Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identifying the Mechanisms and Molecular Targets of Guchang Zhixie Pills on Ulcerative Colitis: Coupling Network Pharmacology with GEO Database and Experiment Verification

Author(s): Weihao Wang, Xujiao Song, Shanshan Ding, Chunlin Chen and Hao Ma*

Volume 26, Issue 11, 2023

Published on: 03 February, 2023

Page: [2039 - 2056] Pages: 18

DOI: 10.2174/1386207326666230103160151

Price: $65

Abstract

Objective: This research investigates the mechanisms and molecular targets of the Guchang Zhixie pill (GCZXP) against ulcerative colitis (UC) in silico and in vivo.

Methods: The compounds and related targets of GCZXP were collected from the traditional Chinese medicine systems pharmacology database. UC targets were from Gene Expression Omnibus and GeneCards databases. Hub genes were acquired through Cytoscape. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were performed in the David database. R packages were used to investigate the relationship between immune cells and hub genes and the diagnostic model. AutoDock was used to verify the molecular docking of the core compounds and hub genes, as well as nuclear factor-kappa B (NF-κB) p65 and IκBα. The hub genes and NF-κB pathway were verified via experiment.

Results: In GCZXP, a total of 51 active compounds were discovered. Enrichment analysis was used to study inflammation, chemokine activity, NF-κB signalling pathway, etc. Thirteen key therapeutic targets were involved, of which included three hub genes PTGS2, IL-1β and CXCL8. Immune infiltration revealed that all of the 3 hub genes were positively correlated with M1 macrophages, neutrophils, and activated memory CD4 cells, and negatively correlated with plasma cells. In the training and validation sets, the area under the curve (AUC) of the diagnostic model developed by hub genes reached 0.929 and 0.905, respectively, indicating a good forecasting potential. The rat experiment proved that GCZXP significantly reduced the expressions of IL-1β, CXCL8, COX-2, and NF-κB p65 while increasing IκBα and Bcl-2, alleviated colonic inflammatory injury and promoted ulcer healing.

Conclusion: GCZXP reduced the release of cytokines and regulated Bcl-2 in the treatment of UC by inhibiting the NF-κB signalling pathway.

Keywords: Network pharmacology, Guchang Zhixie pills, molecular docking, ulcerative colitis, inflammation, immune infiltration

Graphical Abstract
[1]
Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet, 2017, 389(10080), 1756-1770.
[http://dx.doi.org/10.1016/S0140-6736(16)32126-2] [PMID: 27914657]
[2]
Segal, J.P.; LeBlanc, J.F.; Hart, A.L. Ulcerative colitis: an update. Clin. Med. (Lond.), 2021, 21(2), 135-139.
[http://dx.doi.org/10.7861/clinmed.2021-0080] [PMID: 33762374]
[3]
Sałaga, M.; Zatorski, H.; Sobczak, M.; Chen, C.; Fichna, J. Chinese herbal medicines in the treatment of IBD and colorectal cancer: a review. Curr. Treat. Options Oncol., 2014, 15(3), 405-420.
[http://dx.doi.org/10.1007/s11864-014-0288-2] [PMID: 24792017]
[4]
Wang, Z.; Liang, Y.; Yu, J.; Zhang, D.; Ren, L.; Zhang, Z.; Liu, Y.; Wu, X.; Liu, L.; Tang, Z. Guchang Zhixie Wan protects mice against dextran sulfate sodium-induced colitis through modulating the gut microbiota in colon. J. Ethnopharmacol., 2020, 260112991.
[http://dx.doi.org/10.1016/j.jep.2020.112991] [PMID: 32442592]
[5]
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11.
[http://dx.doi.org/10.1016/S1875-5364(21)60001-8] [PMID: 33516447]
[6]
Toro-Domínguez, D.; Martorell-Marugán, J.; López-Domínguez, R.; García-Moreno, A.; González-Rumayor, V.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics, 2019, 35(5), 880-882.
[http://dx.doi.org/10.1093/bioinformatics/bty721] [PMID: 30137226]
[7]
Wu, Y.; Liu, X.; Li, G. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis. Sci. Rep., 2022, 12(1), 159.
[http://dx.doi.org/10.1038/s41598-021-03980-8] [PMID: 34997010]
[8]
Qiu, P.; Liu, L.; Fang, J.; Zhang, M.; Wang, H.; Peng, Y.; Chen, M.; Liu, J.; Wang, F.; Zhao, Q. Identification of pharmacological autophagy regulators of active ulcerative colitis. Front. Pharmacol., 2021, 12769718.
[http://dx.doi.org/10.3389/fphar.2021.769718] [PMID: 34925026]
[9]
Han, Y.; Liu, X.; Dong, H.; Wen, D. Screening of characteristic genes in ulcerative colitis by integrating gene expression profiles. BMC Gastroenterol., 2021, 21(1), 415.
[http://dx.doi.org/10.1186/s12876-021-01940-0] [PMID: 34717557]
[10]
Stelzer, G.; Rosen, N.; Plaschkes, I. The genecards suite: From gene data mining todisease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54, 1-30.
[http://dx.doi.org/10.1002/cpbi.5]
[11]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[12]
UniProt: the universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[13]
Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; Jensen, L.J.; Mering, C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 2011, 39(Database), D561-D568.
[http://dx.doi.org/10.1093/nar/gkq973] [PMID: 21045058]
[14]
Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; Lee, S.; Kang, B.; Jeong, D.; Kim, Y.; Jeon, H.N.; Jung, H.; Nam, S.; Chung, M.; Kim, J.H.; Lee, I. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res., 2018, 46(D1), D380-D386.
[http://dx.doi.org/10.1093/nar/gkx1013] [PMID: 29087512]
[15]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[16]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[17]
Caret classification and regression training. Available from: https://CRAN.R-project.org/package=caret
[18]
Deist, T.M.; Dankers, F.J.W.M.; Valdes, G.; Wijsman, R.; Hsu, I.C.; Oberije, C.; Lustberg, T.; Soest, J.; Hoebers, F.; Jochems, A.; El Naqa, I.; Wee, L.; Morin, O.; Raleigh, D.R.; Bots, W.; Kaanders, J.H.; Belderbos, J.; Kwint, M.; Solberg, T.; Monshouwer, R.; Bussink, J.; Dekker, A.; Lambin, P. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Med. Phys., 2018, 45(7), 3449-3459.
[http://dx.doi.org/10.1002/mp.12967] [PMID: 29763967]
[19]
Burley, S.K.; Berman, H.M.; Bhikadiya, C. RCSB Protein Data Bank2019.
[20]
Word, J.M.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation 1 1Edited by J. Thornton. J. Mol. Biol., 1999, 285(4), 1735-1747.
[http://dx.doi.org/10.1006/jmbi.1998.2401] [PMID: 9917408]
[21]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[22]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[23]
Wang, Z.Y.; Wang, X. Zhang, DY Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance. Zhongguo Zhong Yao Za Zhi, 2022, 47(1), 7-17.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20210914.702]
[24]
Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How can synergism of traditional medicines benefit from network pharmacology? Molecules, 2017, 22(7), 1135.
[http://dx.doi.org/10.3390/molecules22071135] [PMID: 28686181]
[25]
Najafzadeh, M.; Reynolds, P.D.; Baumgartner, A.; Anderson, D. Flavonoids inhibit the genotoxicity of hydrogen peroxide (H2O2) and of the food mutagen 2-amino-3-methylimadazo[4,5-f]-quinoline (IQ) in lymphocytes from patients with inflammatory bowel disease (IBD). Mutagenesis, 2009, 24(5), 405-411.
[http://dx.doi.org/10.1093/mutage/gep016] [PMID: 19553277]
[26]
Park, M.Y.; Ji, G.E.; Sung, M.K. Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig. Dis. Sci., 2012, 57(2), 355-363.
[http://dx.doi.org/10.1007/s10620-011-1883-8] [PMID: 21901258]
[27]
Jia, L.; Xue, K.; Liu, J. Anticolitic effect of berberine in rat experimental model: Impact of PGE2/p38 MAPK pathways. Mediators Inflamm., 2020, 2020, 9419085.
[http://dx.doi.org/10.1155/2020/9419085]
[28]
Zamuner, S.R.; Warrier, N.; Buret, A.G.; MacNaughton, W.K.; Wallace, J.L. Cyclooxygenase 2 mediates post-inflammatory colonic secretory and barrier dysfunction. Gut, 2003, 52(12), 1714-1720.
[http://dx.doi.org/10.1136/gut.52.12.1714] [PMID: 14633948]
[29]
Walana, W.; Ye, Y.; Li, M.; Wang, J.; Wang, B.; Cheng, J.; Gordon, J.R.; Li, F. IL-8 antagonist, CXCL8(3-72)K11R/G31P coupled with probiotic exhibit variably enhanced therapeutic potential in ameliorating ulcerative colitis. Biomed. Pharmacother., 2018, 103, 253-261.
[http://dx.doi.org/10.1016/j.biopha.2018.04.008] [PMID: 29655167]
[30]
Nakase, H.; Sato, N.; Mizuno, N.; Ikawa, Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev., 2022, 21(3), 103017.
[http://dx.doi.org/10.1016/j.autrev.2021.103017] [PMID: 34902606]
[31]
Mao, L.; Kitani, A.; Strober, W.; Fuss, I.J. The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease. Front. Immunol., 2018, 9, 2566.
[http://dx.doi.org/10.3389/fimmu.2018.02566] [PMID: 30455704]
[32]
Karimi, S.; Tabataba-vakili, S.; Ebrahimi-Daryani, N.; Yari, Z.; Karimi, A.; Hedayati, M.; Hekmatdoost, A. Inflammatory biomarkers response to two dosages of vitamin D supplementation in patients with ulcerative colitis: A randomized, double-blind, placebo-controlled pilot study. Clin. Nutr. ESPEN, 2020, 36, 76-81.
[http://dx.doi.org/10.1016/j.clnesp.2020.02.003] [PMID: 32220372]
[33]
Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet, 2012, 380(9853), 1606-1619.
[http://dx.doi.org/10.1016/S0140-6736(12)60150-0] [PMID: 22914296]
[34]
Spalinger, M.R.; Manzini, R.; Hering, L.; Riggs, J.B.; Gottier, C.; Lang, S.; Atrott, K.; Fettelschoss, A.; Olomski, F.; Kündig, T.M.; Fried, M.; McCole, D.F.; Rogler, G.; Scharl, M. PTPN2 regulates inflammasome activation and controls onset of intestinal inflammation and colon cancer. Cell Rep., 2018, 22(7), 1835-1848.
[http://dx.doi.org/10.1016/j.celrep.2018.01.052] [PMID: 29444435]
[35]
Ju, S.; Ge, Y.; Li, P. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Cell Cycle, 2018, 17(1), 53-63.
[36]
Liu, Y.; Liu, X.; Hua, W.; Wei, Q.; Fang, X.; Zhao, Z.; Ge, C.; Liu, C.; Chen, C.; Tao, Y.; Zhu, Y. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int. Immunopharmacol., 2018, 57, 121-131.
[http://dx.doi.org/10.1016/j.intimp.2018.01.049] [PMID: 29482156]
[37]
Muthas, D.; Reznichenko, A.; Balendran, C.A.; Böttcher, G.; Clausen, I.G.; Mårdh, K.C.; Ottosson, T.; Uddin, M.; MacDonald, T.T.; Danese, S.; Hansen, B.M. Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications. Scand. J. Gastroenterol., 2017, 52(2), 125-135.
[http://dx.doi.org/10.1080/00365521.2016.1235224] [PMID: 27610713]
[38]
dos Santos Ramos, A.; Viana, G.C.S.; de Macedo Brigido, M.; Almeida, J.F. Neutrophil extracellular traps in inflammatory bowel diseases: Implications in pathogenesis and therapeutic targets. Pharmacol. Res., 2021, 171105779.
[http://dx.doi.org/10.1016/j.phrs.2021.105779] [PMID: 34298111]
[39]
Zhang, J.; Shi, G. Lymphocyte infiltration and key differentially expressed genes in the ulcerative colitis. Medicine (Baltimore), 2020, 99(35), e21997.
[http://dx.doi.org/10.1097/MD.0000000000021997] [PMID: 32871953]
[40]
Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.F.; Cao, D. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/9875298] [PMID: 26823956]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy