G.; Kino, Y.; Nagai, Y.; Nukina, N. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol., 2010, 28(3), 256-263.
[http://dx.doi.org/10.1038/nbt.1608] [PMID: 20190739]
[46]
Lu, M.; Liu, T.; Jiao, Q.; Ji, J.; Tao, M.; Liu, Y.; You, Q.; Jiang, Z. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem., 2018, 146, 251-259.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.063] [PMID: 29407955]
[47]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30.
[http://dx.doi.org/10.1002/cbf.3369] [PMID: 30604499]
[48]
Zheng, J.; Tan, C.; Xue, P.; Cao, J.; Liu, F.; Tan, Y.; Jiang, Y. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation. Biochem. Biophys. Res. Commun., 2016, 470(4), 936-940.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.158] [PMID: 26826379]
[49]
Paiva, S.L.; Crews, C.M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol., 2019, 50, 111-119.
[http://dx.doi.org/10.1016/j.cbpa.2019.02.022] [PMID: 31004963]
[50]
Liao, H.; Li, X.; Zhao, L.; Wang, Y.; Wang, X.; Wu, Y.; Zhou, X.; Fu, W.; Liu, L.; Hu, H.G.; Chen, Y.G. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov., 2020, 6(1), 35.
[http://dx.doi.org/10.1038/s41421-020-0171-1] [PMID: 32550000]
[51]
Tanaka, Y.; Luo, Y.; O’Shea, J.J.; Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol., 2022, 18(3), 133-145.
[http://dx.doi.org/10.1038/s41584-021-00726-8] [PMID: 34987201]
[52]
Alsfouk, A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 693-706.
[http://dx.doi.org/10.1080/14756366.2021.1890726] [PMID: 33632038]
[53]
Crews, C.M. Inducing protein degradation as a therapeutic strategy. J. Med. Chem., 2018, 61(2), 403-404.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01333] [PMID: 29164885]
[54]
Crews, C.M.; Georg, G.; Wang, S. Inducing protein degradation as a therapeutic strategy. J. Med. Chem., 2016, 59(11), 5129-5130.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00735] [PMID: 27199030]
[55]
Cao, L.; Coventry, B.; Goreshnik, I.; Huang, B.; Sheffler, W.; Park, J.S.; Jude, K.M.; Marković, I.; Kadam, R.U.; Verschueren, K.H.G.; Verstraete, K.; Walsh, S.T.R.; Bennett, N.; Phal, A.; Yang, A.; Kozodoy, L.; DeWitt, M.; Picton, L.; Miller, L.; Strauch, E.M.; DeBouver, N.D.; Pires, A.; Bera, A.K.; Halabiya, S.; Hammerson, B.; Yang, W.; Bernard, S.; Stewart, L.; Wilson, I.A.; Ruohola-Baker, H.; Schlessinger, J.; Lee, S.; Savvides, S.N.; Garcia, K.C.; Baker, D. Design of protein-binding proteins from the target structure alone. Nature, 2022, 605(7910), 551-560.
[http://dx.doi.org/10.1038/s41586-022-04654-9] [PMID: 35332283]
[56]
Linkous, R.O.; Sestok, A.E.; Smith, A.T. The crystal structure of Klebsiella pneumoniae FeoA reveals a site for protein-protein interactions. Proteins, 2019, 87(11), 897-903.
[http://dx.doi.org/10.1002/prot.25755] [PMID: 31162843]
[57]
Zhang, Y.; Zhong, Z.; Ye, J.; Wang, C. Crystal structure of the PDZ4 domain of MAGI2 in complex with PBM of ARMS reveals a canonical PDZ recognition mode. Neurochem. Int., 2021, 149, 105152.
[http://dx.doi.org/10.1016/j.neuint.2021.105152] [PMID: 34371146]
[58]
Nowak, R.P.; DeAngelo, S.L.; Buckley, D.; He, Z.; Donovan, K.A.; An, J.; Safaee, N.; Jedrychowski, M.P.; Ponthier, C.M.; Ishoey, M.; Zhang, T.; Mancias, J.D.; Gray, N.S.; Bradner, J.E.; Fischer, E.S. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol., 2018, 14(7), 706-714.
[http://dx.doi.org/10.1038/s41589-018-0055-y] [PMID: 29892083]
[59]
Jakhmola, S.; Sk, M.F.; Chatterjee, A.; Jain, K.; Kar, P.; Jha, H.C. A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput. Biol. Med., 2022, 148, 105856.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105856] [PMID: 35863244]
[60]
Das, L.; Shekhar, S.; Chandrani, P.; Varma, A.K. In silico structural analysis of secretory clusterin to assess pathogenicity of mutations identified in the evolutionarily conserved regions. J. Biomol. Struct. Dyn., 2021, 2007791.
[http://dx.doi.org/10.1080/07391102.2021.2007791] [PMID: 34821197]
[61]
Choi, J.; Park, T.; Yul Lee, S.; Yang, J.; Seok, C. GalaxyDomDock: An ab initio domain–domain docking web server for multi-domain protein structure prediction. J. Mol. Biol., 2022, 434(11), 167508.
[http://dx.doi.org/10.1016/j.jmb.2022.167508] [PMID: 35662464]
[62]
Kootery, K.P.; Sarojini, S. Structural and functional characterization of a hypothetical protein in the RD7 region in clinical isolates of Mycobacterium tuberculosis — an in silico approach to candidate vaccines. J. Genet. Eng. Biotechnol., 2022, 20(1), 55.
[http://dx.doi.org/10.1186/s43141-022-00340-5] [PMID: 35394551]
[63]
Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Žídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]
[64]
David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J.E. The alphaFold database of protein structures: A biologist’s guide. J. Mol. Biol., 2022, 434(2), 167336.
[http://dx.doi.org/10.1016/j.jmb.2021.167336] [PMID: 34757056]
[65]
Bagdonas, H.; Fogarty, C.A.; Fadda, E.; Agirre, J. The case for post-predictional modifications in the alphaFold protein structure database. Nat. Struct. Mol. Biol., 2021, 28(11), 869-870.
[http://dx.doi.org/10.1038/s41594-021-00680-9] [PMID: 34716446]
[66]
Wheeler, R.J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One, 2021, 16(11), e0259871.
[http://dx.doi.org/10.1371/journal.pone.0259871] [PMID: 34762696]
[67]
Pla-Prats, C.; Thomä, N.H. Quality control of protein complex assembly by the ubiquitin–proteasome system. Trends Cell Biol., 2022, 32(8), 696-706.
[http://dx.doi.org/10.1016/j.tcb.2022.02.005] [PMID: 35300891]
[68]
Ottis, P.; Toure, M.; Cromm, P.M.; Ko, E.; Gustafson, J.L.; Crews, C.M. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem. Biol., 2017, 12(10), 2570-2578.
[http://dx.doi.org/10.1021/acschembio.7b00485] [PMID: 28767222]
[69]
Qu, J.; Ren, X.; Xue, F.; He, Y.; Zhang, R.; Zheng, Y.; Huang, H.; Wang, W.; Zhang, J. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol., 2020, 27(6), 751-762.e4.
[http://dx.doi.org/10.1016/j.chembiol.2020.03.010] [PMID: 32359427]
[70]
An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.005] [PMID: 30224312]
[71]
Arvinas, Pfizer team up on PROTACs. Cancer Discov., 2018, 8(4), 377-378.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2018-015] [PMID: 29453240]
[72]
Itoh, Y. Chemical protein degradation approach and its application to epigenetic targets. Chem. Rec., 2018, 18(12), 1681-1700.
[http://dx.doi.org/10.1002/tcr.201800032] [PMID: 29893461]
[73]
Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Mei, X. Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier. J. Drug Target., 2014, 22(10), 891-900.
[http://dx.doi.org/10.3109/1061186X.2014.940589] [PMID: 25045925]
[74]
Visca, H.; DuPont, M.; Moshnikova, A.; Crawford, T.; Engelman, D.M.; Andreev, O.A.; Reshetnyak, Y.K. pHLIP peptides target acidity in activated macrophages. Mol. Imaging Biol., 2022, 24(6), 874-885.
[http://dx.doi.org/10.1007/s11307-022-01737-x] [PMID: 35604527]
[75]
Sun, Y.; Hu, L.; Yang, P.; Zhang, M.; Wang, X.; Xiao, H.; Qiao, C.; Wang, J.; Luo, L.; Feng, J.; Zheng, Y.; Wang, Y.; Shi, Y.; Chen, G. H low insertion peptide-modified programmed cell death-ligand 1 potently suppresses T-Cell activation under acidic condition. Front. Immunol., 2021, 12, 794226.
[http://dx.doi.org/10.3389/fimmu.2021.794226] [PMID: 35003115]
[76]
Otieno, S.A.; Qiang, W. Roles of key residues and lipid dynamics reveal pHLIP-membrane interactions at intermediate pH. Biophys. J., 2021, 120(21), 4649-4662.
[http://dx.doi.org/10.1016/j.bpj.2021.10.001] [PMID: 34624273]
[77]
Andreev, O.A.; Engelman, D.M.; Reshetnyak, Y.K. pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol. Membr. Biol., 2010, 27(7), 341-352.
[http://dx.doi.org/10.3109/09687688.2010.509285] [PMID: 20939768]
[78]
a) Gao, X.; Ran, N.; Dong, X.; Zuo, B.; Yang, R.; Zhou, Q.; Moulton, H.M.; Seow, Y.; Yin, H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med., 2018, 10(444), eaat0195.
[http://dx.doi.org/10.1126/scitranslmed.aat0195] [PMID: 29875202];
b) Dong, X.; Lei, Y.; Yu, Z.; Wang, T.; Liu, Y.; Han, G.; Zhang, X.; Li, Y.; Song, Y.; Xu, H.; Du, M.; Yin, H.; Wang, X.; Yan, H. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics, 2021, 11, 5107-5126.
[79]
Okuda, A.; Futaki, S. Protein delivery to cytosol by cell-penetrating peptide bearing tandem repeat penetration-accelerating sequence. Methods Mol. Biol., 2022, 2383, 265-273.
[http://dx.doi.org/10.1007/978-1-0716-1752-6_18] [PMID: 34766296]
[80]
Yang, Q.; Tang, J.; Xu, C.; Zhao, H.; Zhou, Y.; Wang, Y.; Yang, M.; Chen, X.; Chen, J. Histone deacetylase 4 inhibits NF-κB activation by facilitating IκBα sumoylation. J. Mol. Cell Biol., 2021, 12(12), 933-945.
[http://dx.doi.org/10.1093/jmcb/mjaa043] [PMID: 32770227]
[81]
Nguyen, H.C.; Yang, H.; Fribourgh, J.L.; Wolfe, L.S.; Xiong, Y. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure, 2015, 23(3), 441-449.
[http://dx.doi.org/10.1016/j.str.2014.12.014] [PMID: 25661653]
[82]
Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[83]
Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci., 2016, 2(12), 927-934.
[http://dx.doi.org/10.1021/acscentsci.6b00280] [PMID: 28058282]
[84]
Wurz, R.P.; Dellamaggiore, K.; Dou, H.; Javier, N.; Lo, M.C.; McCarter, J.D.; Mohl, D.; Sastri, C.; Lipford, J.R.; Cee, V.J. “Click Chemistry Platform” for the rapid synthesis of bispecific molecules for inducing protein degradation. J. Med. Chem., 2018, 61(2), 453-461.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01781] [PMID: 28378579]
[85]
Rong, G. Fluoroalkylation promotes cytosolic peptide delivery. Sci Adv, 2020, 6(33), eaaz1774.
[http://dx.doi.org/10.1126/sciadv.aaz1774]
[86]
Rueping, M.; Mahajan, Y.; Sauer, M.; Seebach, D. Cellular uptake studies with beta-peptides. ChemBioChem, 2002, 3(2-3), 257-259.
[http://dx.doi.org/10.1002/1439-7633(20020301)3:2/3<257::AID-CBIC257>3.0.CO;2-S] [PMID: 11921409]
[87]
Valeur, E.; Guéret, S.M.; Adihou, H.; Gopalakrishnan, R.; Lemurell, M.; Waldmann, H.; Grossmann, T.N.; Plowright, A.T. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed., 2017, 56(35), 10294-10323.
[http://dx.doi.org/10.1002/anie.201611914] [PMID: 28186380]
[88]
Fuller, J.C.; Burgoyne, N.J.; Jackson, R.M. Predicting druggable binding sites at the protein–protein interface. Drug Discov. Today, 2009, 14(3-4), 155-161.
[http://dx.doi.org/10.1016/j.drudis.2008.10.009] [PMID: 19041415]
[89]
Schneider, M.; Radoux, C.J.; Hercules, A.; Ochoa, D.; Dunham, I.; Zalmas, L.P.; Hessler, G.; Ruf, S.; Shanmugasundaram, V.; Hann, M.M.; Thomas, P.J.; Queisser, M.A.; Benowitz, A.B.; Brown, K.; Leach, A.R. The PROTACtable genome. Nat. Rev. Drug Discov., 2021, 20(10), 789-797.
[http://dx.doi.org/10.1038/s41573-021-00245-x] [PMID: 34285415]
[90]
Cromm, P.M.; Crews, C.M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol., 2017, 24(9), 1181-1190.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.024] [PMID: 28648379]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy