Review Article

LSINCT5:一种新的肿瘤lncRNA

卷 30, 期 39, 2023

发表于: 16 February, 2023

页: [4409 - 4420] 页: 12

弟呕挨: 10.2174/0929867330666230123144602

价格: $65

摘要

背景:长链非编码rna (Long chain non-coding rna, lncRNA)是一种长度约为200个核苷酸的转录物,可以通过表观遗传、转录和转录后调控参与生命活动。lncrna的关键成员之一,长应力诱导的非编码转录本5 (LSINCT5),定位于Chr 5p,据报道在一系列癌症中异常表达。我们对恶性肿瘤中LSINCT5的异常表达及其调控机制进行了全面的综述。 方法:使用关键词“LSINCT5”和“Cancer”通过PubMed数据库对纳入的研究进行检索和汇总。 结果:LSINCT5作为一种致癌基因,在恶性肿瘤的发生和发展中大量表达。LSINCT5通过海绵microrna (miRNA),与蛋白相互作用,参与细胞转导,并受转录因子调控,可刺激多种肿瘤细胞的恶性行为,包括增殖、迁移、侵袭和上皮间质转化(EMT)。此外,失调的LSINCT5通常与不良预后相关。 结论:LSINCT5有潜力成为肿瘤诊断和预后标志物,为临床应用提供新的途径。

关键词: LncRNA, LSINCT5,肿瘤,机制,生物标志物,诊断,治疗,预后。

[1]
Yang, Z.; Jiang, S.; Shang, J.; Jiang, Y.; Dai, Y.; Xu, B.; Yu, Y.; Liang, Z.; Yang, Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res. Rev., 2019, 52, 17-31.
[http://dx.doi.org/10.1016/j.arr.2019.04.001] [PMID: 30954650]
[2]
Yan, Y.; Xu, Z.; Li, Z.; Sun, L.; Gong, Z. An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front. Mol. Neurosci., 2017, 10, 53.
[http://dx.doi.org/10.3389/fnmol.2017.00053] [PMID: 28293170]
[3]
Dykes, I.M.; Emanueli, C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genom. Proteom. Bioinform., 2017, 15(3), 177-186.
[http://dx.doi.org/10.1016/j.gpb.2016.12.005] [PMID: 28529100]
[4]
Teng, P.C.; Liang, Y.; Yarmishyn, A.A.; Hsiao, Y.J.; Lin, T.Y.; Lin, T.W.; Teng, Y.C.; Yang, Y.P.; Wang, M.L.; Chien, C.S.; Luo, Y.H.; Chen, Y.M.; Hsu, P.K.; Chiou, S.H.; Chien, Y. RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int. J. Mol. Sci., 2021, 22(19), 10592.
[http://dx.doi.org/10.3390/ijms221910592] [PMID: 34638933]
[5]
Liu, W.; Ma, R.; Yuan, Y. Post-transcriptional regulation of genes related to biological behaviors of gastric cancer by long noncoding RNAs and MicroRNAs. J. Cancer, 2017, 8(19), 4141-4154.
[http://dx.doi.org/10.7150/jca.22076] [PMID: 29187891]
[6]
Goyal, B.; Yadav, S.R.M.; Awasthee, N.; Gupta, S.; Kunnumakkara, A.B.; Gupta, S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188502.
[http://dx.doi.org/10.1016/j.bbcan.2021.188502] [PMID: 33428963]
[7]
Joshi, M.; Rajender, S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod. Biol. Endocrinol., 2020, 18(1), 103.
[http://dx.doi.org/10.1186/s12958-020-00660-6] [PMID: 33126901]
[8]
Aich, M.; Chakraborty, D. Role of lncRNAs in stem cell maintenance and differentiation. Curr. Top. Dev. Biol., 2020, 138, 73-112.
[http://dx.doi.org/10.1016/bs.ctdb.2019.11.003] [PMID: 32220299]
[9]
Lin, Y.H. Crosstalk of lncRNA and cellular metabolism and their regulatory mechanism in cancer. Int. J. Mol. Sci., 2020, 21(8), 2947.
[http://dx.doi.org/10.3390/ijms21082947] [PMID: 32331347]
[10]
Silva, J.M.; Boczek, N.J.; Berres, M.W.; Ma, X.; Smith, D.I. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol., 2011, 8(3), 496-505.
[http://dx.doi.org/10.4161/rna.8.3.14800] [PMID: 21532345]
[11]
Tong, X.; Chen, J.; Liu, W.; Liang, H.; Zhu, H. LncRNA LSINCT5/miR-222 regulates myocardial ischemia-reperfusion injury through PI3K/AKT pathway. J. Thromb. Thrombolysis, 2021, 52(3), 720-729.
[http://dx.doi.org/10.1007/s11239-021-02506-3] [PMID: 34184201]
[12]
Wang, X.; Feng, X.; Wang, H. LncRNA LSINCT5 drives proliferation and migration of oral squamous cell carcinoma through the miRNA-185-5p/ZNF703 axis. J. BUON, 2021, 26(1), 124-131.
[PMID: 33721442]
[13]
Jing, L.; Lin, J.; Zhao, Y.; Liu, G.J.; Liu, Y.B.; Feng, L.; Yang, H.Y.; Cui, W.X.; Zhang, X.H. Long noncoding RNA LSINCT5 is upregulated and promotes the progression of esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5195-5205.
[PMID: 31298370]
[14]
Qi, P.; Lin, W.; Zhang, M.; Huang, D.; Ni, S.; Zhu, X.; Bai, Q.; Sheng, W.; Du, X.; Zhou, X. E2F1 induces LSINCT5 transcriptional activity and promotes gastric cancer progression by affecting the epithelial-mesenchymal transition. Cancer Manag. Res., 2018, 10, 2563-2571.
[http://dx.doi.org/10.2147/CMAR.S171652] [PMID: 30127643]
[15]
Li, O.; Li, Z.; Tang, Q.; Li, Y.; Yuan, S.; Shen, Y.; Zhang, Z.; Li, N.; Chu, K.; Lei, G. Long Stress Induced Non-Coding Transcripts 5 (LSINCT5) promotes hepatocellular carcinoma progression through interaction with high-mobility group AT-hook 2 and MiR-4516. Med. Sci. Monit., 2018, 24, 8510-8523.
[http://dx.doi.org/10.12659/MSM.911179] [PMID: 30472720]
[16]
Tian, Y.; Zhang, N.; Chen, S.; Ma, Y.; Liu, Y. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2. Cell Cycle, 2018, 17(10), 1188-1198.
[http://dx.doi.org/10.1080/15384101.2018.1467675] [PMID: 29883241]
[17]
Dai, Y.; Wu, L.; Zhang, Z.; Ou, Y.; Huang, J. Effects of knockout of long-chain non-coding RNA LSINCT5 on proliferation, apoptosis, epithelial-mesenchymal transition, and p38MAPK pathway of pancreatic cancer PANC-1 cells. Transl. Cancer Res., 2020, 9(3), 1418-1426.
[http://dx.doi.org/10.21037/tcr.2020.01.50] [PMID: 35117489]
[18]
Zhang, G.; Song, W. Long non-coding RNA LSINCT5 inactivates Wnt/β-catenin pathway to regulate MCF-7 cell proliferation and motility through targeting the miR-30a. Ann. Transl. Med., 2020, 8(24), 1635.
[http://dx.doi.org/10.21037/atm-20-7253] [PMID: 33490147]
[19]
Long, X.; Li, L.; Zhou, Q.; Wang, H.; Zou, D.; Wang, D.; Lou, M.; Nian, W. Long non-coding RNA LSINCT5 promotes ovarian cancer cell proliferation, migration and invasion by disrupting the CXCL12/CXCR4 signalling axis. Oncol. Lett., 2018, 15(5), 7200-7206.
[http://dx.doi.org/10.3892/ol.2018.8241] [PMID: 29755595]
[20]
Jiang, H.; Li, Y.; Li, J.; Zhang, X.; Niu, G.; Chen, S.; Yao, S. Long noncoding RNA LSINCT5 promotes endometrial carcinoma cell proliferation, cycle, and invasion by promoting the Wnt/β-catenin signaling pathway via HMGA2. Ther. Adv. Med. Oncol., 2019, 11, 1758835919874649.
[http://dx.doi.org/10.1177/1758835919874649] [PMID: 31632465]
[21]
Zhu, X.; Li, Y.; Zhao, S.; Zhao, S. LSINCT5 activates Wnt/β-catenin signaling by interacting with NCYM to promote bladder cancer progression. Biochem. Biophys. Res. Commun., 2018, 502(3), 299-306.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.076] [PMID: 29772237]
[22]
Jin, Z.; Piao, L.; Sun, G.; Lv, C.; Jing, Y.; Jin, R. Dual functional nanoparticles efficiently across the blood–brain barrier to combat glioblastoma via simultaneously inhibit the PI3K pathway and NKG2A axis. J. Drug Target., 2021, 29(3), 323-335.
[http://dx.doi.org/10.1080/1061186X.2020.1841214] [PMID: 33108906]
[23]
He, W.; Lu, M.; Xiao, D. LSINCT5 predicts unfavorable prognosis and exerts oncogenic function in osteosarcoma. Biosci. Rep., 2019, 39(5), BSR20190612.
[http://dx.doi.org/10.1042/BSR20190612] [PMID: 30967495]
[24]
Kong, D.; Li, C.; Yang, Q.; wei, B.; Wang, L.; Peng, C. Long noncoding RNA LSINCT5 acts as an oncogene via increasing EZH2-induced inhibition of APC expression in osteosarcoma. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 193-197.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.005] [PMID: 30420287]
[25]
Hübbers, C.U.; Akgül, B. HPV and cancer of the oral cavity. Virulence, 2015, 6(3), 244-248.
[http://dx.doi.org/10.1080/21505594.2014.999570] [PMID: 25654476]
[26]
D’Souza, W.; Kumar, A. microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol., 2020, 111, 104916.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104916] [PMID: 32711289]
[27]
Lei, C.S.; Kung, H.J.; Shih, J.W. Long non-coding RNAs as functional codes for oral cancer: Translational potential, progress and promises. Int. J. Mol. Sci., 2021, 22(9), 4903.
[http://dx.doi.org/10.3390/ijms22094903] [PMID: 34063159]
[28]
Wang, Y.; Wu, Z.; Li, Y.; Zheng, Z.; Yan, J.; Tian, S.; Han, L. Long non-coding RNA H19 promotes proliferation, migration and invasion and inhibits apoptosis of breast cancer cells by targeting miR-491-5p/ZNF703 axis. Cancer Manag. Res., 2020, 12, 9247-9258.
[http://dx.doi.org/10.2147/CMAR.S246009] [PMID: 33061615]
[29]
Ohashi, S.; Miyamoto, S.; Kikuchi, O.; Goto, T.; Amanuma, Y.; Muto, M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology, 2015, 149(7), 1700-1715.
[http://dx.doi.org/10.1053/j.gastro.2015.08.054] [PMID: 26376349]
[30]
Tang, Y.; Yang, P.; Zhu, Y.; Su, Y. LncRNA TUG1 contributes to ESCC progression via regulating miR-148a-3p/MCL-1/Wnt/β-catenin axis in vitro. Thorac. Cancer, 2020, 11(1), 82-94.
[http://dx.doi.org/10.1111/1759-7714.13236] [PMID: 31742924]
[31]
Zhang, X.; Zhang, P. Gastric cancer: Somatic genetics as a guide to therapy. J. Med. Genet., 2017, 54(5), 305-312.
[http://dx.doi.org/10.1136/jmedgenet-2016-104171] [PMID: 27609016]
[32]
Wei, L.; Sun, J.; Zhang, N.; Zheng, Y.; Wang, X.; Lv, L.; Liu, J.; Xu, Y.; Shen, Y.; Yang, M. Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol. Cancer, 2020, 19(1), 62.
[http://dx.doi.org/10.1186/s12943-020-01185-7] [PMID: 32192494]
[33]
Chun, J.N.; Cho, M.; Park, S.; So, I.; Jeon, J.H. The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility? Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188336.
[http://dx.doi.org/10.1016/j.bbcan.2019.188336] [PMID: 31870703]
[34]
Huang, Z.; Zhou, J.K.; Peng, Y.; He, W.; Huang, C. The role of long noncoding RNAs in hepatocellular carcinoma. Mol. Cancer, 2020, 19(1), 77.
[http://dx.doi.org/10.1186/s12943-020-01188-4] [PMID: 32295598]
[35]
Degasperi, E.; Colombo, M. Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. Lancet Gastroenterol. Hepatol., 2016, 1(2), 156-164.
[http://dx.doi.org/10.1016/S2468-1253(16)30018-8] [PMID: 28404072]
[36]
Nagano, T.; Tachihara, M.; Nishimura, Y. Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer. Curr. Cancer Drug Targets, 2019, 19(8), 595-630.
[http://dx.doi.org/10.2174/1568009619666181210114559] [PMID: 30526458]
[37]
Boo, L.M.; Lin, H.H.; Chung, V.; Zhou, B.; Louie, S.G.; O’Reilly, M.A.; Yen, Y.; Ann, D.K. High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Res., 2005, 65(15), 6622-6630.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0086] [PMID: 16061642]
[38]
Huang, X.; Zhi, X.; Gao, Y.; Ta, N.; Jiang, H.; Zheng, J. LncRNAs in pancreatic cancer. Oncotarget, 2016, 7(35), 57379-57390.
[http://dx.doi.org/10.18632/oncotarget.10545] [PMID: 27429196]
[39]
Klein, A.P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(7), 493-502.
[http://dx.doi.org/10.1038/s41575-021-00457-x] [PMID: 34002083]
[40]
Alam, M.S.; Gaida, M.M.; Bergmann, F.; Lasitschka, F.; Giese, T.; Giese, N.A.; Hackert, T.; Hinz, U.; Hussain, S.P.; Kozlov, S.V.; Ashwell, J.D. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat. Med., 2015, 21(11), 1337-1343.
[http://dx.doi.org/10.1038/nm.3957] [PMID: 26479921]
[41]
Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol., 2020, 60, 14-27.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.012] [PMID: 31421262]
[42]
Wörmann, B. Breast cancer: basics, screening, diagnostics and treatment. Med. Monatsschr. Pharm., 2017, 40(2), 55-64.
[PMID: 29952495]
[43]
Torkashvand, S.; Basi, A.; Ajdarkosh, H.; Rakhshani, N.; Nafisi, N.; Mowla, S.J.; Moghadas, A.; Mohammadipour, M.; Karbalaie Niya, M.H. Long non-coding RNAs expression in breast cancer: CBR3-AS1 LncRNA as a sensitive biomarker. Asian Pac. J. Cancer Prev., 2021, 22(9), 2897-2902.
[http://dx.doi.org/10.31557/APJCP.2021.22.9.2897] [PMID: 34582659]
[44]
Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther., 2022, 7(1), 3.
[http://dx.doi.org/10.1038/s41392-021-00762-6] [PMID: 34980884]
[45]
Bilbao, M.; Aikins, J.K.; Ostrovsky, O. Is routine omentectomy of grossly normal omentum helpful in surgery for ovarian cancer? A look at the tumor microenvironment and its clinical implications. Gynecol. Oncol., 2021, 161(1), 78-82.
[http://dx.doi.org/10.1016/j.ygyno.2020.12.033] [PMID: 33436287]
[46]
Wang, X.; Wang, Y.; Sun, F.; Xu, Y.; Zhang, Z.; Yang, C.; Zhang, L.; Lou, G. Novel LncRNA ZFHX4-AS1 as a potential prognostic biomarker that affects the immune microenvironment in ovarian cancer. Front. Oncol., 2022, 12, 945518.
[http://dx.doi.org/10.3389/fonc.2022.945518] [PMID: 35903691]
[47]
Izumi, D.; Ishimoto, T.; Miyake, K.; Sugihara, H.; Eto, K.; Sawayama, H.; Yasuda, T.; Kiyozumi, Y.; Kaida, T.; Kurashige, J.; Imamura, Y.; Hiyoshi, Y.; Iwatsuki, M.; Iwagami, S.; Baba, Y.; Sakamoto, Y.; Miyamoto, Y.; Yoshida, N.; Watanabe, M.; Takamori, H.; Araki, N.; Tan, P.; Baba, H. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int. J. Cancer, 2016, 138(5), 1207-1219.
[http://dx.doi.org/10.1002/ijc.29864] [PMID: 26414794]
[48]
Liu, G.; Wang, Y.; Zhang, X.; Yuan, B.; Han, C.; Xue, F. Endometrial carcinoma in a 15-year-old obese patient with persistent uterine bleeding. Gynecol. Endocrinol., 2014, 30(4), 277-279.
[http://dx.doi.org/10.3109/09513590.2013.875156] [PMID: 24456540]
[49]
Kong, Y.; Ren, Z. Overexpression of LncRNA FER1L4 in endometrial carcinoma is associated with favorable survival outcome. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(23), 8113-8118.
[PMID: 30556848]
[50]
Fan, J.T.; Zhou, Z.Y.; Luo, Y.L.; Luo, Q.; Chen, S.B.; Zhao, J.C.; Chen, Q.R. Exosomal lncRNA NEAT1 from cancer-associated fibroblasts facilitates endometrial cancer progression via miR-26a/b-5p-mediated STAT3/YKL-40 signaling pathway. Neoplasia, 2021, 23(7), 692-703.
[http://dx.doi.org/10.1016/j.neo.2021.05.004] [PMID: 34153644]
[51]
Du, Y.; Wang, L.; Chen, S.; Liu, Y.; Zhao, Y. lncRNA DLEU1 contributes to tumorigenesis and development of endometrial carcinoma by targeting mTOR. Mol. Carcinog., 2018, 57(9), 1191-1200.
[http://dx.doi.org/10.1002/mc.22835] [PMID: 29745433]
[52]
Seidl, C. Targets for therapy of bladder cancer. Semin. Nucl. Med., 2020, 50(2), 162-170.
[http://dx.doi.org/10.1053/j.semnuclmed.2020.02.006] [PMID: 32172801]
[53]
Zhang, Q.; Su, M.; Lu, G.; Wang, J. The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol. Cancer, 2013, 12(1), 101.
[http://dx.doi.org/10.1186/1476-4598-12-101] [PMID: 24006935]
[54]
Suenaga, Y.; Islam, S.M.R.; Alagu, J.; Kaneko, Y.; Kato, M.; Tanaka, Y.; Kawana, H.; Hossain, S.; Matsumoto, D.; Yamamoto, M.; Shoji, W.; Itami, M.; Shibata, T.; Nakamura, Y.; Ohira, M.; Haraguchi, S.; Takatori, A.; Nakagawara, A. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet., 2014, 10(1), e1003996.
[http://dx.doi.org/10.1371/journal.pgen.1003996] [PMID: 24391509]
[55]
Albrecht, L.V.; Tejeda-Muñoz, N.; Bui, M.H.; Cicchetto, A.C.; Di Biagio, D.; Colozza, G.; Schmid, E.; Piccolo, S.; Christofk, H.R.; De Robertis, E.M. GSK3 inhibits macropinocytosis and lysosomal activity through the Wnt destruction complex machinery. Cell Rep., 2020, 32(4), 107973.
[http://dx.doi.org/10.1016/j.celrep.2020.107973] [PMID: 32726636]
[56]
Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.M.; Barnholtz-Sloan, J.S. Epidemiology of Gliomas. Cancer Treat. Res., 2015, 163, 1-14.
[http://dx.doi.org/10.1007/978-3-319-12048-5_1] [PMID: 25468222]
[57]
Wu, D.; Sun, J.; Wang, H.; Ma, C. LncRNA SOCS2-AS1 promotes the progression of glioma via regulating ITGB1 expression. Neurosci. Lett., 2021, 765, 136248.
[http://dx.doi.org/10.1016/j.neulet.2021.136248] [PMID: 34536509]
[58]
Bai, H.; Wu, S. miR-451: A novel biomarker and potential therapeutic target for cancer. OncoTargets Ther., 2019, 12, 11069-11082.
[http://dx.doi.org/10.2147/OTT.S230963] [PMID: 31908476]
[59]
Cardama, G.A.; Gonzalez, N.; Ciarlantini, M.; Gandolfi Donadío, L.; Comin, M.J.; Alonso, D.F.; Menna, P.L.; Gomez, D.E. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. OncoTargets Ther., 2014, 7, 2021-2033.
[PMID: 25378937]
[60]
Coventon, J. A review of the mechanism of action and clinical applications of sorafenib in advanced osteosarcoma. J. Bone Oncol., 2017, 8, 4-7.
[http://dx.doi.org/10.1016/j.jbo.2017.07.001] [PMID: 28828294]
[61]
Ghafouri-Fard, S.; Shirvani-Farsani, Z.; Hussen, B.M.; Taheri, M. The critical roles of lncRNAs in the development of osteosarcoma. Biomed. Pharmacother., 2021, 135, 111217.
[http://dx.doi.org/10.1016/j.biopha.2021.111217] [PMID: 33433358]
[62]
Jiang, R.; Zhang, C.; Liu, G.; Gu, R.; Wu, H. MicroRNA-107 promotes proliferation, migration, and invasion of osteosarcoma cells by targeting Tropomyosin 1. Oncol. Res., 2017, 25(8), 1409-1419.
[http://dx.doi.org/10.3727/096504017X14882829077237] [PMID: 28276320]
[63]
Hao, A.; Wang, Y.; Stovall, D.B.; Wang, Y.; Sui, G. Emerging roles of LncRNAs in the EZH2-regulated oncogenic network. Int. J. Biol. Sci., 2021, 17(13), 3268-3280.
[http://dx.doi.org/10.7150/ijbs.63488] [PMID: 34512145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy