Review Article

抗癫痫药物的研究现状、合成及临床应用

卷 31, 期 4, 2024

发表于: 27 March, 2023

页: [410 - 452] 页: 43

弟呕挨: 10.2174/0929867330666230117160632

价格: $65

摘要

根据2017年ILAE的官方定义,癫痫是一种以反复发作为特征的慢性脑部疾病状态。根据ILAE 2017年发布的信息,可将其分为四种类型,包括局灶性癫痫、全身性癫痫、全身性和局灶性癫痫联合、未知性癫痫。自1989年以来,已有24种新的抗癫痫药物被批准用于治疗不同类型的癫痫。此外,还有多种抗癫痫药物正在接受临床监测。这些新型抗癫痫药物有很多优点。 33年来,市场上出现了多种抗癫痫药物,但尚未找到一种能够彻底治愈癫痫的药物。本文根据作用靶点对上述药物进行了分类,并描述了每种药物的基本信息和临床研究。总结了不同化学结构的构效关系。该论文为癫痫药物的后续研究提供帮助。

关键词: 脑功能障碍,癫痫,抗癫痫药物(AEDs),药物靶标,GABA,谷氨酸。

[1]
Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol., 2020, 19(1), 38-48.
[http://dx.doi.org/10.1016/S1474-4422(19)30399-0] [PMID: 31734103]
[2]
Ruffolo, G.; Di Bonaventura, C.; Cifelli, P.; Roseti, C.; Fattouch, J.; Morano, A.; Limatola, C.; Aronica, E.; Palma, E.; Giallonardo, A.T. A novel action of lacosamide on GABAA currents sets the ground for a synergic interaction with levetiracetam in treatment of epilepsy. Neurobiol. Dis., 2018, 115, 59-68.
[http://dx.doi.org/10.1016/j.nbd.2018.03.015] [PMID: 29621596]
[3]
Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; Nordli, D.R.; Perucca, E.; Tomson, T.; Wiebe, S.; Zhang, Y.H.; Zuberi, S.M. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4), 512-521.
[http://dx.doi.org/10.1111/epi.13709] [PMID: 28276062]
[4]
D’Antuono, M.; Köhling, R.; Ricalzone, S.; Gotman, J.; Biagini, G.; Avoli, M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia, 2010, 51(3), 423-431.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02273.x] [PMID: 19694791]
[5]
Lattanzi, S.; Zaccara, G.; Giovannelli, F.; Grillo, E.; Nardone, R.; Silvestrini, M.; Trinka, E.; Brigo, F. Antiepileptic monotherapy in newly diagnosed focal epilepsy. A network meta-analysis. Acta Neurol. Scand., 2019, 139(1), 33-41.
[http://dx.doi.org/10.1111/ane.13025] [PMID: 30194755]
[6]
Betjemann, J.P.; Lowenstein, D.H. Status epilepticus in adults. Lancet Neurol., 2015, 14(6), 615-624.
[http://dx.doi.org/10.1016/S1474-4422(15)00042-3] [PMID: 25908090]
[7]
Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov., 2010, 9(1), 68-82.
[http://dx.doi.org/10.1038/nrd2997] [PMID: 20043029]
[8]
Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776.
[http://dx.doi.org/10.1038/nrd4126] [PMID: 24052047]
[9]
Brodie, M.J.; Besag, F.; Ettinger, A.B.; Mula, M.; Gobbi, G.; Comai, S.; Aldenkamp, A.P.; Steinhoff, B.J. Epilepsy, antiepileptic drugs, and aggression: An evidence-based review. Pharmacol. Rev., 2016, 68(3), 563-602.
[http://dx.doi.org/10.1124/pr.115.012021] [PMID: 27255267]
[10]
Greenfield, L.J. Jr Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 2013, 22(8), 589-600.
[http://dx.doi.org/10.1016/j.seizure.2013.04.015] [PMID: 23683707]
[11]
Kaufman, K.R.; Lepore, F.E.; Keyser, B.J. Visual fields and tiagabine: a quandary. Seizure, 2001, 10(7), 525-529.
[http://dx.doi.org/10.1053/seiz.2001.0543] [PMID: 11749112]
[12]
Boada, C.M.; Grossman, S.N.; Grzeskowiak, C.L. Proceedings of the 2020 epilepsy foundation pipeline conference: emerging drugs and devices. Epilepsy. Behav., 2021, 125, 15.
[http://dx.doi.org/10.1016/j.yebeh.2021.108364]
[13]
Wirrell, E.C.; Laux, L.; Franz, D.N.; Sullivan, J.; Saneto, R.P.; Morse, R.P.; Devinsky, O.; Chugani, H.; Hernandez, A.; Hamiwka, L.; Mikati, M.A.; Valencia, I.; Le Guern, M.E.; Chancharme, L.; de Menezes, M.S. Stiripentol in Dravet syndrome: Results of a retrospective U.S. study. Epilepsia, 2013, 54(9), 1595-1604.
[http://dx.doi.org/10.1111/epi.12303] [PMID: 23848835]
[14]
Xiao, B.; Long, H. The present status and prospect of antiepileptic drugs. Chin. J. Neurol., 2021, 54(1), 5-8.
[15]
Wallace, S.J. Newer antiepileptic drugs: advantages and disadvantages. Brain Dev., 2001, 23(5), 277-283.
[http://dx.doi.org/10.1016/S0387-7604(01)00230-3] [PMID: 11504596]
[16]
Faught, E.; Wilder, B.J.; Ramsay, R.E.; Reife, R.A.; Kramer, L.D.; Pledger, G.W.; Karim, R.M. Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 1996, 46(6), 1684-1690.
[http://dx.doi.org/10.1212/WNL.46.6.1684] [PMID: 8649570]
[17]
Mudigoudar, B.; Weatherspoon, S.; Wheless, J.W. Emerging antiepileptic drugs for severe pediatric epilepsies. Semin. Pediatr. Neurol., 2016, 23(2), 167-179.
[http://dx.doi.org/10.1016/j.spen.2016.06.003] [PMID: 27544474]
[18]
Biagini, G.; Rustichelli, C.; Curia, G.; Vinet, J.; Lucchi, C.; Pugnaghi, M.; Meletti, S. Neurosteroids and epileptogenesis. J. Neuroendocrinol., 2013, 25(11), 980-990.
[http://dx.doi.org/10.1111/jne.12063] [PMID: 23763517]
[19]
Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res., 2015, 111, 85-141.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.01.001] [PMID: 25769377]
[20]
Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; Moshé, S.L.; Nordli, D.; Plouin, P.; Scheffer, I.E. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4), 676-685.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02522.x] [PMID: 20196795]
[21]
Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Shen, K.; Belfort, G.M.; Loya, C.M.; Ackley, M.A.; Grossman, S.J.; Hoffmann, E.; Jia, S.; Wang, J.; Doherty, J.J.; Robichaud, A.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-aminobutyric acid) A receptor: Structure–activity relationships of heterocyclic substitution at C-21. J. Med. Chem., 2015, 58(8), 3500-3511.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00032] [PMID: 25799373]
[22]
Nabbout, R.; Chiron, C. Stiripentol: An example of antiepileptic drug development in childhood epilepsies. Eur. J. Paediatr. Neurol., 2012, 16(Suppl. 1), S13-S17.
[http://dx.doi.org/10.1016/j.ejpn.2012.04.009] [PMID: 22695038]
[23]
Upasani, R.B.; Yang, K.C.; Acosta-Burruel, M.; Konkoy, C.S.; McLellan, J.A.; Woodward, R.M.; Lan, N.C.; Carter, R.B.; Hawkinson, J.E. 3α-Hydroxy-3β-(phenylethynyl)-5β-pregnan-20-ones: Synthesis and pharmacological activity of neuroactive steroids with high affinity for GABAA receptors. J. Med. Chem., 1997, 40(1), 73-84.
[http://dx.doi.org/10.1021/jm9605344] [PMID: 9016330]
[24]
Rosati, A.; Boncristiano, A.; Doccini, V.; Pugi, A.; Pisano, T.; Lenge, M.; De Masi, S.; Guerrini, R. Long‐term efficacy of add‐on stiripentol treatment in children, adolescents, and young adults with refractory epilepsies: A single center prospective observational study. Epilepsia, 2019, 60(11), 2255-2262.
[http://dx.doi.org/10.1111/epi.16363] [PMID: 31630399]
[25]
Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol., 2020, 19(6), 544-556.
[http://dx.doi.org/10.1016/S1474-4422(20)30035-1] [PMID: 32109411]
[26]
Grosenbaugh, D.K.; Mott, D.D. Stiripentol is anticonvulsant by potentiating GABAergic transmission in a model of benzodiazepine-refractory status epilepticus. Neuropharmacology, 2013, 67, 136-143.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.002] [PMID: 23168114]
[27]
Fisher, J.L. The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator. Neuropharmacology, 2009, 56(1), 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.004] [PMID: 18585399]
[28]
Quilichini, P.P.; Chiron, C.; Ben-Ari, Y.; Gozlan, H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA receptor channels. Epilepsia, 2006, 47(4), 704-716.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00497.x] [PMID: 16650136]
[29]
Duan, P.; Li, S.; Ai, N.; Hu, L.; Welsh, W.J.; You, G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol. Pharm., 2012, 9(11), 3340-3346.
[http://dx.doi.org/10.1021/mp300365t] [PMID: 22973893]
[30]
Aboul-Enein, M.N.; El-Azzouny, A.A.; Attia, M.I.; Maklad, Y.A.; Amin, K.M.; Abdel-Rehim, M.; El-Behairy, M.F. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur. J. Med. Chem., 2012, 47(1), 360-369.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.004] [PMID: 22118828]
[31]
David, S.; Blaise, B.; Bruce, C.V.C. Spectroscopic identification, structural features, Hirshfeld surface analysis and molecular docking studies on stiripentol: An orphan antiepileptic drug. J. Mol. Struct., 2018, 13(6), 612-632.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.088]
[32]
Chiron, C. Stiripentol. Neurotherapeutics, 2007, 4(1), 123-125.
[http://dx.doi.org/10.1016/j.nurt.2006.10.001] [PMID: 17199026]
[33]
Chiron, C.; Marchand, M.C.; Tran, A.; Rey, E.; d’Athis, P.; Vincent, J.; Dulac, O.; Pons, G. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. Lancet, 2000, 356(9242), 1638-1642.
[http://dx.doi.org/10.1016/S0140-6736(00)03157-3] [PMID: 11089822]
[34]
Sada, N.; Lee, S.; Katsu, T.; Otsuki, T.; Inoue, T. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science, 2015, 347(6228), 1362-1367.
[http://dx.doi.org/10.1126/science.aaa1299] [PMID: 25792327]
[35]
Dodrill, C.B.; Arnett, J.L.; Sommerville, K.W.; Sussman, N.M. Effects of differing dosages of vigabatrin (Sabril) on cognitive abilities and quality of life in epilepsy. Epilepsia, 1995, 36(2), 164-173.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb00976.x] [PMID: 7821274]
[36]
Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895.
[http://dx.doi.org/10.1016/j.addr.2011.11.006] [PMID: 22210279]
[37]
Mandal, V.; Andrews, A.; Tirol, F. Ketamine use in a newborn with hemimegalencephaly and super-refractory status epilepticus: A case report. Invest. Med., 2022, 70(4), 1022.
[38]
Bellusci, M.; Trivisano, M.; de Palma, L.; Pietrafusa, N.; Vigevano, F.; Specchio, N. Vigabatrin efficacy in GPR56-associated polymicrogyria: The role of GABAA receptor pathway. Epilepsia, 2016, 57(8), 1337-1338.
[http://dx.doi.org/10.1111/epi.13453] [PMID: 27485378]
[39]
Walters, D.C.; Arning, E.; Bottiglieri, T.; Jansen, E.E.W.; Salomons, G.S.; Brown, M.N.; Schmidt, M.A.; Ainslie, G.R.; Roullet, J.B.; Gibson, K.M. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues. Neurochem. Int., 2019, 125, 151-162.
[http://dx.doi.org/10.1016/j.neuint.2019.02.015] [PMID: 30822440]
[40]
Choi, S.; Silverman, R.B. Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem., 2002, 45(20), 4531-4539.
[http://dx.doi.org/10.1021/jm020134i] [PMID: 12238932]
[41]
Trost, B.M.; Lemoine, R.C. An asymmetric synthesis of vigabatrin. Tetrahedron Lett., 1996, 37(51), 9161-9164.
[http://dx.doi.org/10.1016/S0040-4039(96)02148-X]
[42]
Sills, G.J.; Butler, E.; Thompson, G.G.; Brodie, M.J. Vigabatrin and tiagabine are pharmacologically different drugs. A pre-clinical study. Seizure, 1999, 8(7), 404-411.
[http://dx.doi.org/10.1053/seiz.1999.0326] [PMID: 10600581]
[43]
Richens, A.; Chadwick, D.W.; Duncan, J.S.; Dam, M.; Gram, L.; Mikkelsen, M.; Morrow, J.; Mengel, H.; Shu, V.; McKelvy, J.F.; Pierce, M.W. Adjunctive treatment of partial seizures with tiagabine: A placebo-controlled trial. Epilepsy Res., 1995, 21(1), 37-42.
[http://dx.doi.org/10.1016/0920-1211(95)00006-V] [PMID: 7641674]
[44]
Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav., 2005, 6(3), 373-381.
[http://dx.doi.org/10.1016/j.yebeh.2005.01.002] [PMID: 15820346]
[45]
Uldall, P.; Bulteau, C.; Pedersen, S.A.; Dulac, O.; Lyby, K. Tiagabine adjunctive therapy in children with refractory epilepsy: a single-blind dose escalating study. Epilepsy Res., 2000, 42(2-3), 159-168.
[http://dx.doi.org/10.1016/S0920-1211(00)00173-X] [PMID: 11074188]
[46]
Schmidt, D.; Gram, L.; Brodie, M.; Krämer, G.; Perucca, E.; Kälviäinen, R.; Elger, C.E. Tiagabine in the treatment of epilepsy - a clinical review with a guide for the prescribing physician. Epilepsy Res., 2000, 41(3), 245-251.
[http://dx.doi.org/10.1016/S0920-1211(00)00149-2] [PMID: 10962215]
[47]
Al-Otaibi, F. An overview of structurally diversified anticonvulsant agents. Acta Pharm., 2019, 69(3), 321-344.
[http://dx.doi.org/10.2478/acph-2019-0023] [PMID: 31259739]
[48]
Lee, E.C.; Chorghade, M.S.; Petersen, H. Efficient syntheses of regioisomers of tiagabine. Abstr. Pap. Am. Chem. Soc., 1995, 209, 43.
[49]
Singh, B.K.; White-Scott, S. Role of topiramate in adults with intractable epilepsy, mental retardation, and developmental disabilities. Seizure, 2002, 11(1), 47-50.
[http://dx.doi.org/10.1053/seiz.2001.0571] [PMID: 11888260]
[50]
de Araujo Filho, G.M.; Pascalicchio, T.F.; Lin, K.; Sousa, P.S.; Yacubian, E.M.T. Neuropsychiatric profiles of patients with juvenile myoclonic epilepsy treated with valproate or topiramate. Epilepsy Behav., 2006, 8(3), 606-609.
[http://dx.doi.org/10.1016/j.yebeh.2006.01.016] [PMID: 16504593]
[51]
Brandt, C.; Lahr, D.; May, T.W. Cognitive adverse events of topiramate in patients with epilepsy and intellectual disability. Epilepsy Behav., 2015, 45, 261-264.
[http://dx.doi.org/10.1016/j.yebeh.2014.12.043] [PMID: 25843340]
[52]
Hernández-Díaz, S.; Smith, C.R.; Shen, A.; Mittendorf, R.; Hauser, W.A.; Yerby, M.; Holmes, L.B. Comparative safety of antiepileptic drugs during pregnancy. Neurology, 2012, 78(21), 1692-1699.
[http://dx.doi.org/10.1212/WNL.0b013e3182574f39] [PMID: 22551726]
[53]
Baker, G.A.; Currie, N.G.T.; Light, M.J.; Schneiderman, J.H. The effects of adjunctive topiramate therapy on seizure severity and health-related quality of life in patients with refractory epilepsy-a Canadian study. Seizure, 2002, 11(1), 6-15.
[http://dx.doi.org/10.1053/seiz.2001.0581] [PMID: 11888254]
[54]
Perucca, E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol. Res., 1997, 35(4), 241-256.
[http://dx.doi.org/10.1006/phrs.1997.0124] [PMID: 9264038]
[55]
Mula, M. Topiramate and cognitive impairment: evidence and clinical implications. Ther. Adv. Drug Saf., 2012, 3(6), 279-289.
[http://dx.doi.org/10.1177/2042098612455357] [PMID: 25083242]
[56]
Kudin, A.P.; Debska-Vielhaber, G.; Vielhaber, S.; Elger, C.E.; Kunz, W.S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia, 2004, 45(12), 1478-1487.
[http://dx.doi.org/10.1111/j.0013-9580.2004.13504.x] [PMID: 15571505]
[57]
Saeidian, H.; Abdoli, M. The first general protocol for N -monoalkylation of sulfamate esters: benign synthesis of N -alkyl Topiramate (anticonvulsant drug) derivatives. J. Sulfur Chem., 2015, 36(5), 463-470.
[http://dx.doi.org/10.1080/17415993.2015.1069294]
[58]
Reife, R.; Pledger, G.; Wu, S.C. Topiramate as add-on therapy: pooled analysis of randomized controlled trials in adults. Epilepsia, 2000, 41(s1), 66-71.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb02175.x] [PMID: 10768304]
[59]
Marcotte, D. Use of topiramate, a new anti-epileptic as a mood stabilizer. J. Affect. Disord., 1998, 50(2-3), 245-251.
[http://dx.doi.org/10.1016/S0165-0327(98)00110-4] [PMID: 9858083]
[60]
Shank, R.P.; Maryanoff, B.E. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci. Ther., 2008, 14(2), 120-142.
[http://dx.doi.org/10.1111/j.1527-3458.2008.00041.x] [PMID: 18482025]
[61]
Stephen, L.J.; Sills, G.J.; Brodie, M.J. Topiramate in refractory epilepsy: a prospective observational study. Epilepsia, 2000, 41(8), 977-980.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00282.x] [PMID: 10961624]
[62]
Lazarini-Lopes, W.; Do Val-da Silva, R.A.; da Silva-Júnior, R.M.P.; Leite, J.P.; Garcia-Cairasco, N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci. Biobehav. Rev., 2020, 111, 166-182.
[http://dx.doi.org/10.1016/j.neubiorev.2020.01.014] [PMID: 31954723]
[63]
Leo, A.; Russo, E.; Elia, M. Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol. Res., 2016, 107, 85-92.
[http://dx.doi.org/10.1016/j.phrs.2016.03.005] [PMID: 26976797]
[64]
Tamir, I.; Mechoulam, R.; Meyer, A.Y. Cannabidiol and phenytoin: a structural comparison. J. Med. Chem., 1980, 23(2), 220-223.
[http://dx.doi.org/10.1021/jm00176a022] [PMID: 7359539]
[65]
Lago-Fernandez, A.; Redondo, V.; Hernandez-Folgado, L. New methods for the synthesis of cannabidiol derivatives. In: Cannabinoids and Their Receptors; REGGIO, P.H., Ed.; Elsevier Academic Press Inc.: San Diego, 2017; pp. 237-257.
[66]
Thiele, E.A.; Marsh, E.D.; French, J.A.; Mazurkiewicz-Beldzinska, M.; Benbadis, S.R.; Joshi, C.; Lyons, P.D.; Taylor, A.; Roberts, C.; Sommerville, K.; Gunning, B.; Gawlowicz, J.; Lisewski, P.; Mazurkiewicz Beldzinska, M.; Mitosek Szewczyk, K.; Steinborn, B.; Zolnowska, M.; Hughes, E.; McLellan, A.; Benbadis, S.; Ciliberto, M.; Clark, G.; Dlugos, D.; Filloux, F.; Flamini, R.; French, J.; Frost, M.; Haut, S.; Joshi, C.; Kapoor, S.; Kessler, S.; Laux, L.; Lyons, P.; Marsh, E.; Moore, D.; Morse, R.; Nagaraddi, V.; Rosenfeld, W.; Seltzer, L.; Shellhaas, R.; Sullivan, J.; Thiele, E.; Thio, L.L.; Wang, D.; Wilfong, A. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 2018, 391(10125), 1085-1096.
[http://dx.doi.org/10.1016/S0140-6736(18)30136-3] [PMID: 29395273]
[67]
Groeneveld, G.J.; Martin, J.H. Parasitic pharmacology: A plausible mechanism of action for cannabidiol. Br. J. Clin. Pharmacol., 2020, 86(2), 189-191.
[http://dx.doi.org/10.1111/bcp.14028] [PMID: 31290177]
[68]
Devinsky, O.; Patel, A.D.; Thiele, E.A.; Wong, M.H.; Appleton, R.; Harden, C.L.; Greenwood, S.; Morrison, G.; Sommerville, K. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology, 2018, 90(14), e1204-e1211.
[http://dx.doi.org/10.1212/WNL.0000000000005254] [PMID: 29540584]
[69]
Devinsky, O.; Marsh, E.; Friedman, D. Cannabidiol in patients with treatment-resistant epilepsy – Authors’ reply. Lancet Neurol., 2016, 15(6), 545-546.
[http://dx.doi.org/10.1016/S1474-4422(16)00120-4] [PMID: 27302119]
[70]
Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; Wong, M.; Tilton, N.; Bruno, P.; Bluvstein, J.; Hedlund, J.; Kamens, R.; Maclean, J.; Nangia, S.; Singhal, N.S.; Wilson, C.A.; Patel, A.; Cilio, M.R. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol., 2016, 15(3), 270-278.
[http://dx.doi.org/10.1016/S1474-4422(15)00379-8] [PMID: 26724101]
[71]
Costa, A.M.; Senn, L.; Anceschi, L.; Brighenti, V.; Pellati, F.; Biagini, G. Antiseizure effects of fully characterized non-psychoactive Cannabis sativa L. extracts in the repeated 6-Hz corneal stimulation test. Pharmaceuticals (Basel), 2021, 14(12), 1259.
[http://dx.doi.org/10.3390/ph14121259] [PMID: 34959660]
[72]
Senn, L.; Cannazza, G.; Biagini, G. Receptors and channels possibly mediating the effects of phytocannabinoids on seizures and epilepsy. Pharmaceuticals (Basel), 2020, 13(8), 174.
[http://dx.doi.org/10.3390/ph13080174] [PMID: 32751761]
[73]
Cerne, R.; Lippa, A.; Poe, M.M.; Smith, J.L.; Jin, X.; Ping, X.; Golani, L.K.; Cook, J.M.; Witkin, J.M. GABAkines – Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. Pharmacol. Ther., 2022, 234, 108035.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108035] [PMID: 34793859]
[74]
Aida, V.; Niedzielko, T.L.; Szaflarski, J.P.; Floyd, C.L. Acute administration of perampanel, an AMPA receptor antagonist, reduces cognitive impairments after traumatic brain injury in rats. Exp. Neurol., 2020, 327, 113222.
[http://dx.doi.org/10.1016/j.expneurol.2020.113222] [PMID: 32027929]
[75]
Lee, S.M.; Asress, S.; Hales, C.M.; Gearing, M.; Vizcarra, J.C.; Fournier, C.N.; Gutman, D.A.; Chin, L.S.; Li, L.; Glass, J.D. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun., 2019, 1(1), fcz014.
[http://dx.doi.org/10.1093/braincomms/fcz014] [PMID: 31633109]
[76]
Tremblay, G.; Howard, D.; Tsong, W.; Patel, V.; De Rosendo, J. Cost-effectiveness of perampanel for the treatment of primary generalized tonic-clonic seizures (PGTCS) in epilepsy: A Spanish perspective. Epilepsy Behav., 2018, 86, 108-115.
[http://dx.doi.org/10.1016/j.yebeh.2018.06.002] [PMID: 30001911]
[77]
Raedler, L. A. Fycompa (Perampanel hydrate) receives expanded indication for primary generalized tonic-clonic seizures Am. Health Drug Benefits, 2016, 9(Spec Feature), 88.
[78]
Chang, F.M.; Fan, P.C.; Weng, W.C.; Chang, C.H.; Lee, W.T. The efficacy of perampanel in young children with drug-resistant epilepsy. Seizure, 2020, 75, 82-86.
[http://dx.doi.org/10.1016/j.seizure.2019.12.024] [PMID: 31901668]
[79]
French, J.A.; Krauss, G.L.; Biton, V.; Squillacote, D.; Yang, H.; Laurenza, A.; Kumar, D.; Rogawski, M.A. Adjunctive perampanel for refractory partial-onset seizures: Randomized phase III study 304. Neurology, 2012, 79(6), 589-596.
[http://dx.doi.org/10.1212/WNL.0b013e3182635735] [PMID: 22843280]
[80]
McGee, J.H.; Erikson, D.J.; Galbreath, C.; Willigan, D.A.; Sofia, R.D. Acute, subchronic, and chronic toxicity studies with felbamate, 2-phenyl-1,3-propanediol dicarbamate. Toxicol. Sci., 1998, 45(2), 225-232.
[http://dx.doi.org/10.1093/toxsci/45.2.225] [PMID: 9848129]
[81]
Mazzocchetti, P.; Mancini, A.; Sciaccaluga, M.; Megaro, A.; Bellingacci, L.; Di Filippo, M.; Cesarini, E.N.; Romoli, M.; Carrano, N.; Gardoni, F.; Tozzi, A.; Calabresi, P.; Costa, C. Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiol. Dis., 2020, 140, 104848.
[http://dx.doi.org/10.1016/j.nbd.2020.104848] [PMID: 32222474]
[82]
Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.; Hanada, T.; Yonaga, M. Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydro-pyridin-3-yl)benzonitrile (perampanel): A novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropa-noic acid (AMPA) receptor antagonist. J. Med. Chem., 2012, 55(23), 10584-10600.
[http://dx.doi.org/10.1021/jm301268u] [PMID: 23181587]
[83]
Marom, E.; Rubnov, S. Process and intermediates for the preparation of perampanel. US Patent US10111867, 2018.
[84]
Sullivan, B.J.; Ammanuel, S.; Kipnis, P.A.; Araki, Y.; Huganir, R.L.; Kadam, S.D. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron glua2 upregulation in epileptic Syngap1+/− mice. Biol. Psychiatry, 2020, 87(9), 829-842.
[http://dx.doi.org/10.1016/j.biopsych.2019.12.025] [PMID: 32107006]
[85]
Brigo, F.; Lattanzi, S.; Rohracher, A. Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsia, 2018, 59(S120), S.
[http://dx.doi.org/10.1016/j.yebeh.2018.07.004]
[86]
Galati, C.; Pironti, E.; Cucinotta, F. Perampanel treatment in drug-resistant focal epilepsy with de novo mutation CACNA1H: characteristics and clinical outcome. Eur. Neuropsychopharmacol., 2017, 27, S1110-S.
[87]
Pistovcakova, J.; Makatsori, A.; Sulcova, A.; Jezova, D. Felbamate reduces hormone release and locomotor hypoactivity induced by repeated stress of social defeat in mice. Eur. Neuropsychopharmacol., 2005, 15(2), 153-158.
[http://dx.doi.org/10.1016/j.euroneuro.2004.08.007] [PMID: 15695059]
[88]
Avanzini, G.; Canger, R.; Dalla Bernardina, B.; Vigevano, F. Felbamate in therapy-resistant epilepsy: an Italian experience. Epilepsy Res., 1996, 25(3), 249-255.
[http://dx.doi.org/10.1016/S0920-1211(96)00070-8] [PMID: 8956923]
[89]
Contin, M.; Balboni, M.; Callegati, E.; Candela, C.; Albani, F.; Riva, R.; Baruzzi, A. Simultaneous liquid chromatographic determination of lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in plasma of patients with epilepsy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 828(1-2), 113-117.
[http://dx.doi.org/10.1016/j.jchromb.2005.09.009] [PMID: 16182617]
[90]
Brodie, M.; Pellock, J. Taming the brain storms: felbamate updated. Lancet, 1995, 346(8980), 918-919.
[http://dx.doi.org/10.1016/S0140-6736(95)91550-8] [PMID: 7564721]
[91]
Luszczki, J.J.; Andres-Mach, M.M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia, 2007, 48(4), 806-815.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00964.x] [PMID: 17284299]
[92]
Ketter, T.A.; Malow, B.A.; Flamini, R.; Ko, D.; White, S.R.; Post, R.M.; Theodore, W.H. Felbamate monotherapy has stimulant-like effects in patients with epilepsy. Epilepsy Res., 1996, 23(2), 129-137.
[http://dx.doi.org/10.1016/0920-1211(95)00089-5] [PMID: 8964274]
[93]
Hen, N.; Bialer, M.; Yagen, B. Syntheses and evaluation of anticonvulsant activity of novel branched alkyl carbamates. J. Med. Chem., 2012, 55(6), 2835-2845.
[http://dx.doi.org/10.1021/jm201751x] [PMID: 22339381]
[94]
Peña-López, M.; Neumann, H.; Beller, M. Iron-catalyzed reaction of urea with alcohols and amines: a safe alternative for the synthesis of primary carbamates. ChemSusChem, 2016, 9(16), 2233-2238.
[http://dx.doi.org/10.1002/cssc.201600587] [PMID: 27403875]
[95]
Ebert, U.; Reissmüller, E.; Löscher, W. The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin-resistant kindled rats. Neuropharmacology, 2000, 39(10), 1893-1903.
[http://dx.doi.org/10.1016/S0028-3908(00)00039-3] [PMID: 10884570]
[96]
Hussain, S.A.; Asilnejad, B.; Heesch, J.; Navarro, M.; Ji, M.; Shrey, D.W.; Rajaraman, R.R.; Sankar, R. Felbamate in the treatment of refractory epileptic spasms. Epilepsy Res., 2020, 161, 106284.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106284] [PMID: 32058261]
[97]
Mazarati, A.M.; Baldwin, R.A.; Sofia, R.D.; Wasterain, C.G. Felbamate in experimental model of status epilepticus. Epilepsia, 2000, 41(2), 123-127.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00130.x] [PMID: 10691107]
[98]
Pal, R.; Singh, K.; Khan, S.A.; Chawla, P.; Kumar, B.; Akhtar, M.J. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur. J. Med. Chem., 2021, 226, 113890.
[http://dx.doi.org/10.1016/j.ejmech.2021.113890] [PMID: 34628237]
[99]
Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia, 2020, 61(11), 2365-2385.
[http://dx.doi.org/10.1111/epi.16726] [PMID: 33165915]
[100]
Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother., 2019, 19(10), 913-925.
[http://dx.doi.org/10.1080/14737175.2019.1635457] [PMID: 31335226]
[101]
Samueli, S.; Abraham, K.; Dressler, A.; Gröppel, G.; Mühlebner-Fahrngruber, A.; Scholl, T.; Kasprian, G.; Laccone, F.; Feucht, M. Efficacy and safety of Everolimus in children with TSC - associated epilepsy – Pilot data from an open single-center prospective study. Orphanet J. Rare Dis., 2016, 11(1), 145.
[http://dx.doi.org/10.1186/s13023-016-0530-z] [PMID: 27809914]
[102]
Krueger, D.A.; Wilfong, A.A.; Holland-Bouley, K.; Anderson, A.E.; Agricola, K.; Tudor, C.; Mays, M.; Lopez, C.M.; Kim, M.O.; Franz, D.N. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol., 2013, 74(5), 679-687.
[http://dx.doi.org/10.1002/ana.23960] [PMID: 23798472]
[103]
Kuhn, B.; Jacobsen, W.; Christians, U.; Benet, L.Z.; Kollman, P.A. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J. Med. Chem., 2001, 44(12), 2027-2034.
[http://dx.doi.org/10.1021/jm010079y] [PMID: 11384247]
[104]
Supurgibekov, M. B.; Shestakov, A. N.; Sharkov, D. E. New method for producing everolimus. RU2716714-C1,
[105]
Fronza, G.; Fuganti, C.; Grasselli, P.; Mele, A. The mode of bakers’ yeast transformation of 3-chloropropiophenone and related ketones. Synthesis of (2S)-[2-2H]propiophenone, (R)-fluoxetine, and (R)- and (S)-fenfluramine. J. Org. Chem., 1991, 56(21), 6019-6023.
[http://dx.doi.org/10.1021/jo00021a011]
[106]
Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[107]
Fuller, R.W.; Snoddy, H.D.; Clemens, J.A.; Molloy, B.B. Effect of norfenfluramine and two structural analogues on brain 5-hydroxyindoles and serum prolactin in rats. J. Pharm. Pharmacol., 2011, 34(7), 449-450.
[http://dx.doi.org/10.1111/j.2042-7158.1982.tb04755.x] [PMID: 6181246]
[108]
Goument, B.; Duhamel, L.; Mauge, R. Asymmetric syntheses of (S)-fenfluramine using sharpless epoxidation methods. Tetrahedron, 1994, 50(1), 171-188.
[http://dx.doi.org/10.1016/S0040-4020(01)80743-2]
[109]
Tu, W.; Qian, S. Anti-epileptic effect of 16-O-acetyldigitoxigenin via suppressing mTOR signaling pathway. Cell. Mol. Biol., 2019, 65(5), 59-63.
[http://dx.doi.org/10.14715/cmb/2019.65.5.10] [PMID: 31304908]
[110]
Brandt, C.; Hillmann, P.; Noack, A.; Römermann, K.; Öhler, L.A.; Rageot, D.; Beaufils, F.; Melone, A.; Sele, A.M.; Wymann, M.P.; Fabbro, D.; Löscher, W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.002] [PMID: 30081001]
[111]
Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol., 2019, 855, 175-182.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.007] [PMID: 31063770]
[112]
Sills, G. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol., 2006, 6(1), 108-113.
[http://dx.doi.org/10.1016/j.coph.2005.11.003] [PMID: 16376147]
[113]
Mantegazza, M.; Curia, G.; Biagini, G.; Ragsdale, D.S.; Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol., 2010, 9(4), 413-424.
[http://dx.doi.org/10.1016/S1474-4422(10)70059-4] [PMID: 20298965]
[114]
Kim, D.Y.; Moon, J.; Shin, Y.W.; Lee, S.T.; Jung, K.H.; Park, K.I.; Jung, K.Y.; Kim, M.; Lee, S.; Yu, K.S.; Jang, I.J.; Song, K.; Chu, K.; Lee, S. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia, 2020, 61(6), 1120-1128.
[http://dx.doi.org/10.1111/epi.16513] [PMID: 32378757]
[115]
Park, S.; Lee, H.; Jung, D. Long-term cognitive effects of oxcarbazepine monotherapy in epilepsy patients. J. Neurol. Sci., 2005, 238, S138-S.
[116]
Ide, M.; Kato, T.; Nakata, M.; Saito, K.; Yoshida, T.; Awaya, T.; Heike, T. A granulocytosis associated with rufinamide: A case report. Brain Dev., 2015, 37(8), 825-828.
[http://dx.doi.org/10.1016/j.braindev.2014.12.010] [PMID: 25619447]
[117]
Spina, E.; Pisani, F.; de Leon, J. Clinically significant pharmacokinetic drug interactions of antiepileptic drugs with new antidepressants and new antipsychotics. Pharmacol. Res., 2016, 106, 72-86.
[http://dx.doi.org/10.1016/j.phrs.2016.02.014] [PMID: 26896788]
[118]
Franco, V.; Gatti, G.; Mazzucchelli, I.; Marchiselli, R.; Fattore, C.; Rota, P.; Galimberti, C.A.; Capovilla, G.; Beccaria, F.; De Giorgis, V.; Johannessen Landmark, C.; Perucca, E. Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy. Epilepsia, 2020, 61(7), e79-e84.
[http://dx.doi.org/10.1111/epi.16584] [PMID: 32562438]
[119]
Bootsma, H.P.R.; Vos, A.M.; Hulsman, J.; Lambrechts, D.; Leenen, L.; Majoie, M.; Savelkoul, M.; Schellekens, A.; Aldenkamp, A.P. Lamotrigine in clinical practice: Long-term experience in patients with refractory epilepsy referred to a tertiary epilepsy center. Epilepsy Behav., 2008, 12(2), 262-268.
[http://dx.doi.org/10.1016/j.yebeh.2007.10.004] [PMID: 18093878]
[120]
Brodie, M.J.; Richens, A.; Yuen, A.W.C. Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. Lancet, 1995, 345(8948), 476-479.
[http://dx.doi.org/10.1016/S0140-6736(95)90581-2] [PMID: 7710545]
[121]
Brodie, M.J. Zonisamide as adjunctive therapy for refractory partial seizures. Epilepsy Res., 2006, 68(Suppl. 2), S11-S16.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.11.005] [PMID: 16316744]
[122]
Glauser, T.; Ben-Menachem, E.; Bourgeois, B.; Cnaan, A.; Guerreiro, C.; Kälviäinen, R.; Mattson, R.; French, J.A.; Perucca, E.; Tomson, T. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 2013, 54(3), 551-563.
[http://dx.doi.org/10.1111/epi.12074] [PMID: 23350722]
[123]
Rocamora, R.; Peltola, J.; Assenza, G.; McMurray, R.; Villanueva, V. Safety, tolerability and effectiveness of transition to eslicarbazepine acetate from carbamazepine or oxcarbazepine in clinical practice. Seizure, 2020, 75, 121-128.
[http://dx.doi.org/10.1016/j.seizure.2019.12.022] [PMID: 31981862]
[124]
Weissinger, F.; Losch, F.; Winter, Y.; Brecht, S.; Lendemans, D.; Kockelmann, E. Effectiveness of eslicarbazepine acetate in dependency of baseline anticonvulsant therapy: Results from a German prospective multicenter clinical practice study. Epilepsy Behav., 2019, 101(Pt A), 106574.
[http://dx.doi.org/10.1016/j.yebeh.2019.106574] [PMID: 31678808]
[125]
Kirkham, F.; Auvin, S.; Moreira, J.; Gama, H.; Falcão, A.C.; Rocha, J.F.; Soares-da-Silva, P. Efficacy and safety of eslicarbazepine acetate as adjunctive therapy for refractory focal-onset seizures in children: A double-blind, randomized, placebo-controlled, parallel-group, multicenter, phase-III clinical trial. Epilepsy Behav., 2020, 105, 106962.
[http://dx.doi.org/10.1016/j.yebeh.2020.106962] [PMID: 32151803]
[126]
Villanueva, V.; Bermejo, P.; Montoya, J.; Massot-Tarrús, A.; Galiano, M.L.; Toledo, M.; Rodriguez-Uranga, J.J.; Bertol, V.; Mauri, J.Á.; Poza, J.J.; Bonet, M.; Castro-Vilanova, M.D.; Ruiz-Giménez, J.; López-González, F.J.; Rodríguez-Osorio, X.; Tortosa-Conesa, D.; Ojeda, J.; Giner, P.; Garcés, M.; Alvarez, B.M.; Quiroga-Subirana, P.; Esteve, P.; Baiges, J.J.; Hampel, K. MONOZEB: Long-term observational study of eslicarbazepine acetate monotherapy. Epilepsy Behav., 2019, 97, 51-59.
[http://dx.doi.org/10.1016/j.yebeh.2019.05.003] [PMID: 31181429]
[127]
Verrotti, A.; Loiacono, G.; Rossi, A.; Zaccara, G. Eslicarbazepine acetate: An update on efficacy and safety in epilepsy. Epilepsy Res., 2014, 108(1), 1-10.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.10.005] [PMID: 24225327]
[128]
Unverferth, K.; Engel, J.; Höfgen, N.; Rostock, A.; Günther, R.; Lankau, H.J.; Menzer, M.; Rolfs, A.; Liebscher, J.; Müller, B.; Hofmann, H.J. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J. Med. Chem., 1998, 41(1), 63-73.
[http://dx.doi.org/10.1021/jm970327j] [PMID: 9438023]
[129]
Ravinder, B.; Rajeshwar Reddy, S.; Sridhar, M.; Murali Mohan, M.; Srinivas, K.; Panasa Reddy, A.; Bandichhor, R. An efficient synthesis for eslicarbazepine acetate, oxcarbazepine, and carbamazepine. Tetrahedron Lett., 2013, 54(22), 2841-2844.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.089]
[130]
Chang, R.S.; Lui, H.K.K.; Lui, H.T.C.; Leung, C.Y.W.; Leung, Y.H.I.; Wang, Y.O. Efficacy upon 12-weeks after achievement of maximal dose and tolerability of lacosamide as an adjunctive therapy in epilepsy: Real world clinical experience. J. Neurol. Sci., 2020, 409, 116601.
[http://dx.doi.org/10.1016/j.jns.2019.116601] [PMID: 31801052]
[131]
Ben-Menachem, E.; Grebe, H.P.; Terada, K.; Jensen, L.; Li, T.; De Backer, M.; Steiniger-Brach, B.; Gasalla, T.; Brock, M.; Biton, V. Long‐term safety and efficacy of lacosamide and controlled‐release carbamazepine monotherapy in patients with newly diagnosed epilepsy. Epilepsia, 2019, 60(12), 2437-2447.
[http://dx.doi.org/10.1111/epi.16381] [PMID: 31755090]
[132]
Curia, G.; Biagini, G.; Perucca, E.; Avoli, M. Lacosamide. CNS Drugs, 2009, 23(7), 555-568.
[http://dx.doi.org/10.2165/00023210-200923070-00002] [PMID: 19552484]
[133]
Lattanzi, S.; Cagnetti, C.; Foschi, N.; Provinciali, L.; Silvestrini, M. Lacosamide monotherapy for partial onset seizures. Seizure, 2015, 27, 71-74.
[http://dx.doi.org/10.1016/j.seizure.2015.03.003] [PMID: 25891931]
[134]
King, A.M.; Salomé, C.; Salomé-Grosjean, E.; De Ryck, M.; Kaminski, R.; Valade, A.; Stables, J.P.; Kohn, H. Primary amino acid derivatives: substitution of the 4′-N′-benzylamide site in (R)-N′-benzyl 2-amino-3-methyl-butanamide, (R)-N′-benzyl 2-amino-3,3-dimethylbut-anamide, and (R)-N′-benzyl 2-amino-3-methoxypropiona-mide provides potent anticonvulsants with pain-attenuating properties. J. Med. Chem., 2011, 54(19), 6417-6431.
[http://dx.doi.org/10.1021/jm200759t] [PMID: 21861463]
[135]
Gavatha, M.; Ioannou, I.; Papavasiliou, A.S. Efficacy and tolerability of oral lacosamide as adjunctive therapy in pediatric patients with pharmacoresistant focal epilepsy. Epilepsy Behav., 2011, 20(4), 691-693.
[http://dx.doi.org/10.1016/j.yebeh.2011.02.005] [PMID: 21406334]
[136]
Morieux, P.; Salomé, C.; Park, K.D.; Stables, J.P.; Kohn, H. The structure-activity relationship of the 3-oxy site in the anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypro-pionamide. J. Med. Chem., 2010, 53(15), 5716-5726.
[http://dx.doi.org/10.1021/jm100508m] [PMID: 20614888]
[137]
Chen, M.D.; Yang, A.J.; Li, Z.; Hu, F-F.; Yang, J-T.; Gao, S-H.; Zhang, F-L.; Zhao, C-J. Concise synthesis of lacosamide with high chiral purity. ACS Omega, 2019, 4(4), 6546-6550.
[http://dx.doi.org/10.1021/acsomega.8b02564]
[138]
Helmstaedter, C.; Witt, J.A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav., 2013, 26(2), 182-187.
[http://dx.doi.org/10.1016/j.yebeh.2012.11.052] [PMID: 23318473]
[139]
Olson, H.E.; Loddenkemper, T.; Vendrame, M.; Poduri, A.; Takeoka, M.; Bergin, A.M.; Libenson, M.H.; Duffy, F.H.; Rotenberg, A.; Coulter, D.; Bourgeois, B.F.; Kothare, S.V. Rufinamide for the treatment of epileptic spasms. Epilepsy Behav., 2011, 20(2), 344-348.
[http://dx.doi.org/10.1016/j.yebeh.2010.11.023] [PMID: 21233024]
[140]
Alsaad, A.M.S.; Koren, G. Exposure to rufinamide and risks of CNS adverse events in drug-resistant epilepsy: a meta-analysis of randomized, placebo-controlled trials. Br. J. Clin. Pharmacol., 2014, 78(6), 1264-1271.
[http://dx.doi.org/10.1111/bcp.12479] [PMID: 25132372]
[141]
Deeks, E.D.; Scott, L.J. Rufinamide. CNS Drugs, 2006, 20(9), 751-760.
[http://dx.doi.org/10.2165/00023210-200620090-00007] [PMID: 16953653]
[142]
Gáll, Z.; Vancea, S.; Szilágyi, T.; Gáll, O.; Kolcsár, M. Dose-dependent pharmacokinetics and brain penetration of rufinamide following intravenous and oral administration to rats. Eur. J. Pharm. Sci., 2015, 68, 106-113.
[http://dx.doi.org/10.1016/j.ejps.2014.12.012] [PMID: 25530452]
[143]
Yıldız, E.P.; Hızlı, Z.; Bektaş, G.; Ulak-Özkan, M.; Tatlı, B.; Aydınlı, N.; Çalışkan, M.; Özmen, M. Efficacy of rufinamide in childhood refractory epilepsy. Turk. J. Pediatr., 2018, 60(3), 238-243.
[http://dx.doi.org/10.24953/turkjped.2018.03.002] [PMID: 30511535]
[144]
Chen, B.H.; Ahn, J.H.; Park, J.H.; Song, M.; Kim, H.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Hwang, I.K.; Kim, D.W.; Lee, C.H.; Yan, B.C.; Kang, I.J.; Won, M.H. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem. Biol. Interact., 2018, 286, 71-77.
[http://dx.doi.org/10.1016/j.cbi.2018.03.007] [PMID: 29548728]
[145]
Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow total synthesis of rufinamide. Org. Process Res. Dev., 2014, 18(11), 1567-1570.
[http://dx.doi.org/10.1021/op500166n]
[146]
Sirven, J.I.; Noe, K.; Hoerth, M.; Drazkowski, J. Antiepileptic drugs 2012: recent advances and trends. Mayo Clin. Proc., 2012, 87(9), 879-889.
[http://dx.doi.org/10.1016/j.mayocp.2012.05.019] [PMID: 22958992]
[147]
Gilchrist, J.; Dutton, S.; Diaz-Bustamante, M.; McPherson, A.; Olivares, N.; Kalia, J.; Escayg, A.; Bosmans, F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem. Biol., 2014, 9(5), 1204-1212.
[http://dx.doi.org/10.1021/cb500108p] [PMID: 24635129]
[148]
Mudd, W.H.; Stevens, E.P. An efficient synthesis of rufinamide, an antiepileptic drug. Tetrahedron Lett., 2010, 51(24), 3229-3231.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.060]
[149]
Besag, F.M.C.; Dulac, O.; Alving, J.; Mullens, E.L. Long-term safety and efficacy of lamotrigine (Lamictal®) in paediatric patients with epilepsy. Seizure, 1997, 6(1), 51-56.
[http://dx.doi.org/10.1016/S1059-1311(97)80053-2] [PMID: 9061824]
[150]
Machado, R.A.; García, V.F.; Astencio, A.G.; Cuartas, V.B. Efficacy and tolerability of lamotrigine in Juvenile Myoclonic Epilepsy in adults: A prospective, unblinded randomized controlled trial. Seizure, 2013, 22(10), 846-855.
[http://dx.doi.org/10.1016/j.seizure.2013.07.006] [PMID: 23916525]
[151]
Paraskevas, G.P.; Triantafyllou, N.I.; Kapaki, E.; Limpitaki, G.; Petropoulou, O.; Vassilopoulos, D. Add-on lamotrigine treatment and plasma glutamate levels in epilepsy: Relation to treatment response. Epilepsy Res., 2006, 70(2-3), 184-189.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.05.004] [PMID: 16762531]
[152]
Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585.
[http://dx.doi.org/10.1016/j.bmc.2020.115585] [PMID: 32631563]
[153]
Leitch, D.C.; John, M.P.; Slavin, P.A.; Searle, A.D. An evaluation of multiple catalytic systems for the cyanation of 2,3-dichlorobenzoyl chloride: application to the synthesis of lamotrigine. Org. Process Res. Dev., 2017, 21(11), 1815-1821.
[http://dx.doi.org/10.1021/acs.oprd.7b00262]
[154]
Tang, L.; Ge, L.; Wu, W.; Yang, X.; Rui, P.; Wu, Y.; Yu, W.; Wang, X. Lamotrigine versus valproic acid monotherapy for generalised epilepsy: A meta-analysis of comparative studies. Seizure, 2017, 51, 95-101.
[http://dx.doi.org/10.1016/j.seizure.2017.08.001] [PMID: 28826049]
[155]
Kaminow, L.; Schimschock, J.R.; Hammer, A.E.; Vuong, A. Lamotrigine monotherapy compared with carbamazepine, phenytoin, or valproate monotherapy in patients with epilepsy. Epilepsy Behav., 2003, 4(6), 659-666.
[http://dx.doi.org/10.1016/j.yebeh.2003.08.033] [PMID: 14698699]
[156]
Brodie, M.J. Zonisamide clinical trials: European experience. Seizure, 2004, 13(Suppl. 1), S66-S70.
[http://dx.doi.org/10.1016/j.seizure.2004.04.010] [PMID: 15511696]
[157]
Baulac, M. Introduction to zonisamide. Epilepsy Res., 2006, 68(Suppl. 2), S3-S9.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.11.004] [PMID: 16413170]
[158]
Borowicz, K.K.; Luszczki, J.J.; Sobieszek, G.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Interactions between zonisamide and conventional antiepileptic drugs in the mouse maximal electroshock test model. Eur. Neuropsychopharmacol., 2007, 17(4), 265-272.
[http://dx.doi.org/10.1016/j.euroneuro.2006.06.008] [PMID: 16876388]
[159]
Naddaka, V.; Klopfer, E.; Saeed, S. Derivatives of 1,2-benzisoxazole-3-methane sulfonic acid as novel intermediates for the synthesis of zonisamide. US Patent US07745471, 2010.
[160]
Besag, F.M.C.; Vasey, M.J.; Sharma, A.N.; Lam, I.C.H. Efficacy and safety of lamotrigine in the treatment of bipolar disorder across the lifespan: a systematic review. Ther. Adv. Psychopharmacol., 2021, 11, 20451253211045870.
[http://dx.doi.org/10.1177/20451253211045870] [PMID: 34646439]
[161]
Baker, E.M.; Thompson, C.H.; Hawkins, N.A.; Wagnon, J.L.; Wengert, E.R.; Patel, M.K.; George, A.L., Jr; Meisler, M.H.; Kearney, J.A. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia, 2018, 59(6), 1166-1176.
[http://dx.doi.org/10.1111/epi.14196] [PMID: 29782051]
[162]
Ma, R. A new SV2A ligand for epilepsy. Cell, 2016, 167(3), 587.
[http://dx.doi.org/10.1016/j.cell.2016.09.057]
[163]
Rashid, M.; Rajan, A.K.; Chhabra, M.; Kashyap, A. Levetiracetam and cutaneous adverse reactions: A systematic review of descriptive studies. Seizure, 2020, 75, 101-109.
[http://dx.doi.org/10.1016/j.seizure.2020.01.002] [PMID: 31931437]
[164]
Steinhoff, B.J.; Christensen, J.; Doherty, C.P.; Majoie, M.; De Backer, M.; Hellot, S.; Leunikava, I.; Leach, J.P. Effectiveness and tolerability of adjunctive brivaracetam in patients with focal seizures: Second interim analysis of 6-month data from a prospective observational study in Europe. Epilepsy Res., 2020, 165, 106329.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106329] [PMID: 32623096]
[165]
Dudra-Jastrzebska, M.; Andres-Mach, M.M.; Sielski, M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J.; Luszczki, J.J. Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: An isobolographic analysis. Eur. J. Pharmacol., 2009, 605(1-3), 87-94.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.046] [PMID: 19168049]
[166]
Morgan, O.; Medenwald, B. Safety and tolerability of rapid administration undiluted levetiracetam. Neurocrit. Care, 2020, 32(1), 131-134.
[http://dx.doi.org/10.1007/s12028-019-00708-5] [PMID: 30919301]
[167]
Sourbron, J.; Chan, H.; Wammes-van der Heijden, E.A.; Klarenbeek, P.; Wijnen, B.F.M.; de Haan, G.J.; van der Kuy, H.; Evers, S.; Majoie, M. Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure, 2018, 62, 131-135.
[http://dx.doi.org/10.1016/j.seizure.2018.09.004] [PMID: 30237016]
[168]
Dalziel, S.R.; Borland, M.L.; Furyk, J.; Bonisch, M.; Neutze, J.; Donath, S.; Francis, K.L.; Sharpe, C.; Harvey, A.S.; Davidson, A.; Craig, S.; Phillips, N.; George, S.; Rao, A.; Cheng, N.; Zhang, M.; Kochar, A.; Brabyn, C.; Oakley, E.; Babl, F.E. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet, 2019, 393(10186), 2135-2145.
[http://dx.doi.org/10.1016/S0140-6736(19)30722-6] [PMID: 31005386]
[169]
Costa, A.M.; Lucchi, C.; Malkoç, A.; Rustichelli, C.; Biagini, G. Relationship between delta rhythm, seizure occurrence and allopregnanolone hippocampal levels in epileptic rats exposed to the rebound effect. Pharmaceuticals (Basel), 2021, 14(2), 127.
[http://dx.doi.org/10.3390/ph14020127] [PMID: 33561937]
[170]
Steinhoff, B.J.; Staack, A.M. Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419873518.
[http://dx.doi.org/10.1177/1756286419873518] [PMID: 31523280]
[171]
Fonseca, E.; Guzmán, L.; Quintana, M.; Abraira, L.; Santamarina, E.; Salas-Puig, X.; Toledo, M. Efficacy, retention, and safety of brivaracetam in adult patients with genetic generalized epilepsy. Epilepsy Behav., 2020, 102, 106657.
[http://dx.doi.org/10.1016/j.yebeh.2019.106657] [PMID: 31731108]
[172]
Nissenkorn, A.; Tzadok, M.; Bar-Yosef, O.; Ben-Zeev, B. Treatment with brivaracetam in children – The experience of a pediatric epilepsy center. Epilepsy Behav., 2019, 101(Pt A), 106541.
[http://dx.doi.org/10.1016/j.yebeh.2019.106541] [PMID: 31698260]
[173]
Rosenstiel, P. Brivaracetam (UCB 34714). Neurotherapeutics, 2007, 4(1), 84-87.
[http://dx.doi.org/10.1016/j.nurt.2006.11.004] [PMID: 17199019]
[174]
Kenda, B.M.; Matagne, A.C.; Talaga, P.E.; Pasau, P.M.; Differding, E.; Lallemand, B.I.; Frycia, A.M.; Moureau, F.G.; Klitgaard, H.V.; Gillard, M.R.; Fuks, B.; Michel, P. Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem., 2004, 47(3), 530-549.
[http://dx.doi.org/10.1021/jm030913e] [PMID: 14736235]
[175]
Chavan, S.P.; Kawale, S.A.; Chavan, P.N. Formal synthesis of brivaracetam: A key to construct the pyrrolidone scaffold using Pd-catalyzed oxidative cyclization and ring-closing metathesis reaction. Tetrahedron Lett., 2019, 60(46), 151249.
[http://dx.doi.org/10.1016/j.tetlet.2019.151249]
[176]
Lyttle, M.D.; Rainford, N.E.A.; Gamble, C.; Messahel, S.; Humphreys, A.; Hickey, H.; Woolfall, K.; Roper, L.; Noblet, J.; Lee, E.D.; Potter, S.; Tate, P.; Iyer, A.; Evans, V.; Appleton, R.E.; Pereira, M.; Hardwick, S.; Messahel, S.; Noblet, J.; Lee, E.D.; Greenwood-Bibby, R.; Buchanan, M.; Lewis, L.; Hughes, S.; Hartshorn, S.; Rogers, L.; Hopkins, J.; Lyttle, M.D.; Fernandez, D.; Potter, S.; Lavigne-Smith, H.R.; Moulsdale, P.; Smith, A.; Bingham, T.; Ross, J.; Ramsey, N.; Hacking, J.; Mullen, N.; Corrigan, P.P.; Prudhoe, S.; Faza, H.; Robinson, G.; Sunley, R.C.; Smith, C.J.; Unsworth, V.; Criddle, J.; Laque, M.; Sheedy, A.B.; Anderson, M.; Bell, K.; Devine, K.; Scott, A.; Kumar, R.; Armstrong, S.; Sutherland, E.; Cantle, F.; Helyer, S.; Riozzi, P.; Cotton, H.; Downes, A.J.; Mollard, H.; Roland, D.; Hay, F.; Gough, C.; Finucane, S.; Bevan, C.; Ramsay, R.; Walton, E.; Maney, J-A.; Dalzell, E.; Millar, M.; Howells, R.J.; Appelboam, A.; Mackle, D.; Small, J.; Neil, A.; Choudhery, V.; MacLeod, S.; Browning, J.; O’Neill, T.; Grahamslaw, J.; Parikh, A.; Skene, I.; Thomas, R.; Potier de la Morandiere, K.; Wilson, J.L.; Danziger, D.; Burke, D.; Ramlakhan, S.; Evans, J.; Morcombe, J.; Gormley, S.; Barling, J.M.; Cathie, K.; Bayreuther, J.; Ensom, R.; Iqbal, Y.; Rounding, S.; Mulligan, J.; Bell, C.; McLellan, S.; Leighton, S.; Sajjanhar, T.; Nyirenda, M.; Crome, L.; Williamson, N.; Alcock, A.; Edwards, S.; Morgan, J.; Powell, C.V.E.; Ramesh, C.A.; Kamal-Uddin, S.; Linney, M.; Vamvakiti, K.; Floyd, S.; Hobden, G. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet, 2019, 393(10186), 2125-2134.
[http://dx.doi.org/10.1016/S0140-6736(19)30724-X]
[177]
Reed, R.C.; Rosenfeld, W.E.; Lippmann, S.M.; Eijkemans, R.M.J.C.; Kasteleijn-Nolst Trenité, D.G.A. Rapidity of cns effect on photoparoxysmal response for brivaracetam vs. levetiracetam: a randomized, double-blind, crossover trial in photosensitive epilepsy patients. CNS Drugs, 2020, 34(10), 1075-1086.
[http://dx.doi.org/10.1007/s40263-020-00761-1] [PMID: 32949370]
[178]
Sitges, M.; Guarneros, A.; Nekrassov, V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology, 2007, 53(7), 854-862.
[http://dx.doi.org/10.1016/j.neuropharm.2007.08.016] [PMID: 17904592]
[179]
Hamandi, K.; Sander, J.W. Pregabalin: A new antiepileptic drug for refractory epilepsy. Seizure, 2006, 15(2), 73-78.
[http://dx.doi.org/10.1016/j.seizure.2005.11.005] [PMID: 16413993]
[180]
Yüksel, M.; Sarıkaya, R.; Bostanci, N. Genotoxic evaluation of antiepileptic drugs by Drosophila somatic mutation and recombination test. Food Chem. Toxicol., 2010, 48(10), 2682-2687.
[http://dx.doi.org/10.1016/j.fct.2010.06.040] [PMID: 20600525]
[181]
Yu, J.; Wang, D.S.; Bonin, R.P.; Penna, A.; Alavian-Ghavanini, A.; Zurek, A.A.; Rauw, G.; Baker, G.B.; Orser, B.A. Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine, 2019, 42, 203-213.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.008] [PMID: 30878595]
[182]
François, J.; Germe, K.; Ferrandon, A.; Koning, E.; Nehlig, A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology, 2011, 61(1-2), 313-328.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.018] [PMID: 21539848]
[183]
Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Libr., 2019, 1(1), CD007076.
[http://dx.doi.org/10.1002/14651858.CD007076.pub3] [PMID: 30673120]
[184]
Ishitani, H.; Kanai, K.; Saito, Y.; Tsubogo, T.; Kobayashi, S. Synthesis of (±)-pregabalin by utilizing a three-step sequential-flow system with heterogeneous catalysts. Eur. J. Org. Chem., 2017, 2017(44), 6491-6494.
[http://dx.doi.org/10.1002/ejoc.201700998]
[185]
Nieoczym, D. Socała, K.; Łuszczki, J.J.; Czuczwar, S.J.; Wlaź P. Sildenafil influences the anticonvulsant activity of vigabatrin and gabapentin in the timed pentylenetetrazole infusion test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 129-135.
[http://dx.doi.org/10.1016/j.pnpbp.2012.05.020] [PMID: 22683320]
[186]
Desai, A.; Kherallah, Y.; Szabo, C.; Marawar, R. Gabapentin or pregabalin induced myoclonus: A case series and literature review. J. Clin. Neurosci., 2019, 61, 225-234.
[http://dx.doi.org/10.1016/j.jocn.2018.09.019] [PMID: 30381161]
[187]
Mallesha, L.; Mohana, K.N.; Veeresh, B. Synthesis and biological activities of Schiff bases of gabapentin with different aldehydes and ketones: a structure–activity relationship study. Med. Chem. Res., 2012, 21(1), 1-9.
[http://dx.doi.org/10.1007/s00044-010-9498-8]
[188]
Xue, Y.P.; Zhong, H.J.; Zou, S.P.; Zheng, Y-G. Efficient chemoenzymatic synthesis of gabapentin by control of immobilized biocatalyst activity in a stirred bioreactor. Biochem. Eng. J., 2017, 125, 190-195.
[http://dx.doi.org/10.1016/j.bej.2017.06.008]
[189]
Galdames, D.; Aguilera, L.; Faure, E. New antiepileptic drugs for refractory epilepsy in adults - role of gabapentin. Rev. Med. Chil., 1995, 123(4), 500-508.
[PMID: 8525196]
[190]
French, J.A.; Kanner, A.M.; Bautista, J.; Abou-Khalil, B.; Browne, T.; Harden, C.L.; Theodore, W.H.; Bazil, C.; Stern, J.; Schachter, S.C.; Bergen, D.; Hirtz, D.; Montouris, G.D.; Nespeca, M.; Gidal, B.; Marks, W.J., Jr; Turk, W.R.; Fischer, J.H.; Bourgeois, B.; Wilner, A.; Faught, R.E., Jr; Sachdeo, R.C.; Beydoun, A.; Glauser, T.A. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2004, 62(8), 1261-1273.
[http://dx.doi.org/10.1212/01.WNL.0000123695.22623.32] [PMID: 15111660]
[191]
Placidi, F.; Mattia, D.; Romigi, A.; Bassetti, M.A.; Spanedda, F.; Marciani, M.G. Gabapentin-induced modulation of interictal epileptiform activity related to different vigilance levels. Clin. Neurophysiol., 2000, 111(9), 1637-1642.
[http://dx.doi.org/10.1016/S1388-2457(00)00365-5] [PMID: 10964076]
[192]
Walker, M.C.; Patsalos, P.N. Clinical pharmacokinetics of new antiepileptic drugs. Pharmacol. Ther., 1995, 67(3), 351-384.
[http://dx.doi.org/10.1016/0163-7258(95)00021-6] [PMID: 8577822]
[193]
Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov., 2009, 8(12), 982-1001.
[http://dx.doi.org/10.1038/nrd2983] [PMID: 19949402]
[194]
Brodie, M.J.; French, J.A.; McDonald, S.A.; Lee, W.J.; Adams, B.; Scott, A.; Nohria, V.; DeRossett, S. Adjunctive use of ezogabine/retigabine with either traditional sodium channel blocking antiepileptic drugs (AEDs) or AEDs with other mechanisms of action: Evaluation of efficacy and tolerability. Epilepsy Res., 2014, 108(5), 989-994.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.03.008] [PMID: 24726452]
[195]
Wehner, T.; Chinnasami, S.; Novy, J.; Bell, G.S.; Duncan, J.S.; Sander, J.W. Long term retention of retigabine in a cohort of people with drug resistant epilepsy. Seizure, 2014, 23(10), 878-881.
[http://dx.doi.org/10.1016/j.seizure.2014.08.001] [PMID: 25175006]
[196]
Kanner, A.M.; Ashman, E.; Gloss, D.; Harden, C.; Bourgeois, B.; Bautista, J.F.; Abou-Khalil, B.; Burakgazi-Dalkilic, E.; Park, E.L.; Stern, J.; Hirtz, D.; Nespeca, M.; Gidal, B.; Faught, E.; French, J. Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy. Epilepsy Curr., 2018, 18(4), 260-268.
[http://dx.doi.org/10.5698/1535-7597.18.4.260] [PMID: 30254527]
[197]
Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921.
[http://dx.doi.org/10.2174/092986712802002464] [PMID: 22788767]
[198]
Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res., 2010, 16(18), 4527-4531.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0984] [PMID: 20823148]
[199]
Mathias, S.V.; Abou-Khalil, B.W. Ezogabine skin discoloration is reversible after discontinuation. Epilepsy Behav. Case Rep., 2017, 7, 61-63.
[http://dx.doi.org/10.1016/j.ebcr.2017.01.001] [PMID: 28417066]
[200]
Meador, K.J.; Brashear, H.R.; Wiegand, F.; Zannikos, P.; Novak, G. Cognitive effects of carisbamate in randomized, placebo-controlled, healthy-volunteer, multidose studies. Epilepsy Behav., 2011, 22(2), 324-330.
[http://dx.doi.org/10.1016/j.yebeh.2011.07.006] [PMID: 21849260]
[201]
Ragueneau-Majlessi, I.; Levy, R.; Solanki, B. Pharmacokinetics, safety, and tolerability of the new antiepileptic drug carisbamate (RWJ333369) in elderly adults. Epilepsia, 2007, 48, 326.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.12.013]
[202]
Deshpande, L.S.; Nagarkatti, N.; Sombati, S.; DeLorenzo, R.J. The novel antiepileptic drug carisbamate (RWJ 333369) is effective in inhibiting spontaneous recurrent seizure discharges and blocking sustained repetitive firing in cultured hippocampal neurons. Epilepsy Res., 2008, 79(2-3), 158-165.
[http://dx.doi.org/10.1016/j.eplepsyres.2008.01.002] [PMID: 18353614]
[203]
Arnold, S. Cenobamate: new hope for treatment-resistant epilepsy. Lancet Neurol., 2020, 19(1), 23-24.
[http://dx.doi.org/10.1016/S1474-4422(19)30434-X] [PMID: 31734104]
[204]
Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety of adjunctive treatment with cenobamate in patients with uncontrolled focal seizures – Authors’ reply. Lancet Neurol., 2020, 19(4), 288-289.
[http://dx.doi.org/10.1016/S1474-4422(20)30077-6] [PMID: 32199090]
[205]
Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res., 2010, 92(2-3), 89-124.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.09.001] [PMID: 20970964]
[206]
Tompson, D.J.; Crean, C.S.; Reeve, R.; Berry, N.S. Efficacy and tolerability exposure-response relationship of retigabine (ezogabine) immediate-release tablets in patients with partial-onset seizures. Clin. Ther., 2013, 35(8), 1174-1185.e4.
[http://dx.doi.org/10.1016/j.clinthera.2013.06.012] [PMID: 23916044]
[207]
Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol. Dis., 2013, 59, 183-193.
[http://dx.doi.org/10.1016/j.nbd.2013.07.015] [PMID: 23938763]
[208]
Wang, D.D.; Englot, D.J.; Garcia, P.A.; Lawton, M.T.; Young, W.L. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav., 2012, 24(3), 314-318.
[http://dx.doi.org/10.1016/j.yebeh.2012.03.035] [PMID: 22579030]
[209]
Marques-Carneiro, J.; Nehlig, A.; Cassel, J.C.; Castro-Neto, E.; Litzahn, J.; Pereira de Vasconcelos, A.; Naffah-Mazacoratti, M.; Fernandes, M. Neurochemical changes and c-fos mapping in the brain after carisbamate treatment of rats subjected to lithium–pilocarpine-induced status epilepticus. Pharmaceuticals (Basel), 2017, 10(4), 85.
[http://dx.doi.org/10.3390/ph10040085] [PMID: 29104261]
[210]
Dong, G.R.; Li, Q.R.; Woo, S.H.; Kim, I.S.; Jung, Y.H. One-pot conversion of trimethylsilyl ethers into urethanes using chlorosulfonyl isocyanate: Application to the synthesis of a novel neuromodulator carisbamate. Arch. Pharm. Res., 2008, 31(11), 1393-1398.
[http://dx.doi.org/10.1007/s12272-001-2122-1] [PMID: 19023534]
[211]
Kim, D.Y.; Zhang, F.X.; Nakanishi, S.T.; Mettler, T.; Cho, I.H.; Ahn, Y.; Hiess, F.; Chen, L.; Sullivan, P.G.; Chen, S.R.W.; Zamponi, G.W.; Rho, J.M. Carisbamate blockade of T-type voltage-gated calcium channels. Epilepsia, 2017, 58(4), 617-626.
[http://dx.doi.org/10.1111/epi.13710] [PMID: 28230232]
[212]
Yuan, S.; Yu, B.; Liu, H.M. New drug approvals for 2019: Synthesis and clinical applications. Eur. J. Med. Chem., 2020, 205, 112667.
[http://dx.doi.org/10.1016/j.ejmech.2020.112667] [PMID: 32911308]
[213]
Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol., 2020, 879, 173117.
[http://dx.doi.org/10.1016/j.ejphar.2020.173117] [PMID: 32325146]
[214]
Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A.; Huperzine, A. A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer’s disease. Med. Hypotheses, 2017, 99, 57-62.
[http://dx.doi.org/10.1016/j.mehy.2016.12.006] [PMID: 28110700]
[215]
Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev. Neurother., 2016, 16(6), 671-680.
[http://dx.doi.org/10.1080/14737175.2016.1175303] [PMID: 27086593]
[216]
Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev., 2016, 15(1), 51-85.
[http://dx.doi.org/10.1007/s11101-014-9384-y]
[217]
Haudrechy, A.; Chassaing, C.; Riche, C.; Langlois, Y. A formal synthesis of (+)-huperzine A. Tetrahedron, 2000, 56(20), 3181-3187.
[http://dx.doi.org/10.1016/S0040-4020(00)00227-1]
[218]
Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res., 2015, 117, 97-103.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.08.012] [PMID: 26432930]
[219]
Alcalá, M.M.; Vivas, N.M.; Hospital, S.; Camps, P.; Muñoz-Torrero, D.; Badia, A. Characterisation of the anticholinesterase activity of two new tacrine–huperzine A hybrids. Neuropharmacology, 2003, 44(6), 749-755.
[http://dx.doi.org/10.1016/S0028-3908(03)00071-6] [PMID: 12681373]
[220]
Koenig, J.B.; Cantu, D.; Low, C.; Sommer, M.; Noubary, F.; Croker, D.; Whalen, M.; Kong, D.; Dulla, C.G. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight, 2019, 4(11), e126506.
[http://dx.doi.org/10.1172/jci.insight.126506] [PMID: 31038473]
[221]
Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107966] [PMID: 32120063]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy