Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Curcumin Combats against Gastrointestinal Cancer: A Review of Current Knowledge Regarding Epigenetics Mechanisms with a Focus on DNA Methylation

Author(s): Amir Masoud Jafari-Nozad, Amirsajad Jafari, Alireza Zangooie, Mohammad Behdadfard, Amir Sadra Zangouei, Michael Aschner, Tahereh Farkhondeh* and Saeed Samarghandian*

Volume 30, Issue 38, 2023

Published on: 07 February, 2023

Page: [4374 - 4388] Pages: 15

DOI: 10.2174/0929867330666230112092802

Price: $65

Abstract

Gastrointestinal (GI) cancers are one of the most common human malignancies and a leading cause of morbidity and mortality worldwide. One of the most prominent hallmarks of cancer and a basic trait of almost all GI malignancies is genomic/epigenomics alterations. DNA methylation is highlighted as a fundamental mechanism underlying the inactivation of several tumor-suppressor gene signaling pathways. Thus, sites of DNA methylation can be triggered for cancer therapy. Available therapeutic procedures for GI cancer show unsatisfactory efficacy, and some treatments are associated with severe side effects, including ulceration or bleeding. Therefore, it is essential to find alternative treatments. There is growing evidence indicating that some chemopreventive phytochemicals can combat cancer. One of the most systematically investigated nutraceuticals for its advantages in managing different diseases is curcumin (CUR). CUR is well known for its potent anticancer characteristics by targeting epigenetic mechanisms, with DNA methylation at the forefront. Prior investigations have indicated that CUR treatment can benefit GI cancers by controlling several signaling pathways related to oxidative stress and epigenomics pathways. The present literature displays recent evidence regarding DNA methylation alterations by CUR and its potential role in GI cancer prevention and treatment.

Keywords: Curcumin, DNA methylation, epigenetics, gastrointestinal cancer, chemopreventive phytochemicals, chimeric antigen receptor.

« Previous
[1]
Heavey, P.M.; Rowland, I.R. Gastrointestinal cancer. Best Pract. Res. Clin. Gastroenterol., 2004, 18(2), 323-336.
[http://dx.doi.org/10.1016/j.bpg.2003.10.003] [PMID: 15123073]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Crosby, M. Cell cycle: Principles of control. Yale J. Biol. Med., 2007, 80(3), 141-142.
[4]
Alvarez, H.; Opalinska, J.; Zhou, L.; Sohal, D.; Fazzari, M.J.; Yu, Y.; Montagna, C.; Montgomery, E.A.; Canto, M.; Dunbar, K.B.; Wang, J.; Roa, J.C.; Mo, Y.; Bhagat, T.; Ramesh, K.H.; Cannizzaro, L.; Mollenhauer, J.; Thompson, R.F.; Suzuki, M.; Meltzer, S.; Melnick, A.; Greally, J.M.; Maitra, A.; Verma, A. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet., 2011, 7(3), e1001356.
[http://dx.doi.org/10.1371/journal.pgen.1001356] [PMID: 21483804]
[5]
Pfeifer, G. Defining driver DNA methylation changes in human cancer. Int. J. Mol. Sci., 2018, 19(4), 1166.
[http://dx.doi.org/10.3390/ijms19041166] [PMID: 29649096]
[6]
Bommarito, P.A.; Fry, R.C. The role of DNA methylation in gene regulation. In: Toxicoepigenetics; Elsevier, 2019, pp. 127-151.
[http://dx.doi.org/10.1016/B978-0-12-812433-8.00005-8]
[7]
Dor, Y.; Cedar, H. Principles of DNA methylation and their implications for biology and medicine. Lancet, 2018, 392(10149), 777-786.
[http://dx.doi.org/10.1016/S0140-6736(18)31268-6] [PMID: 30100054]
[8]
Oleksiewicz, U.; Machnik, M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. In: Seminars in Cancer Biology; Elsevier, 2020.
[9]
Sun, H.; Xin, R.; Zheng, C.; Huang, G. Aberrantly DNA methylated-differentially expressed genes in pancreatic cancer through an integrated bioinformatics approach. Front. Genet., 2021, 12, 583568.
[http://dx.doi.org/10.3389/fgene.2021.583568] [PMID: 33833773]
[10]
Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet., 2010, 70, 27-56.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2] [PMID: 20920744]
[11]
Klutstein, M.; Nejman, D.; Greenfield, R.; Cedar, H. DNA methylation in cancer and aging. Cancer Res., 2016, 76(12), 3446-3450.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3278] [PMID: 27256564]
[12]
Link, A.; Balaguer, F.; Shen, Y.; Lozano, J.J.; Leung, H.C.E.; Boland, C.R.; Goel, A. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS One, 2013, 8(2), e57709.
[http://dx.doi.org/10.1371/journal.pone.0057709] [PMID: 23460897]
[13]
Kanai, Y.; Hirohashi, S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis, 2007, 28(12), 2434-2442.
[http://dx.doi.org/10.1093/carcin/bgm206] [PMID: 17893234]
[14]
Bahrami, A.; Jafari, A.; Ferns, G.A. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed. Pharmacother., 2022, 145, 112394.
[http://dx.doi.org/10.1016/j.biopha.2021.112394] [PMID: 34781141]
[15]
Kuntz, S.; Krieghoff-Henning, E.; Kather, J.N.; Jutzi, T.; Höhn, J.; Kiehl, L.; Hekler, A.; Alwers, E.; von Kalle, C.; Fröhling, S.; Utikal, J.S.; Brenner, H.; Hoffmeister, M.; Brinker, T.J. Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review. Eur. J. Cancer, 2021, 155, 200-215.
[http://dx.doi.org/10.1016/j.ejca.2021.07.012] [PMID: 34391053]
[16]
Nautiyal, J.; Rishi, A.K.; Majumdar, A.P. Emerging therapies in gastrointestinal cancers. World J. Gastroenterol., 2006, 12(46), 7440-7450.
[http://dx.doi.org/10.3748/wjg.v12.i46.7440] [PMID: 17167831]
[17]
Grabenbauer, G.G.; Holger, G. Management of radiation and chemotherapy related acute toxicity in gastrointestinal cancer. Best Pract. Res. Clin. Gastroenterol., 2016, 30(4), 655-664.
[http://dx.doi.org/10.1016/j.bpg.2016.06.001] [PMID: 27644912]
[18]
Koustas, E.; Trifylli, E.M.; Sarantis, P.; Papadopoulos, N.; Karapedi, E.; Aloizos, G.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Papavassiliou, K.A.; Karamouzis, M.V.; Papavassiliou, A.G. Immunotherapy as a therapeutic strategy for gastrointestinal cancer-current treatment options and future perspectives. Int. J. Mol. Sci., 2022, 23(12), 6664.
[http://dx.doi.org/10.3390/ijms23126664] [PMID: 35743107]
[19]
Soleimanpour, S.; Hasanian, S.M.; Avan, A.; Yaghoubi, A.; Khazaei, M. Bacteriotherapy in gastrointestinal cancer. Life Sci., 2020, 254, 117754.
[http://dx.doi.org/10.1016/j.lfs.2020.117754] [PMID: 32389833]
[20]
Jafari-Nozad, A.M.; Jafari, A.; Aschner, M.; Farkhondeh, T.; Samarghandian, S. Curcumin combats against organophosphate pesticides toxicity: A review of the current evidence and molecular pathways. Curr. Med. Chem., 2022.
[http://dx.doi.org/10.2174/0929867329666220817125800] [PMID: 35980068]
[21]
Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[22]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[23]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In: Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer, 2007; pp. 105-125.
[24]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[25]
Anand, P.; Sundaram, C.; Jhurani, S.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett., 2008, 267(1), 133-164.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025] [PMID: 18462866]
[26]
Rajasekaran, S.A. Therapeutic potential of curcumin in gastrointestinal diseases. World J. Gastrointest. Pathophysiol., 2011, 2(1), 1-14.
[http://dx.doi.org/10.4291/wjgp.v2.i1.1] [PMID: 21607160]
[27]
Fu, S.; Kurzrock, R. Development of curcumin as an epigenetic agent. Cancer, 2010, 116(20), 4670-4676.
[http://dx.doi.org/10.1002/cncr.25414] [PMID: 20597137]
[28]
Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep., 2015, 34(5), 2782-2789.
[http://dx.doi.org/10.3892/or.2015.4258] [PMID: 26351877]
[29]
Zheng, R.; Deng, Q.; Liu, Y.; Zhao, P. Curcumin inhibits gastric carcinoma cell growth and induces apoptosis by suppressing the Wnt/β-catenin signaling pathway. Med. Sci. Monit., 2017, 23, 163-171.
[http://dx.doi.org/10.12659/MSM.902711] [PMID: 28077837]
[30]
Wang, C.; Song, X.; Shang, M.; Zou, W.; Zhang, M.; Wei, H.; Shao, H. Curcumin exerts cytotoxicity dependent on reactive oxygen species accumulation in non-small-cell lung cancer cells. Future Oncol., 2019, 15(11), 1243-1253.
[http://dx.doi.org/10.2217/fon-2018-0708] [PMID: 30843426]
[31]
Cao, D.; Jia, Z.; Wu, Y.; Su, T.; Zhao, D.; Wu, M.; Tsukamoto, T.; Oshima, M.; Jiang, J.; Cao, X. Demethylation of the RB1 promoter concomitant with reactivation of TET2 and TET3 impairs gastric carcinogenesis in K19-Wnt1/C2mE transgenic mice. Life Sci., 2020, 263, 118580.
[http://dx.doi.org/10.1016/j.lfs.2020.118580] [PMID: 33058920]
[32]
Nagaraju, G.P.; Benton, L.; Bethi, S.R.; Shoji, M.; El-Rayes, B.F. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int. J. Cancer, 2019, 145(1), 10-19.
[http://dx.doi.org/10.1002/ijc.31867] [PMID: 30226272]
[33]
Dai, X. Elevating CXCR7 improves angiogenic function of EPCs via Akt/GSK-3β/Fyn-mediated Nrf2 activation in diabetic limb ischemia. 2017, 120(5), e7-e23.
[34]
Shanmugam, M.; Rane, G.; Kanchi, M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.; Alharbi, S.; Tan, B.; Kumar, A.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[35]
Thorat, B.N.; Jangle, R.D. Reversed-phase high-performance liquid chromatography method for analysis of curcuminoids and curcuminoid-loaded liposome formulation. Indian J. Pharm. Sci., 2013, 75(1), 60-66.
[http://dx.doi.org/10.4103/0250-474X.113555] [PMID: 23901162]
[36]
Fabianowska-Majewska, K.; Kaufman-Szymczyk, A.; Szymanska-Kolba, A.; Jakubik, J.; Majewski, G.; Lubecka, K. Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition. Nutrients, 2021, 13(2), 332.
[http://dx.doi.org/10.3390/nu13020332] [PMID: 33498667]
[37]
Madhavi, D.; Kagan, D. Bioavailability of a sustained release formulation of curcumin. Integr. Med. (Encinitas), 2014, 13(3), 24-30.
[PMID: 26770097]
[38]
Pan, M-H.; Huang, T-M.; Lin, J-K.J. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos., 1999, 27(4), 486-494.
[PMID: 10101144]
[39]
Shanmugam, M.K. Epigenetic effects of curcumin in cancer prevention. In: Epigenetics of cancer prevention; Elsevier, 2019, pp. 107-128.
[http://dx.doi.org/10.1016/B978-0-12-812494-9.00005-6]
[40]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[41]
Memarzia, A.; Khazdair, M.R.; Behrouz, S.; Gholamnezhad, Z.; Jafarnezhad, M.; Saadat, S.; Boskabady, M.H. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of CURCUMA LONGA and curcumin, an updated and comprehensive review. Biofactors, 2021, 47(3), 311-350.
[http://dx.doi.org/10.1002/biof.1716] [PMID: 33606322]
[42]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2017, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[43]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[44]
Dong, W.; Yang, B.; Wang, L.; Li, B.; Guo, X.; Zhang, M.; Jiang, Z.; Fu, J.; Pi, J.; Guan, D.; Zhao, R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharmacol., 2018, 346, 28-36.
[http://dx.doi.org/10.1016/j.taap.2018.03.020] [PMID: 29571711]
[45]
Forouzanfar, F.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life, 2020, 72(4), 652-664.
[http://dx.doi.org/10.1002/iub.2209] [PMID: 31804772]
[46]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[47]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[48]
Bahrami, A.; A Ferns, G. Effect of curcumin and its derivates on gastric cancer: molecular mechanisms.Nutrition. Nutr. Cancer, 2021, 73(9), 1553-1569.
[http://dx.doi.org/10.1080/01635581.2020.1808232] [PMID: 32814463]
[49]
Darvesh, A.S.; Aggarwal, B.B.; Bishayee, A. Curcumin and liver cancer: A review. Curr. Pharm. Biotechnol., 2012, 13(1), 218-228.
[http://dx.doi.org/10.2174/138920112798868791] [PMID: 21466422]
[50]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[51]
Rao, C.V. Regulation of COX and LOX by curcumin. In: Molecular Targets Therapeutic uses of Curcumin in health disease, 2007, 213-226.
[http://dx.doi.org/10.1007/978-0-387-46401-5_9]
[52]
Kahkhaie, K.R.; Mirhosseini, A.; Aliabadi, A.; Mohammadi, A.; Mousavi, M.J.; Haftcheshmeh, S.M.; Sathyapalan, T.; Sahebkar, A. Curcumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology, 2019, 27(5), 885-900.
[http://dx.doi.org/10.1007/s10787-019-00607-3] [PMID: 31140036]
[53]
Wong, K.E.; Ngai, S.C.; Chan, K.G.; Lee, L.H.; Goh, B.H.; Chuah, L.H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol., 2019, 10, 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[54]
Wu, R.; Wang, L.; Yin, R.; Hudlikar, R.; Li, S.; Kuo, H.C.D.; Peter, R.; Sargsyan, D.; Guo, Y.; Liu, X.; Kong, A.N. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Mol. Carcinog., 2020, 59(2), 227-236.
[http://dx.doi.org/10.1002/mc.23146] [PMID: 31820492]
[55]
Hassan, F.; Rehman, M.S.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet., 2019, 10, 514.
[http://dx.doi.org/10.3389/fgene.2019.00514] [PMID: 31214247]
[56]
Liu, Z.; Xie, Z.; Jones, W.; Pavlovicz, R.E.; Liu, S.; Yu, J.; Li, P.; Lin, J.; Fuchs, J.R.; Marcucci, G.; Li, C.; Chan, K.K. Curcumin is a potent DNA hypomethylation agent. Bioorg. Med. Chem. Lett., 2009, 19(3), 706-709.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.041] [PMID: 19112019]
[57]
Medina-Franco, J.L.; López-Vallejo, F.; Kuck, D.; Lyko, F. Natural products as DNA methyltransferase inhibitors: A computer-aided discovery approach. Mol. Divers., 2011, 15(2), 293-304.
[http://dx.doi.org/10.1007/s11030-010-9262-5] [PMID: 20697809]
[58]
Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 2007, 8(4), 286-298.
[http://dx.doi.org/10.1038/nrg2005] [PMID: 17339880]
[59]
Armstrong, L. , 2020. Epigenetics. Garland science, 2022. Available from: https://www.taylorfrancis.com/books/mono/10.1201/9780429258862/epigenetics-lyle-armstrong
[60]
Abi Khalil, C. The emerging role of epigenetics in cardiovascular disease. Ther. Adv. Chronic Dis., 2014, 5(4), 178-187.
[http://dx.doi.org/10.1177/2040622314529325] [PMID: 24982752]
[61]
Das, P.M.; Singal, R. DNA methylation and cancer. J. Clin. Oncol., 2004, 22(22), 4632-4642.
[http://dx.doi.org/10.1200/JCO.2004.07.151] [PMID: 15542813]
[62]
Singer, B.D. A practical guide to the measurement and analysis of DNA methylation. Am. J. Respir. Cell Mol. Biol., 2019, 61(4), 417-428.
[http://dx.doi.org/10.1165/rcmb.2019-0150TR] [PMID: 31264905]
[63]
Illingworth, R.S.; Gruenewald-Schneider, U.; Webb, S.; Kerr, A.R.W.; James, K.D.; Turner, D.J.; Smith, C.; Harrison, D.J.; Andrews, R.; Bird, A.P. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet., 2010, 6(9), e1001134.
[http://dx.doi.org/10.1371/journal.pgen.1001134] [PMID: 20885785]
[64]
Lister, R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271), 315-322.
[http://dx.doi.org/10.1038/nature08514]
[65]
Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D.; Yu, M.; Tonti-Filippini, J.; Heyn, H.; Hu, S.; Wu, J.C.; Rao, A.; Esteller, M.; He, C.; Haghighi, F.G.; Sejnowski, T.J.; Behrens, M.M.; Ecker, J.R. Global epigenomic reconfiguration during mammalian brain development. Science, 2013, 341(6146), 1237905.
[http://dx.doi.org/10.1126/science.1237905] [PMID: 23828890]
[66]
Kulis, M.; Merkel, A.; Heath, S.; Queirós, A.C.; Schuyler, R.P.; Castellano, G.; Beekman, R.; Raineri, E.; Esteve, A.; Clot, G.; Verdaguer-Dot, N.; Duran-Ferrer, M.; Russiñol, N.; Vilarrasa-Blasi, R.; Ecker, S.; Pancaldi, V.; Rico, D.; Agueda, L.; Blanc, J.; Richardson, D.; Clarke, L.; Datta, A.; Pascual, M.; Agirre, X.; Prosper, F.; Alignani, D.; Paiva, B.; Caron, G.; Fest, T.; Muench, M.O.; Fomin, M.E.; Lee, S.T.; Wiemels, J.L.; Valencia, A.; Gut, M.; Flicek, P.; Stunnenberg, H.G.; Siebert, R.; Küppers, R.; Gut, I.G.; Campo, E.; Martín-Subero, J.I. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat. Genet., 2015, 47(7), 746-756.
[http://dx.doi.org/10.1038/ng.3291] [PMID: 26053498]
[67]
Ramasamy, D.; Deva Magendhra Rao, A.K.; Rajkumar, T.; Mani, S. Non-CpG methylation-a key epigenetic modification in cancer. Brief. Funct. Genomics, 2021, 20(5), 304-311.
[http://dx.doi.org/10.1093/bfgp/elab035] [PMID: 34318313]
[68]
Vanyushin, B.F. Adenine methylation in eukaryotic DNA. Mol. Biol., 2005, 39(4), 473-481.
[http://dx.doi.org/10.1007/s11008-005-0064-2]
[69]
Hermann, A.; Gowher, H.; Jeltsch, A. Biochemistry and biology of mammalian DNA methyltransferases. Cell. Mol. Life Sci., 2004, 61(19-20), 2571-2587.
[http://dx.doi.org/10.1007/s00018-004-4201-1] [PMID: 15526163]
[70]
du Preez, P.H.; Breeds, K.; Burger, N.F.V.; Swiegers, H.W.; Truter, J.C.; Botha, A.M. DNA Methylation and demethylation are regulated by functional DNA methyltransferases and DnTET enzymes in Diuraphis noxia. Front. Genet., 2020, 11, 452.
[http://dx.doi.org/10.3389/fgene.2020.00452] [PMID: 32655611]
[71]
Veland, N.; Chen, T. Mechanisms of DNA methylation and demethylation during mammalian development.Handbook of Epigenetics; Elsevier Amsterdam, 2017, pp. 11-24.
[http://dx.doi.org/10.1016/B978-0-12-805388-1.00002-X]
[72]
Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics, 2009, 1(2), 239-259.
[http://dx.doi.org/10.2217/epi.09.33] [PMID: 20495664]
[73]
Kang, J.H.; Kim, S.J.; Noh, D.Y.; Park, I.A.; Choe, K.J.; Yoo, O.J.; Kang, H.S. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab. Invest., 2001, 81(4), 573-579.
[http://dx.doi.org/10.1038/labinvest.3780266] [PMID: 11304577]
[74]
Chen, T.; Yang, C.; Xi, Z.; Chen, F.; Li, H. Reduced caudal type homeobox 2 (CDX2) promoter methylation is associated with curcumin’s suppressive effects on epithelial-mesenchymal transition in colorectal cancer cells. Med. Sci. Monit., 2020, 26, e926443-e1.
[http://dx.doi.org/10.12659/MSM.926443] [PMID: 32893845]
[75]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int. J. Cancer, 2019, 144(6), 1215-1226.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[76]
O’Sullivan-Coyne, G.; O’Sullivan, G.C.; O’Donovan, T.R.; Piwocka, K.; McKenna, S.L. Curcumin induces apoptosis-independent death in oesophageal cancer cells. Br. J. Cancer, 2009, 101(9), 1585-1595.
[http://dx.doi.org/10.1038/sj.bjc.6605308] [PMID: 19809435]
[77]
Hartojo, W.; Silvers, A.L.; Thomas, D.G.; Seder, C.W.; Lin, L.; Rao, H.; Wang, Z.; Greenson, J.K.; Giordano, T.J.; Orringer, M.B.; Rehemtulla, A.; Bhojani, M.S.; Beer, D.G.; Chang, A.C. Curcumin promotes apoptosis, increases chemosensitivity, and inhibits nuclear factor kappaB in esophageal adenocarcinoma. Transl. Oncol., 2010, 3(2), 99-108.
[http://dx.doi.org/10.1593/tlo.09235] [PMID: 20360934]
[78]
Subramaniam, D.; Ponnurangam, S.; Ramamoorthy, P.; Standing, D.; Battafarano, R.J.; Anant, S.; Sharma, P. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One, 2012, 7(2), e30590.
[http://dx.doi.org/10.1371/journal.pone.0030590] [PMID: 22363450]
[79]
Lin, M.L.; Lu, Y.C.; Chen, H.Y.; Lee, C.C.; Chung, J.G.; Chen, S.S. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol. Carcinog., 2014, 53(5), 360-379.
[http://dx.doi.org/10.1002/mc.21984] [PMID: 23192861]
[80]
Kwong, J.; Chow, L.S.N.; Wong, A.Y.H.; Hung, W.K.; Chung, G.T.Y.; To, K.F.; Chan, F.L.; Daigo, Y.; Nakamura, Y.; Huang, D.P.; Lo, K.W. Epigenetic inactivation of the deleted in lung and esophageal cancer 1 gene in nasopharyngeal carcinoma. Genes Chromosomes Cancer, 2007, 46(2), 171-180.
[http://dx.doi.org/10.1002/gcc.20398] [PMID: 17099870]
[81]
Guo, Y.; Shu, L.; Zhang, C.; Su, Z.Y.; Kong, A.N.T. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem. Pharmacol., 2015, 94(2), 69-78.
[http://dx.doi.org/10.1016/j.bcp.2015.01.009] [PMID: 25640947]
[82]
Qu, Y.; Dang, S.; Hou, P. Gene methylation in gastric cancer. Clin. Chim. Acta, 2013, 424, 53-65.
[http://dx.doi.org/10.1016/j.cca.2013.05.002] [PMID: 23669186]
[83]
Thrift, A.P.; El-Serag, H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol., 2020, 18(3), 534-542.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[84]
Watanabe, Y.; Kim, H.S.; Castoro, R.J.; Chung, W.; Estecio, M.R.H.; Kondo, K.; Guo, Y.; Ahmed, S.S.; Toyota, M.; Itoh, F.; Suk, K.T.; Cho, M.Y.; Shen, L.; Jelinek, J.; Issa, J.P.J. Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology, 2009, 136(7), 2149-2158.
[http://dx.doi.org/10.1053/j.gastro.2009.02.085] [PMID: 19375421]
[85]
Kuttan, G. Antitumor, anti-invasion, and antimetastatic effects of curcumin. The molecular targets therapeutic uses of curcumin in health disease, 2007, 595, 173-184.
[http://dx.doi.org/10.1007/978-0-387-46401-5_6]
[86]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. (Weinheim), 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[87]
Nakajima, T.; Enomoto, S.; Ushijima, T. DNA methylation: A marker for carcinogen exposure and cancer risk. Environ. Health Prev. Med., 2008, 13(1), 8-15.
[http://dx.doi.org/10.1007/s12199-007-0005-x] [PMID: 19568874]
[88]
Nardone, G.; Rocco, A.; Malfertheiner, P. Helicobacter pylori and molecular events in precancerous gastric lesions. Aliment. Pharmacol. Ther., 2004, 20(3), 261-270.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02075.x] [PMID: 15274662]
[89]
Yamamoto, E.; Suzuki, H.; Takamaru, H.; Yamamoto, H.; Toyota, M.; Shinomura, Y. Role of DNA methylation in the development of diffuse-type gastric cancer. Digestion, 2011, 83(4), 241-249.
[http://dx.doi.org/10.1159/000320453] [PMID: 21273772]
[90]
Ebrahimi, V.; Soleimanian, A.; Ebrahimi, T.; Azargun, R.; Yazdani, P.; Eyvazi, S.; Tarhriz, V. Epigenetic modifications in gastric cancer: Focus on DNA methylation. Gene, 2020, 742, 144577.
[http://dx.doi.org/10.1016/j.gene.2020.144577] [PMID: 32171825]
[91]
Feltus, F.A.; Lee, E.K.; Costello, J.F.; Plass, C.; Vertino, P.M. Predicting aberrant CpG island methylation. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12253-12258.
[http://dx.doi.org/10.1073/pnas.2037852100] [PMID: 14519846]
[92]
Horii, A.; Nakatsuru, S.; Miyoshi, Y.; Ichii, S.; Nagase, H.; Kato, Y.; Yanagisawa, A.; Nakamura, Y. The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. Cancer Res., 1992, 52(11), 3231-3233.
[PMID: 1317264]
[93]
Bouayed, J.; Bohn, T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[94]
Tong, R. Curcumin-induced DNA Demethylation in human gastric Cancer cells is mediated by the DNA-damage response pathway. Oxid. Med. Cell Longev., 2020, 2020, 2543504.
[95]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[96]
Feinberg, A.P. Epigenetics at the epicenter of modern medicine. JAMA, 2008, 299(11), 1345-1350.
[http://dx.doi.org/10.1001/jama.299.11.1345] [PMID: 18349095]
[97]
Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology, 2015, 149(5), 1204-1225.
[http://dx.doi.org/10.1053/j.gastro.2015.07.011]
[98]
Lao, V.V.; Grady, W.M. Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(12), 686-700.
[http://dx.doi.org/10.1038/nrgastro.2011.173] [PMID: 22009203]
[99]
Guo, Y.; Wu, R.; Gaspar, J.M.; Sargsyan, D.; Su, Z.Y.; Zhang, C.; Gao, L.; Cheng, D.; Li, W.; Wang, C.; Yin, R.; Fang, M.; Verzi, M.P.; Hart, R.P.; Kong, A.N. DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Carcinogenesis, 2018, 39(5), 669-680.
[http://dx.doi.org/10.1093/carcin/bgy043] [PMID: 29547900]
[100]
Perše, M.; Cerar, A. Dextran sodium sulphate colitis mouse model: Traps and tricks. J. Biomed. Biotechnol, 2012, 2012, 718617.
[101]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[102]
Jansen, R.J.; Tan, X.L.; Petersen, G.M. Gene-by-environment interactions in pancreatic cancer: Implications for prevention. Yale J. Biol. Med., 2015, 88(2), 115-126.
[PMID: 26029010]
[103]
Strobel, O.; Neoptolemos, J.; Jäger, D.; Büchler, M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol., 2019, 16(1), 11-26.
[http://dx.doi.org/10.1038/s41571-018-0112-1] [PMID: 30341417]
[104]
Fukushima, N.; Sato, N.; Ueki, T.; Rosty, C.; Walter, K.M.; Wilentz, R.E.; Yeo, C.J.; Hruban, R.H.; Goggins, M. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am. J. Pathol., 2002, 160(5), 1573-1581.
[http://dx.doi.org/10.1016/S0002-9440(10)61104-2] [PMID: 12000709]
[105]
Sato, N.; Fukushima, N.; Maehara, N.; Matsubayashi, H.; Koopmann, J.; Su, G.H.; Hruban, R.H.; Goggins, M. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor–stromal interactions. Oncogene, 2003, 22(32), 5021-5030.
[http://dx.doi.org/10.1038/sj.onc.1206807] [PMID: 12902985]
[106]
Adams, B.K.; Ferstl, E.M.; Davis, M.C.; Herold, M.; Kurtkaya, S.; Camalier, R.F.; Hollingshead, M.G.; Kaur, G.; Sausville, E.A.; Rickles, F.R.; Snyder, J.P.; Liotta, D.C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 2004, 12(14), 3871-3883.
[http://dx.doi.org/10.1016/j.bmc.2004.05.006] [PMID: 15210154]
[107]
Nagaraju, G.P.; Zhu, S.; Wen, J.; Farris, A.B.; Adsay, V.N.; Diaz, R.; Snyder, J.P.; Mamoru, S.; El-Rayes, B.F. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett., 2013, 341(2), 195-203.
[http://dx.doi.org/10.1016/j.canlet.2013.08.002] [PMID: 23933177]
[108]
Gao, R.; Buechel, D.; Kalathur, R.K.R.; Morini, M.F.; Coto-Llerena, M.; Ercan, C.; Piscuoglio, S.; Chen, Q.; Blumer, T.; Wang, X.; Dazert, E.; Heim, M.H.; Hall, M.N.; Tang, F.; Christofori, G. USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis, 2021, 10(7), 52.
[http://dx.doi.org/10.1038/s41389-021-00338-7] [PMID: 34272356]
[109]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6-6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[110]
Chuang, S.E.; Cheng, A.L.; Lin, J.K.; Kuo, M.L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem. Toxicol., 2000, 38(11), 991-995.
[http://dx.doi.org/10.1016/S0278-6915(00)00101-0] [PMID: 11038236]
[111]
Mann, C.D.; Neal, C.P.; Garcea, G.; Manson, M.M.; Dennison, A.R.; Berry, D.P. Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis. Eur. J. Cancer Prev., 2009, 18(1), 13-25.
[http://dx.doi.org/10.1097/CEJ.0b013e3282f0c090] [PMID: 19077560]
[112]
Abdalla, M.; Khairy, E.; Louka, M.L.; Ali-Labib, R.; Ibrahim, E.A.S. Vitamin D receptor gene methylation in hepatocellular carcinoma. Gene, 2018, 653, 65-71.
[http://dx.doi.org/10.1016/j.gene.2018.02.024] [PMID: 29432829]
[113]
Chiang, K.C.; Yeh, C.N.; Chen, M.F.; Chen, T.C. Hepatocellular carcinoma and vitamin D: A review. J. Gastroenterol. Hepatol., 2011, 26(11), 1597-1603.
[http://dx.doi.org/10.1111/j.1440-1746.2011.06892.x] [PMID: 21880026]
[114]
Banwell, C.M. Antiproliferative signalling by 1, 25 (OH) 2 D 3 in prostate and breast cancer is suppressed by a mechanism involving histone deacetylation, in vitamin D analogs in cancer prevention and therapy. Springer, 2003; pp. 83-98.
[115]
Pilon, C. Methylation status of vitamin D receptor gene promoter in benign and malignant adrenal tumors. International journal of endocrinology, 2015, 2015
[http://dx.doi.org/10.1155/2015/375349]
[116]
Louka, M.L.; Fawzy, A.M.; Naiem, A.M.; Elseknedy, M.F.; Abdelhalim, A.E.; Abdelghany, M.A. Vitamin D and K signaling pathways in hepatocellular carcinoma. Gene, 2017, 629, 108-116.
[http://dx.doi.org/10.1016/j.gene.2017.07.074] [PMID: 28764978]
[117]
Moreno, F.S.; Heidor, R.; Pogribny, I.P. Nutritional epigenetics and the prevention of hepatocellular carcinoma with bioactive food constituents. Nutr. Cancer, 2016, 68(5), 719-733.
[http://dx.doi.org/10.1080/01635581.2016.1180410] [PMID: 27266713]
[118]
Teiten, M.H.; Dicato, M.; Diederich, M. Curcumin as a regulator of epigenetic events. Mol. Nutr. Food Res., 2013, 57(9), 1619-1629.
[http://dx.doi.org/10.1002/mnfr.201300201] [PMID: 23754571]
[119]
Miura, K.; Taura, K.; Kodama, Y.; Schnabl, B.; Brenner, D.A. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology, 2008, 48(5), 1420-1429.
[http://dx.doi.org/10.1002/hep.22486] [PMID: 18671304]
[120]
Lam, P.; Cheung, F.; Tan, H.; Wang, N.; Yuen, M.; Feng, Y. Hepatoprotective effects of Chinese medicinal herbs: A focus on anti-inflammatory and anti-oxidative activities. Int. J. Mol. Sci., 2016, 17(4), 465.
[http://dx.doi.org/10.3390/ijms17040465] [PMID: 27043533]
[121]
Khor, T.O.; Huang, Y.; Wu, T.Y.; Shu, L.; Lee, J.; Kong, A.N.T. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol., 2011, 82(9), 1073-1078.
[http://dx.doi.org/10.1016/j.bcp.2011.07.065] [PMID: 21787756]
[122]
Takaki, A.; Yamamoto, K. Control of oxidative stress in hepatocellular carcinoma: Helpful or harmful? World J. Hepatol., 2015, 7(7), 968-979.
[http://dx.doi.org/10.4254/wjh.v7.i7.968] [PMID: 25954479]
[123]
Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2009, 27(2), 120-139.
[http://dx.doi.org/10.1080/10590500902885684] [PMID: 19412858]
[124]
Samuhasaneeto, S. Curcumin decreased oxidative stress, inhibited NF-B activation, and improved liver pathology in ethanol-induced liver injury in rats. Biomed. Biotechnol., 2009, 2009, 981963.
[http://dx.doi.org/10.1155/2009/981963]
[125]
Tang, Y.; Zheng, S.; Chen, A. Curcumin eliminates leptin’s effects on hepatic stellate cell activation via interrupting leptin signaling. Endocrinology, 2009, 150(7), 3011-3020.
[http://dx.doi.org/10.1210/en.2008-1601] [PMID: 19299451]
[126]
Tang, Y.; Chen, A. Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab. Invest., 2014, 94(5), 503-516.
[http://dx.doi.org/10.1038/labinvest.2014.42] [PMID: 24614199]
[127]
Lee, Y.K.; Park, S.Y.; Kim, Y.M.; Park, O.J. Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Ann. N. Y. Acad. Sci., 2009, 1171(1), 489-494.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04699.x] [PMID: 19723094]
[128]
Zamani, M.; Sadeghizadeh, M.; Behmanesh, M.; Najafi, F. Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine, 2015, 22(10), 961-967.
[http://dx.doi.org/10.1016/j.phymed.2015.05.071] [PMID: 26321746]
[129]
Chamani, F. Evaluation of miR-34 family and DNA methyltransferases 1, 3A, 3B gene expression levels in hepatocellular carcinoma following treatment with dendrosomal nanocurcumin. Asian Pac. J. Cancer Prev., 2016, 17(sup3), 219-224.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.219]
[130]
Sohn, S.I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin - An updated overview. Pharmaceutics, 2021, 13(12), 2102.
[http://dx.doi.org/10.3390/pharmaceutics13122102] [PMID: 34959384]
[131]
Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics (Basel), 2022, 11(3), 322.
[http://dx.doi.org/10.3390/antibiotics11030322] [PMID: 35326785]
[132]
Santandreu, F.M.; Valle, A.; Oliver, J.; Roca, P. Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell. Physiol. Biochem., 2011, 28(2), 219-228.
[http://dx.doi.org/10.1159/000331733] [PMID: 21865729]
[133]
Fulda, S.; Debatin, K.M. Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene, 2004, 23(40), 6702-6711.
[http://dx.doi.org/10.1038/sj.onc.1207630] [PMID: 15273734]
[134]
Liang, Z.; Guo, Y.T.; Yi, Y.J.; Wang, R.C.; Hu, Q.L.; Xiong, X.Y. Ganoderma lucidum polysaccharides target a Fas/caspase dependent pathway to induce apoptosis in human colon cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(9), 3981-3986.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3981] [PMID: 24935584]
[135]
Jiang, D.; Wang, L.; Zhao, T.; Zhang, Z.; Zhang, R.; Jin, J.; Cai, Y.; Wang, F. Restoration of the tumor-suppressor function to mutant p53 by Ganoderma lucidum polysaccharides in colorectal cancer cells. Oncol. Rep., 2017, 37(1), 594-600.
[http://dx.doi.org/10.3892/or.2016.5246] [PMID: 27878254]
[136]
Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Di Marzo, V.; Izzo, A.A. Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J. Mol. Med. (Berl.), 2012, 90(8), 925-934.
[http://dx.doi.org/10.1007/s00109-011-0856-x] [PMID: 22231745]
[137]
Romano, B.; Borrelli, F.; Pagano, E.; Cascio, M.G.; Pertwee, R.G.; Izzo, A.A. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine, 2014, 21(5), 631-639.
[http://dx.doi.org/10.1016/j.phymed.2013.11.006] [PMID: 24373545]
[138]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[139]
Khan, M.A.; Hussain, A.; Sundaram, M.K.; Alalami, U.; Gunasekera, D.; Ramesh, L.; Hamza, A.; Quraishi, U. (−)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol. Rep., 2015, 33(4), 1976-1984.
[http://dx.doi.org/10.3892/or.2015.3802] [PMID: 25682960]
[140]
Rejhová, A. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy