Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Anti-angiogenic Drug Resistance: Roles and Targeting of Non-coding RNAs (microRNAs and long non-coding RNAs)

Author(s): Masoumeh Eliyasi Dashtaki and Sorayya Ghasemi*

Volume 16, Issue 8, 2023

Published on: 03 February, 2023

Article ID: e061222211624 Pages: 15

DOI: 10.2174/1874467216666221206100135

Price: $65

Abstract

Cancers with a high capability for angiogenesis are frequently regarded as being difficult to treat. Anti-angiogenesis drugs are considered the primary therapy for these types of cancers. Due to intrinsic or acquired anti-angiogenesis resistance, therapies result in moderate clinical consequences, despite some hopeful findings. The importance of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding (lncRNAs), and circular RNAs (circRNAs) in drug resistance mechanisms in cancer treatment has been discovered in the previous decade. Anti-angiogenic drug resistance can be influenced by ncRNA dysregulation. Hence, ncRNAs are potential drug resistance targets for new anti-angiogenic drugs in the inhibition of angiogenesis in tumors. Furthermore, some ncRNAs can be employed as biomarkers for anti-angiogenic drug responses and can be used to monitor cancer non-invasively. Combination treatment approaches, combined with routine anti-angiogenesis and some drugs that target the ncRNAs causing resistance, can be potential ways to overcome anti-angiogenesis resistance. For the first time, we explain the mechanisms of anti-angiogenic drug resistance and the related miRNAs and lncRNAs and their signaling pathways in commonly used antiangiogenic drugs implicated in this review article. These ncRNAs could be suggestions for targeting and reducing anti-angiogenic drugs in the future.

Keywords: Angiogenesis, anti-angiogenic drugs, drug resistance, non-coding RNAs, cancer therapies, micro-RNAs.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Esti-mates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Ghasabi, M.; Mansoori, B.; Mohammadi, A.; Duijf, P.H.G.; Shomali, N.; Shirafkan, N.; Mokhtarzadeh, A.; Baradaran, B. MicroRNAs in cancer drug resistance: Basic evidence and clinical applications. J. Cell. Physiol., 2019, 234(3), 2152-2168.
[http://dx.doi.org/10.1002/jcp.26810] [PMID: 30146724]
[3]
Sonenberg, N.; Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4), 731-745.
[http://dx.doi.org/10.1016/j.cell.2009.01.042] [PMID: 19239892]
[4]
O’Day, E.; Lal, A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res., 2010, 12(2), 201.
[http://dx.doi.org/10.1186/bcr2484] [PMID: 20346098]
[5]
Du, T.; Zamore, P.D. microPrimer: the biogenesis and function of microRNA. Development, 2005, 132(21), 4645-4652.
[http://dx.doi.org/10.1242/dev.02070] [PMID: 16224044]
[6]
Sun, X.; Du, P.; Yuan, W.; Du, Z.; Yu, M.; Yu, X.; Hu, T. Long non-coding RNA hotair regulates cyclin J via inhibition of microRNA-205 expression in bladder cancer. Cell Death Dis., 2015, 6(10), e1907.
[http://dx.doi.org/10.1038/cddis.2015.269] [PMID: 26469956]
[7]
Fiannaca, A.; La Rosa, M.; La Paglia, L.; Rizzo, R.; Urso, A. nRC: non-coding RNA Classifier based on structural features. BioData Min., 2017, 10(1), 27.
[http://dx.doi.org/10.1186/s13040-017-0148-2] [PMID: 28785313]
[8]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA hotair reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[9]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[10]
Qu, Y.; Tan, H.Y.; Chan, Y.T.; Jiang, H.; Wang, N.; Wang, D. The functional role of long noncoding RNA in resistance to anticancer treat-ment. Ther. Adv. Med. Oncol., 2020, 12
[http://dx.doi.org/10.1177/1758835920927850] [PMID: 32536982]
[11]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[12]
Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol., 2020, 10, 221.
[http://dx.doi.org/10.3389/fonc.2020.00221] [PMID: 32175278]
[13]
Hahne, J.C.; Valeri, N. Non-coding RNAs and resistance to anticancer drugs in gastrointestinal tumors. Front. Oncol., 2018, 8, 226.
[http://dx.doi.org/10.3389/fonc.2018.00226] [PMID: 29967761]
[14]
Abdullah, L.N.; Chow, E.K.H. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med., 2013, 2(1), 3.
[http://dx.doi.org/10.1186/2001-1326-2-3] [PMID: 23369605]
[15]
Rezayatmand, H.; Razmkhah, M.; Razeghian-Jahromi, I. Drug resistance in cancer therapy: the Pandora’s Box of cancer stem cells. Stem Cell Res. Ther., 2022, 13(1), 181.
[http://dx.doi.org/10.1186/s13287-022-02856-6] [PMID: 35505363]
[16]
Razmkhah, F.; Soleimani, M.; Ghasemi, S.; Kafi-abad, S.A. MicroRNA-21 over expression in umbilical cord blood hematopoietic stem progenitor cells by leukemia microvesicles. Genet. Mol. Biol., 2019, 42(2), 465-471.
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0073] [PMID: 31429853]
[17]
Meadows, K.L.; Hurwitz, H.I. Anti-VEGF therapies in the clinic. Cold Spring Harb. Perspect. Med., 2012, 2(10), a006577.
[http://dx.doi.org/10.1101/cshperspect.a006577] [PMID: 23028128]
[18]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[19]
Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2013, 13(12), 871-882.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[20]
Shih, T.; Lindley, C. Bevacizumab: An angiogenesis inhibitor for the treatment of solid malignancies. Clin. Ther., 2006, 28(11), 1779-1802.
[http://dx.doi.org/10.1016/j.clinthera.2006.11.015] [PMID: 17212999]
[21]
Planchard, D. Bevacizumab in non-small-cell lung cancer: a review. Expert Rev. Anticancer Ther., 2011, 11(8), 1163-1179.
[http://dx.doi.org/10.1586/era.11.80] [PMID: 21916570]
[22]
Stanel, S.C.; Sjöberg, J.; Salmonson, T.; Foggi, P.; Caleno, M.; Melchiorri, D.; Gravanis, I.; Tzogani, K.; Pignatti, F. European Medicines Agency approval summary: Zaltrap for the treatment of patients with oxaliplatin-resistant metastatic colorectal cancer. ESMO Open, 2017, 2(2), e000190.
[http://dx.doi.org/10.1136/esmoopen-2017-000190] [PMID: 28761750]
[23]
Tabernero, J.; Van Cutsem, E.; Lakomý, R.; Prausová, J.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.M.; Ferry, D.R.; McKendrick, J.J.; Soussan-Lazard, K.; Chevalier, S.; Allegra, C.J. Aflibercept versus placebo in combination with fluorouracil, leucovorin and irinotecan in the treatment of previously treated metastatic colorectal cancer: Prespecified subgroup analyses from the VELOUR trial. Eur. J. Cancer, 2014, 50(2), 320-331.
[http://dx.doi.org/10.1016/j.ejca.2013.09.013] [PMID: 24140268]
[24]
Li, C.; Iida, M.; Dunn, E.F.; Ghia, A.J.; Wheeler, D.L. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene, 2009, 28(43), 3801-3813.
[http://dx.doi.org/10.1038/onc.2009.234] [PMID: 19684613]
[25]
Baysal, H.; De Pauw, I.; Zaryouh, H.; Peeters, M.; Vermorken, J.B.; Lardon, F.; De Waele, J.; Wouters, A. The right partner in crime: un-locking the potential of the Anti-EGFR antibody Cetuximab via combination with natural killer cell chartering immunotherapeutic strate-gies. Front. Immunol., 2021, 12(3627), 737311.
[http://dx.doi.org/10.3389/fimmu.2021.737311] [PMID: 34557197]
[26]
Oguntade, A.S.; Al-Amodi, F.; Alrumayh, A.; Alobaida, M.; Bwalya, M. Anti-angiogenesis in cancer therapeutics: the magic bullet. J. Egypt. Natl. Canc. Inst., 2021, 33(1), 15.
[http://dx.doi.org/10.1186/s43046-021-00072-6] [PMID: 34212275]
[27]
Kumar, M.M.; Goyal, R.; Goyal, R. LncRNA as a therapeutic target for angiogenesis. Curr. Top. Med. Chem., 2017, 17(15), 1750-1757.
[http://dx.doi.org/10.2174/1568026617666161116144744] [PMID: 27848894]
[28]
Azam, F.; Mehta, S.; Harris, A.L. Mechanisms of resistance to antiangiogenesis therapy. Eur. J. Cancer, 2010, 46(8), 1323-1332.
[http://dx.doi.org/10.1016/j.ejca.2010.02.020] [PMID: 20236818]
[29]
Lu, K.V.; Bergers, G. Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol., 2013, 2(1), 49-65.
[http://dx.doi.org/10.2217/cns.12.36] [PMID: 23750318]
[30]
Ribatti, D.; Vacca, A. The role of microenvironment in tumor angiogenesis. Genes Nutr., 2008, 3(1), 29-34.
[http://dx.doi.org/10.1007/s12263-008-0076-3] [PMID: 18850197]
[31]
Fallah, A.; Sadeghinia, A.; Kahroba, H.; Samadi, A.; Heidari, H.R.; Bradaran, B.; Zeinali, S.; Molavi, O. Therapeutic targeting of angiogene-sis molecular pathways in angiogenesis-dependent diseases. Biomed. Pharmacother., 2019, 110, 775-785.
[http://dx.doi.org/10.1016/j.biopha.2018.12.022] [PMID: 30554116]
[32]
Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. In: Madame Curie Bioscience Database;Landes Bioscience; , 2013.
[33]
Kerbel, R.S.; Yu, J.; Tran, J.; Man, S.; Viloria-Petit, A.; Klement, G.; Coomber, B.L.; Rak, J. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev., 2001, 20(1/2), 79-86.
[http://dx.doi.org/10.1023/A:1013172910858] [PMID: 11831651]
[34]
Lopes-Coelho, F.; Martins, F.; Pereira, S.A.; Serpa, J. Anti-angiogenic therapy: current challenges and future perspectives. Int. J. Mol. Sci., 2021, 22(7), 3765.
[http://dx.doi.org/10.3390/ijms22073765] [PMID: 33916438]
[35]
Clarke, J.M.; Hurwitz, H.I. Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest. Oncol., 2013, 4(3), 253-263.
[PMID: 23997938]
[36]
Romon, R.; Adriaenssens, E.; Lagadec, C.; Germain, E.; Hondermarck, H.; Le Bourhis, X. Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol. Cancer, 2010, 9(1), 157.
[http://dx.doi.org/10.1186/1476-4598-9-157] [PMID: 20569463]
[37]
Schneider, B.P.; Wang, M.; Radovich, M.; Sledge, G.W.; Badve, S.; Thor, A.; Flockhart, D.A.; Hancock, B.; Davidson, N.; Gralow, J.; Dick-ler, M.; Perez, E.A.; Cobleigh, M.; Shenkier, T.; Edgerton, S.; Miller, K.D. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevaci-zumab in advanced breast cancer: ECOG 2100. J. Clin. Oncol., 2008, 26(28), 4672-4678.
[http://dx.doi.org/10.1200/JCO.2008.16.1612] [PMID: 18824714]
[38]
Shahbazi, M.; Fryer, A.A.; Pravica, V.; Brogan, I.J.; Ramsay, H.M.; Hutchinson, I.V.; Harden, P.N. Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection. J. Am. Soc. Nephrol., 2002, 13(1), 260-264.
[http://dx.doi.org/10.1681/ASN.V131260] [PMID: 11752046]
[39]
Ciesielski, O.; Biesiekierska, M.; Panthu, B.; Vialichka, V.; Pirola, L.; Balcerczyk, A. The epigenetic profile of tumor endothelial cells. Effects of combined therapy with antiangiogenic and epigenetic drugs on cancer progression. Int. J. Mol. Sci., 2020, 21(7), 2606.
[http://dx.doi.org/10.3390/ijms21072606] [PMID: 32283668]
[40]
Song, X.; Guo, Y.; Song, P.; Duan, D.; Guo, W. Non-coding RNAs in regulating tumor angiogenesis. Front. Cell Dev. Biol., 2021, 9, 751578.
[http://dx.doi.org/10.3389/fcell.2021.751578] [PMID: 34616746]
[41]
Arao, T.; Matsumoto, K.; Furuta, K.; Kudo, K.; Kaneda, H.; Nagai, T.; Sakai, K.; Fujita, Y.; Tamura, D.; Aomatsu, K.; Koizumi, F.; Nishio, K. Acquired drug resistance to vascular endothelial growth factor receptor 2 tyrosine kinase inhibitor in human vascular endothelial cells. Anticancer Res., 2011, 31(9), 2787-2796.
[PMID: 21868521]
[42]
Lai, Y.; Zhao, Z.; Zeng, T.; Liang, X.; Chen, D.; Duan, X.; Zeng, G.; Wu, W. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int., 2018, 18(1), 31.
[http://dx.doi.org/10.1186/s12935-018-0530-2] [PMID: 29527128]
[43]
Niu, G.; Chen, X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets, 2010, 11(8), 1000-1017.
[http://dx.doi.org/10.2174/138945010791591395] [PMID: 20426765]
[44]
Belotti, D.; Pinessi, D.; Taraboletti, G. Alternative vascularization mechanisms in tumor resistance to therapy. Cancers , 2021, 13(8), 1912.
[http://dx.doi.org/10.3390/cancers13081912] [PMID: 33921099]
[45]
Eberhard, A.; Kahlert, S.; Goede, V.; Hemmerlein, B.; Plate, K.H.; Augustin, H.G. Heterogeneity of angiogenesis and blood vessel matura-tion in human tumors: implications for antiangiogenic tumor therapies. Cancer Res., 2000, 60(5), 1388-1393.
[PMID: 10728704]
[46]
Itatani, Y.; Kawada, K.; Yamamoto, T.; Sakai, Y. Resistance to anti-angiogenic therapy in cancer—alterations to anti-VEGF Pathway. Int. J. Mol. Sci., 2018, 19(4), 1232.
[http://dx.doi.org/10.3390/ijms19041232] [PMID: 29670046]
[47]
Loges, S.; Schmidt, T.; Carmeliet, P. Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer, 2010, 1(1), 12-25.
[http://dx.doi.org/10.1177/1947601909356574] [PMID: 21779425]
[48]
Owen, J.L.; Mohamadzadeh, M. Macrophages and chemokines as mediators of angiogenesis. Front. Physiol., 2013, 4, 159.
[http://dx.doi.org/10.3389/fphys.2013.00159] [PMID: 23847541]
[49]
Heidemann, J.; Ogawa, H.; Dwinell, M.B.; Rafiee, P.; Maaser, C.; Gockel, H.R.; Otterson, M.F.; Ota, D.M.; Lügering, N.; Domschke, W.; Binion, D.G. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J. Biol. Chem., 2003, 278(10), 8508-8515.
[http://dx.doi.org/10.1074/jbc.M208231200] [PMID: 12496258]
[50]
Bornstein, P. Thrombospondins function as regulators of angiogenesis. J. Cell Commun. Signal., 2009, 3(3-4), 189-200.
[http://dx.doi.org/10.1007/s12079-009-0060-8] [PMID: 19798599]
[51]
Wang, P.; Yuan, Y.; Lin, W.; Zhong, H.; Xu, K.; Qi, X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int., 2019, 19(1), 295.
[http://dx.doi.org/10.1186/s12935-019-1014-8] [PMID: 31807117]
[52]
Fukuhara, S.; Sako, K.; Noda, K.; Zhang, J.; Minami, M.; Mochizuki, N. Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol. Histopathol., 2010, 25(3), 387-396.
[PMID: 20054809]
[53]
Khodabakhsh, F.; Merikhian, P.; Eisavand, M.R.; Farahmand, L. Crosstalk between MUC1 and VEGF in angiogenesis and metastasis: a review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling. Cancer Cell Int., 2021, 21(1), 200.
[http://dx.doi.org/10.1186/s12935-021-01899-8] [PMID: 33836774]
[54]
Wang, S.W.; Liu, S.C.; Sun, H.L.; Huang, T.Y.; Chan, C.H.; Yang, C.Y.; Yeh, H.I.; Huang, Y.L.; Chou, W.Y.; Lin, Y.M.; Tang, C.H. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis, 2015, 36(1), 104-114.
[http://dx.doi.org/10.1093/carcin/bgu218] [PMID: 25330803]
[55]
Reinders, M.E.J.; Sho, M.; Robertson, S.W.; Geehan, C.S.; Briscoe, D.M. Proangiogenic function of CD40 ligand-CD40 interactions. J. Immunol., 2003, 171(3), 1534-1541.
[http://dx.doi.org/10.4049/jimmunol.171.3.1534] [PMID: 12874247]
[56]
Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer, 2011, 2(12), 1117-1133.
[http://dx.doi.org/10.1177/1947601911423654] [PMID: 22866203]
[57]
López-Camarillo, C.; Ruiz-García, E.; Starling, N.; Marchat, L.A. Editorial: Neovascularization, angiogenesis and vasculogenic mimicry in cancer. Front. Oncol., 2020, 10, 1140.
[http://dx.doi.org/10.3389/fonc.2020.01140] [PMID: 32766149]
[58]
Tan, Y.; Shao, H.; Eton, D.; Yang, Z.; Alonso-Diaz, L.; Zhang, H.; Schulick, A.; Livingstone, A.S.; Yu, H. Stromal cell-derived factor-1 enhances pro-angiogenic effect of granulocyte-colony stimulating factor. Cardiovasc. Res., 2007, 73(4), 823-832.
[http://dx.doi.org/10.1016/j.cardiores.2006.12.015] [PMID: 17258698]
[59]
Kofler, N.M.; Shawber, C.J.; Kangsamaksin, T.; Reed, H.O.; Galatioto, J.; Kitajewski, J. Notch signaling in developmental and tumor angio-genesis. Genes Cancer, 2011, 2(12), 1106-1116.
[http://dx.doi.org/10.1177/1947601911423030] [PMID: 22866202]
[60]
Karar, J.; Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci., 2011, 4, 51.
[http://dx.doi.org/10.3389/fnmol.2011.00051] [PMID: 22144946]
[61]
Mavria, G.; Vercoulen, Y.; Yeo, M.; Paterson, H.; Karasarides, M.; Marais, R.; Bird, D.; Marshall, C.J. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell, 2006, 9(1), 33-44.
[http://dx.doi.org/10.1016/j.ccr.2005.12.021] [PMID: 16413470]
[62]
Mekki, M.S.; Mougel, A.; Vinchent, A.; Paquet, C.; Copin, M.C.; Leroy, C.; Kherrouche, Z.; Bonte, J.P.; Melnyk, O.; Vicogne, J.; Tulasne, D. Hypoxia leads to decreased autophosphorylation of the MET receptor but promotes its resistance to tyrosine kinase inhibitors. Oncotarget, 2018, 9(43), 27039-27058.
[http://dx.doi.org/10.18632/oncotarget.25472] [PMID: 29930749]
[63]
Hernández-Romero, I.A.; Guerra-Calderas, L.; Salgado-Albarrán, M.; Maldonado-Huerta, T.; Soto-Reyes, E. The regulatory roles of Non-coding RNAs in angiogenesis and neovascularization from an epigenetic perspective. Front. Oncol., 2019, 9(1091), 1091.
[http://dx.doi.org/10.3389/fonc.2019.01091] [PMID: 31709179]
[64]
Slack, F.J.; Chinnaiyan, A.M. The Role of Non-coding RNAs in Oncology. Cell, 2019, 179(5), 1033-1055.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[65]
Ratti, M.; Lampis, A.; Ghidini, M.; Salati, M.; Mirchev, M.B.; Valeri, N.; Hahne, J.C. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target. Oncol., 2020, 15(3), 261-278.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[66]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. the different mechanisms of cancer drug resistance: a brief re-view. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[67]
Maharati, A.; Zanguei, A.S.; Khalili-Tanha, G.; Moghbeli, M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun. Signal., 2022, 20(1), 27.
[http://dx.doi.org/10.1186/s12964-022-00840-4] [PMID: 35264191]
[68]
Yarden, Y. The EGFR family and its ligands in human cancer. Eur. J. Cancer, 2001, 37(S4), 3-8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[69]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[70]
Mendelsohn, J.; Baselga, J. Epidermal growth factor receptor targeting in cancer. Semin. Oncol., 2006, 33(4), 369-385.
[http://dx.doi.org/10.1053/j.seminoncol.2006.04.003] [PMID: 16890793]
[71]
Wang, W.M.; Zhao, Z.L.; Ma, S.R.; Yu, G.T.; Liu, B.; Zhang, L.; Zhang, W.F.; Kulkarni, A.B.; Sun, Z.J.; Zhao, Y.F. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma. PLoS One, 2015, 10(2), e0119723.
[http://dx.doi.org/10.1371/journal.pone.0119723] [PMID: 25723392]
[72]
Xu, Y.J.; Zhao, J.M.; Ni, X.F.; Wang, W.; Hu, W.W.; Wu, C.P. LncRNA HCG18 suppresses CD8 + T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics, 2021, 13(16), 1283-1299.
[http://dx.doi.org/10.2217/epi-2021-0130] [PMID: 34523356]
[73]
Lu, Y.; Zhao, X.; Liu, Q.; Li, C.; Graves-Deal, R.; Cao, Z.; Singh, B.; Franklin, J.L.; Wang, J.; Hu, H.; Wei, T.; Yang, M.; Yeatman, T.J.; Lee, E.; Saito-Diaz, K.; Hinger, S.; Patton, J.G.; Chung, C.H.; Emmrich, S.; Klusmann, J.H.; Fan, D.; Coffey, R.J. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat. Med., 2017, 23(11), 1331-1341.
[http://dx.doi.org/10.1038/nm.4424] [PMID: 29035371]
[74]
Peng, K.; Liu, R.; Yu, Y.; Liang, L.; Yu, S.; Xu, X.; Liu, T. Identification and validation of cetuximab resistance associated long noncoding RNA biomarkers in metastatic colorectal cancer. Biomed. Pharmacother., 2018, 97, 1138-1146.
[http://dx.doi.org/10.1016/j.biopha.2017.11.031] [PMID: 29136952]
[75]
Zhang, X.; Wen, L.; Chen, S.; Zhang, J.; Ma, Y.; Hu, J.; Yue, T.; Wang, J.; Zhu, J.; Bu, D.; Wang, X. The novel long noncoding RNA CRART16 confers cetuximab resistance in colorectal cancer cells by enhancing ERBB3 expression via miR-371a-5p. Cancer Cell Int., 2020, 20(1), 68.
[http://dx.doi.org/10.1186/s12935-020-1155-9] [PMID: 32158358]
[76]
Sun, L.; Fang, Y.; Wang, X.; Han, Y.; Du, F.; Li, C.; Hu, H.; Liu, H.; Liu, Q.; Wang, J.; Liang, J.; Chen, P.; Yang, H.; Nie, Y.; Wu, K.; Fan, D.; Coffey, R.J.; Lu, Y.; Zhao, X.; Wang, X. miR-302a inhibits metastasis and cetuximab resistance in colorectal cancer by targeting NFIB and CD44. Theranostics, 2019, 9(26), 8409-8425.
[http://dx.doi.org/10.7150/thno.36605] [PMID: 31754405]
[77]
Mussnich, P.; Rosa, R.; Bianco, R.; Fusco, A.; D’Angelo, D. MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1. Expert Opin. Ther. Targets, 2015, 19(8), 1017-1026.
[http://dx.doi.org/10.1517/14728222.2015.1057569] [PMID: 26107137]
[78]
Xing, Y.; Jing, H.; Zhang, Y.; Suo, J.; Qian, M. MicroRNA-141-3p affected proliferation, chemosensitivity, migration and invasion of colo-rectal cancer cells by targeting EGFR. Int. J. Biochem. Cell Biol., 2020, 118, 105643.
[http://dx.doi.org/10.1016/j.biocel.2019.105643] [PMID: 31704502]
[79]
Suto, T.; Yokobori, T.; Yajima, R.; Morita, H.; Fujii, T.; Yamaguchi, S.; Altan, B.; Tsutsumi, S.; Asao, T.; Kuwano, H. MicroRNA-7 ex-pression in colorectal cancer is associated with poor prognosis and regulates cetuximab sensitivity via EGFR regulation. Carcinogenesis, 2015, 36(3), 338-345.
[http://dx.doi.org/10.1093/carcin/bgu242] [PMID: 25503932]
[80]
Igarashi, H.; Kurihara, H.; Mitsuhashi, K.; Ito, M.; Okuda, H.; Kanno, S.; Naito, T.; Yoshii, S.; Takahashi, H.; Kusumi, T.; Hasegawa, T.; Sukawa, Y.; Adachi, Y.; Okita, K.; Hirata, K.; Imamura, Y.; Baba, Y.; Imai, K.; Suzuki, H.; Yamamoto, H.; Nosho, K.; Shinomura, Y. As-sociation of microRNA-31-5p with clinical efficacy of anti-egfr therapy in patients with metastatic colorectal cancer. Ann. Surg. Oncol., 2015, 22(8), 2640-2648.
[http://dx.doi.org/10.1245/s10434-014-4264-7] [PMID: 25472647]
[81]
Xu, W.; Song, C.; Wang, X.; Li, Y.; Bai, X.; Liang, X.; Wu, J.; Liu, J. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging , 2021, 13(1), 228-240.
[http://dx.doi.org/10.18632/aging.103669] [PMID: 33472170]
[82]
Hatakeyama, H.; Cheng, H.; Wirth, P.; Counsell, A.; Marcrom, S.R.; Wood, C.B.; Pohlmann, P.R.; Gilbert, J.; Murphy, B.; Yarbrough, W.G.; Wheeler, D.L.; Harari, P.M.; Guo, Y.; Shyr, Y.; Slebos, R.J.; Chung, C.H. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS One, 2010, 5(9), e12702.
[http://dx.doi.org/10.1371/journal.pone.0012702] [PMID: 20856931]
[83]
Wu, Q.; Zhao, Y.; Wang, P. miR-204 inhibits angiogenesis and promotes sensitivity to cetuximab in head and neck squamous cell carci-noma cells by blocking JAK2-STAT3 signaling. Biomed. Pharmacother., 2018, 99, 278-285.
[http://dx.doi.org/10.1016/j.biopha.2018.01.055] [PMID: 29353201]
[84]
Yang, S.; Yuan, Z.J.; Zhu, Y.H.; Chen, X.; Wang, W. LNCRNA PVT1 promotes cetuximab resistance of head and neck squamous cell carcinoma cells by inhibiting MIR ‐124‐3p. Head Neck, 2021, 43(9), 2712-2723.
[http://dx.doi.org/10.1002/hed.26742] [PMID: 34033197]
[85]
Wang, S.; Aurora, A.B.; Johnson, B.A.; Qi, X.; McAnally, J.; Hill, J.A.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 2008, 15(2), 261-271.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002] [PMID: 18694565]
[86]
Mocharla, P.; Briand, S.; Giannotti, G.; Dörries, C.; Jakob, P.; Paneni, F.; Lüscher, T.; Landmesser, U. AngiomiR-126 expression and se-cretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood, 2013, 121(1), 226-236.
[http://dx.doi.org/10.1182/blood-2012-01-407106] [PMID: 23144172]
[87]
Du, C.; Lv, Z.; Cao, L.; Ding, C.; Gyabaah, O.K.; Xie, H.; Zhou, L.; Wu, J.; Zheng, S. MiR-126-3p suppresses tumor metastasis and angio-genesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. J. Transl. Med., 2014, 12(1), 259.
[http://dx.doi.org/10.1186/s12967-014-0259-1] [PMID: 25240815]
[88]
Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.H.; Sørensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer, 2015, 112(4), 624-629.
[http://dx.doi.org/10.1038/bjc.2014.652] [PMID: 25584492]
[89]
Luengo-Gil, G; Gonzalez-Billalabeitia, E; Perez-Henarejos, SA; Navarro, M Chaves-Benito, A; Garcia-Martinez, E Angiogenic role of miR-20a in breast cancer PloS one, 2018, 13(4), e0194638-e.
[http://dx.doi.org/10.1371/journal.pone.0194638]
[90]
Shiozawa, K.; Shuting, J.; Yoshioka, Y.; Ochiya, T.; Kondo, T. Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochem. Biophys. Res. Commun., 2018, 495(1), 1322-1327.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.164] [PMID: 29191657]
[91]
Yamada, H.; Takahashi, M.; Watanuki, M.; Watanabe, M.; Hiraide, S.; Saijo, K.; Komine, K.; Ishioka, C. lncRNA HAR1B has potential to be a predictive marker for pazopanib therapy in patients with sarcoma. Oncol. Lett., 2021, 21(6), 455.
[http://dx.doi.org/10.3892/ol.2021.12716] [PMID: 33907565]
[92]
Yu, T.; Yu, J.; Lu, L.; Zhang, Y.; Zhou, Y.; Zhou, Y.; Huang, F.; Sun, L.; Guo, Z.; Hou, G.; Dong, Z.; Wang, B. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis. Cell. Oncol., 2021, 44(4), 821-834.
[http://dx.doi.org/10.1007/s13402-021-00605-0] [PMID: 33974236]
[93]
Li, W.; He, Y.; Chen, W.; Man, W.; Fu, Q.; Tan, H.; Guo, H.; Zhou, J.; Yang, P. Knockdown of LINC00467 contributed to Axitinib sensi-tivity in hepatocellular carcinoma through miR-509-3p/PDGFRA axis. Gene Ther., 2021, 28(10-11), 634-645.
[http://dx.doi.org/10.1038/s41434-020-0137-9] [PMID: 32221502]
[94]
Joo, L.J.S.; Weiss, J.; Gill, A.J.; Clifton-Bligh, R.; Brahmbhatt, H.; MacDiarmid, J.A.; Gild, M.L.; Robinson, B.G.; Zhao, J.T.; Sidhu, S.B. RET kinase-regulated microRNA-153-3p improves therapeutic efficacy in medullary thyroid carcinoma. Thyroid, 2019, 29(6), 830-844.
[http://dx.doi.org/10.1089/thy.2018.0525] [PMID: 30929576]
[95]
Cabral, L.K.D.; Tiribelli, C.; Sukowati, C.H.C. Sorafenib resistance in hepatocellular carcinoma: the relevance of genetic heterogeneity. Cancers , 2020, 12(6), 1576.
[http://dx.doi.org/10.3390/cancers12061576] [PMID: 32549224]
[96]
Guevremont, C.; Jeldres, C.; Perrotte, P.; Karakiewicz, P.I. Sorafenib in the management of metastatic renal cell carcinoma. Curr. Oncol., 2009, 16(S1), S27-S32.
[http://dx.doi.org/10.3747/co.v16i0.430]
[97]
Zhang, J.; Gold, K.A.; Kim, E. Sorafenib in non-small cell lung cancer. Expert Opin. Investig. Drugs, 2012, 21(9), 1417-1426.
[http://dx.doi.org/10.1517/13543784.2012.699039] [PMID: 22725255]
[98]
Ji, L.; Lin, Z.; Wan, Z.; Xia, S.; Jiang, S.; Cen, D.; Cai, L.; Xu, J.; Cai, X. miR-486-3p mediates hepatocellular carcinoma sorafenib re-sistance by targeting FGFR4 and EGFR. Cell Death Dis., 2020, 11(4), 250.
[http://dx.doi.org/10.1038/s41419-020-2413-4] [PMID: 32313144]
[99]
Schultheiss, C.S.; Laggai, S.; Czepukojc, B.; Hussein, U.K.; List, M.; Barghash, A.; Tierling, S.; Hosseini, K.; Golob-Schwarzl, N.; Pokorny, J.; Hachenthal, N.; Schulz, M.; Helms, V.; Walter, J.; Zimmer, V.; Lammert, F.; Bohle, R.M.; Dandolo, L.; Haybaeck, J.; Kiemer, A.K.; Kessler, S.M. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress, 2017, 1(1), 37-54.
[http://dx.doi.org/10.15698/cst2017.10.105] [PMID: 31225433]
[100]
Shi, Y.; Yang, X.; Xue, X.; Sun, D.; Cai, P.; Song, Q.; Zhang, B.; Qin, L. HANR enhances autophagy-associated sorafenib resistance through miR-29b/ATG9A Axis in hepatocellular carcinoma. OncoTargets Ther., 2020, 13, 2127-2137.
[http://dx.doi.org/10.2147/OTT.S229913] [PMID: 32210579]
[101]
Lin, Z.; Xia, S.; Liang, Y.; Ji, L.; Pan, Y.; Jiang, S.; Wan, Z.; Tao, L.; Chen, J.; Lin, C.; Liang, X.; Xu, J.; Cai, X. LXR activation potentiates sorafenib sensitivity in HCC by activating microRNA-378a transcription. Theranostics, 2020, 10(19), 8834-8850.
[http://dx.doi.org/10.7150/thno.45158] [PMID: 32754282]
[102]
Xu, H.; Zhao, L.; Fang, Q.; Sun, J.; Zhang, S.; Zhan, C.; Liu, S.; Zhang, Y. MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PLoS One, 2014, 9(12), e115565.
[http://dx.doi.org/10.1371/journal.pone.0115565] [PMID: 25531114]
[103]
Xu, Y.; Xia, F.; Ma, L.; Shan, J.; Shen, J.; Yang, Z.; Liu, J.; Cui, Y.; Bian, X.; Bie, P.; Qian, C. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett., 2011, 310(2), 160-169.
[http://dx.doi.org/10.1016/j.canlet.2011.06.027] [PMID: 21802841]
[104]
Liu, L.; Pang, X.; Shang, W.; Xie, H.; Feng, Y.; Feng, G. Long non-coding RNA GAS5 sensitizes renal cell carcinoma to sorafenib via miR-21/SOX5 pathway. Cell Cycle, 2019, 18(3), 257-263.
[http://dx.doi.org/10.1080/15384101.2018.1475826] [PMID: 29895198]
[105]
Zhang, J.; Zhao, X.; Ma, X.; Yuan, Z.; Hu, M. KCNQ1OT1 contributes to sorafenib resistance and programmed death ligand 1 mediated immune escape via sponging miR 506 in hepatocellular carcinoma cells. Int. J. Mol. Med., 2020, 46(5), 1794-1804.
[http://dx.doi.org/10.3892/ijmm.2020.4710] [PMID: 33000204]
[106]
Feng, Y.; Jiang, W.; Zhao, W.; Lu, Z.; Gu, Y.; Dong, Y. miR-124 regulates liver cancer stem cells expansion and sorafenib resistance. Exp. Cell Res., 2020, 394(2), 112162.
[http://dx.doi.org/10.1016/j.yexcr.2020.112162] [PMID: 32640195]
[107]
Jin, W.; Chen, L.; Cai, X.; Zhang, Y.; Zhang, J.; Ma, D.; Cai, X.; Fu, T.; Yu, Z.; Yu, F.; Chen, G. Long non-coding RNA TUC338 is func-tionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol. Rep., 2017, 37(1), 273-280.
[http://dx.doi.org/10.3892/or.2016.5248] [PMID: 27878301]
[108]
Fan, L.; Huang, X.; Chen, J.; Zhang, K.; Gu, Y.; Sun, J.; Cui, S. Long noncoding RNA MALAT1 contributes to sorafenib resistance by targeting miR-140-5p/Aurora-A signaling in hepatocellular carcinoma. Mol. Cancer Ther., 2020, 19(5), 1197-1209.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0203] [PMID: 32220970]
[109]
Xu, W.P.; Liu, J.P.; Feng, J.F.; Zhu, C.P.; Yang, Y.; Zhou, W.P.; Ding, J.; Huang, C.K.; Cui, Y.L.; Ding, C.H.; Zhang, X.; Lu, B.; Xie, W.F. miR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy. Gut, 2020, 69(7), 1309-1321.
[http://dx.doi.org/10.1136/gutjnl-2019-318830] [PMID: 31727683]
[110]
Cheng, Z.; Lei, Z.; Yang, P.; Si, A.; Xiang, D.; Zhou, J.; Hüser, N. Long non-coding RNA THOR promotes liver cancer stem cells expan-sion via β-catenin pathway. Gene, 2019, 684, 95-103.
[http://dx.doi.org/10.1016/j.gene.2018.10.051] [PMID: 30359743]
[111]
Gramantieri, L.; Pollutri, D.; Gagliardi, M.; Giovannini, C.; Quarta, S.; Ferracin, M.; Casadei-Gardini, A.; Callegari, E.; De Carolis, S.; Mari-nelli, S.; Benevento, F.; Vasuri, F.; Ravaioli, M.; Cescon, M.; Piscaglia, F.; Negrini, M.; Bolondi, L.; Fornari, F. MiR-30e-3p influences tu-mor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma. Cancer Res., 2020, 80(8), 1720-1734.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0472] [PMID: 32015093]
[112]
Guo, Z.; Zhang, J.; Fan, L.; Liu, J.; Yu, H.; Li, X.; Sun, G. Long Noncoding RNA (lncRNA) Small Nucleolar RNA host gene 16 (SNHG16) predicts poor prognosis and sorafenib resistance in hepatocellular carcinoma. Med. Sci. Monit., 2019, 25, 2079-2086.
[http://dx.doi.org/10.12659/MSM.915541] [PMID: 30893293]
[113]
Li, D.; Sun, F.; Wang, D.; Wang, T.; Peng, J.; Feng, J.Q.; Li, H.; Wang, C.; Zhou, D.; Luo, H.; Fu, Z.; Zhang, T. Programmed death ligand-1 (PD-L1) regulated by NRF-2/MicroRNA-1 regulatory axis enhances drug resistance and promotes tumorigenic properties in sorafenib-resistant hepatoma cells. Oncol. Res., 2020, 28(5), 467-481.
[http://dx.doi.org/10.3727/096504020X15925659763817] [PMID: 32560747]
[114]
Lu, A.Q.; Lv, B.; Qiu, F.; Wang, X.Y.; Cao, X.H. Upregulation of miR-137 reverses sorafenib resistance and cancer-initiating cell pheno-types by degrading ANT2 in hepatocellular carcinoma. Oncol. Rep., 2017, 37(4), 2071-2078.
[http://dx.doi.org/10.3892/or.2017.5498] [PMID: 28350139]
[115]
Sui, C.; Dong, Z.; Yang, C.; Zhang, M.; Dai, B.; Geng, L.; Lu, J.; Yang, J.; Xu, M. LncRNA FOXD2‐AS1 as a competitive endogenous RNA against miR‐150‐5p reverses resistance to sorafenib in hepatocellular carcinoma. J. Cell. Mol. Med., 2019, 23(9), 6024-6033.
[http://dx.doi.org/10.1111/jcmm.14465] [PMID: 31210410]
[116]
Tang, X.; Zhang, W.; Ye, Y.; Li, H.; Cheng, L.; Zhang, M.; Zheng, S.; Yu, J. LncRNA HOTAIR contributes to sorafenib resistance through suppressing miR-217 in hepatic carcinoma. BioMed Res. Int., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/9515071] [PMID: 32462038]
[117]
Li, X.; Zhou, Y.; Yang, L.; Ma, Y.; Peng, X.; Yang, S.; Li, H.; Liu, J. LncRNA NEAT1 promotes autophagy via regulating miR‐204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J. Cell. Physiol., 2020, 235(4), 3402-3413.
[http://dx.doi.org/10.1002/jcp.29230] [PMID: 31549407]
[118]
Liu, Y.; Chen, L.; Yuan, H.; Guo, S.; Wu, G. LncRNA DANCR promotes sorafenib resistance via activation of IL-6/STAT3 signaling in hepatocellular carcinoma Cells. OncoTargets Ther., 2020, 13, 1145-1157.
[http://dx.doi.org/10.2147/OTT.S229957] [PMID: 32103983]
[119]
Shen, Q.; Jiang, S.; Wu, M.; Zhang, L.; Su, X.; Zhao, D. LncRNA HEIH confers cell sorafenib resistance in hepatocellular carcinoma by regulating miR-98-5p/PI3K/AKT pathway. Cancer Manag. Res., 2020, 12, 6585-6595.
[http://dx.doi.org/10.2147/CMAR.S241383] [PMID: 32821157]
[120]
Dietrich, P.; Koch, A.; Fritz, V.; Hartmann, A.; Bosserhoff, A.K.; Hellerbrand, C. Wild type Kirsten rat sarcoma is a novel microRNA-622-regulated therapeutic target for hepatocellular carcinoma and contributes to sorafenib resistance. Gut, 2018, 67(7), 1328-1341.
[http://dx.doi.org/10.1136/gutjnl-2017-315402] [PMID: 29275358]
[121]
Zhou, Y.; Huang, Y.; Dai, T.; Hua, Z.; Xu, J.; Lin, Y.; Han, L.; Yue, X.; Ho, L.; Lu, J.; Ai, X. LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1. Biomed. Pharmacother., 2021, 133, 111030.
[http://dx.doi.org/10.1016/j.biopha.2020.111030] [PMID: 33378944]
[122]
Lei, Z.; Tang, X.; Si, A.; Yang, P.; Wang, L.; Luo, T.; Guo, G.; Zhang, Q.; Cheng, Z. microRNA-454 promotes liver tumor-initiating cell expansion by regulating SOCS6. Exp. Cell Res., 2020, 390(1), 111955.
[http://dx.doi.org/10.1016/j.yexcr.2020.111955] [PMID: 32165166]
[123]
Li, W.; Dong, X.; He, C.; Tan, G.; Li, Z.; Zhai, B.; Feng, J.; Jiang, X.; Liu, C.; Jiang, H.; Sun, X. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 183.
[http://dx.doi.org/10.1186/s13046-019-1177-0] [PMID: 31053148]
[124]
Zhang, Z.; Tan, X.; Luo, J.; Yao, H.; Si, Z.; Tong, J.S. The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis., 2020, 11(10), 902.
[http://dx.doi.org/10.1038/s41419-020-03123-3] [PMID: 33097691]
[125]
Zhang, P.F.; Wang, F.; Wu, J.; Wu, Y.; Huang, W.; Liu, D.; Huang, X.Y.; Zhang, X.M.; Ke, A.W. LncRNA SNHG3 induces EMT and soraf-enib resistance by modulating the miR‐128/CD151 pathway in hepatocellular carcinoma. J. Cell. Physiol., 2019, 234(3), 2788-2794.
[http://dx.doi.org/10.1002/jcp.27095] [PMID: 30132868]
[126]
Li, W.; Yang, D.; Zhang, Y.; Zhao, S.; Li, D.; Liu, M. Long non coding RNA PLK1S1 was associated with renal cell carcinoma progression by interacting with microRNA 653 and altering C X C chemokine receptor 5 expression. Oncol. Rep., 2020, 44(5), 1985-1996.
[http://dx.doi.org/10.3892/or.2020.7742] [PMID: 33000253]
[127]
Mu, L.; Zhao, H.; Yang, Y.; Song, R. Long noncoding RNA NEAT1 aggravates sorafenib-resistance in non-small cell lung cancer via regu-lating miRNA-335/c-Met. J. BUON, 2021, 26(2), 345-352.
[PMID: 34076978]
[128]
Kollmannsberger, C.; Soulieres, D.; Wong, R.; Scalera, A.; Gaspo, R.; Bjarnason, G. Sunitinib therapy for metastatic renal cell carcinoma: recommendations for management of side effects. Can. Urol. Assoc. J., 2007, 1(S2), S41-S54.
[PMID: 18542784]
[129]
Bachelot, T.; Garcia-Saenz, J.A.; Verma, S.; Gutierrez, M.; Pivot, X.; Kozloff, M.F.; Prady, C.; Huang, X.; Khosravan, R.; Wang, Z.; Cesari, R.; Tassell, V.; Kern, K.A.; Blay, J.Y.; Lluch, A. Sunitinib in combination with trastuzumab for the treatment of advanced breast cancer: activity and safety results from a phase II study. BMC Cancer, 2014, 14(1), 166.
[http://dx.doi.org/10.1186/1471-2407-14-166] [PMID: 24606768]
[130]
Qu, L.; Ding, J.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, Y.; Chen, W.; Liu, F.; Sun, W.; Li, X.F.; Wang, X.; Wang, Y.; Xu, Z.Y.; Gao, L.; Yang, Q.; Xu, B.; Li, Y.M.; Fang, Z.Y.; Xu, Z.P.; Bao, Y.; Wu, D.S.; Miao, X.; Sun, H.Y.; Sun, Y.H.; Wang, H.Y.; Wang, L.H. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell, 2016, 29(5), 653-668.
[http://dx.doi.org/10.1016/j.ccell.2016.03.004] [PMID: 27117758]
[131]
Liu, Y.; Cheng, G.; Huang, Z.; Bao, L.; Liu, J.; Wang, C.; Xiong, Z.; Zhou, L.; Xu, T.; Liu, D.; Yang, H.; Chen, K.; Zhang, X. Long noncod-ing RNA SNHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death Dis., 2020, 11(7), 515.
[http://dx.doi.org/10.1038/s41419-020-2713-8] [PMID: 32641718]
[132]
Yao, D.; Xia, S.; Jin, C.; Zhao, W.; Lan, W.; Liu, Z.; Xiu, Y. Feedback activation of GATA1/miR-885-5p/PLIN3 pathway decreases sunitinib sensitivity in clear cell renal cell carcinoma. Cell Cycle, 2020, 19(17), 2195-2206.
[http://dx.doi.org/10.1080/15384101.2020.1801189] [PMID: 32783497]
[133]
Gong, L.G.; Shi, J.C.; Shang, J.; Hao, J.G.; Du, X. Effect of miR-34a on resistance to sunitinib in breast cancer by regulating the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3), 1151-1157.
[PMID: 30779084]
[134]
Zhai, W.; Sun, Y.; Guo, C.; Hu, G.; Wang, M.; Zheng, J.; Lin, W.; Huang, Q.; Li, G.; Zheng, J.; Chang, C. LncRNA-SARCC suppresses Renal Cell Carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ., 2017, 24(9), 1502-1517.
[http://dx.doi.org/10.1038/cdd.2017.74] [PMID: 28644440]
[135]
Sekino, Y.; Sakamoto, N.; Sentani, K.; Oue, N.; Teishima, J.; Matsubara, A.; Yasui, W. miR-130b promotes sunitinib resistance through regulation of PTEN in renal cell carcinoma. Oncology, 2019, 97(3), 164-172.
[http://dx.doi.org/10.1159/000500605] [PMID: 31195398]
[136]
Wang, Z.; Chang, X.; Zhu, G.; Gao, X.; Chang, L. Depletion of lncRNA MALAT1 inhibited sunitinib resistance through regulating miR-362-3p-mediated G3BP1 in renal cell carcinoma. Cell Cycle, 2020, 19(16), 2054-2062.
[http://dx.doi.org/10.1080/15384101.2020.1792667] [PMID: 32663095]
[137]
Berkers, J.; Govaere, O.; Wolter, P.; Beuselinck, B.; Schöffski, P.; van Kempen, L.C.; Albersen, M.; Van den Oord, J.; Roskams, T.; Swin-nen, J.; Joniau, S.; Van Poppel, H.; Lerut, E. A possible role for microRNA-141 down-regulation in sunitinib resistant metastatic clear cell renal cell carcinoma through induction of epithelial-to-mesenchymal transition and hypoxia resistance. J. Urol., 2013, 189(5), 1930-1938.
[http://dx.doi.org/10.1016/j.juro.2012.11.133] [PMID: 23206420]
[138]
Merhautova, J.; Hezova, R.; Poprach, A.; Kovarikova, A.; Radova, L.; Svoboda, M.; Vyzula, R.; Demlova, R.; Slaby, O. miR-155 and miR-484 are associated with time to progression in metastatic renal cell carcinoma treated with sunitinib. BioMed Res. Int., 2015, 2015, 1-5.
[http://dx.doi.org/10.1155/2015/941980] [PMID: 26064968]
[139]
Osako, Y.; Yoshino, H.; Sakaguchi, T.; Sugita, S.; Yonemori, M.; Nakagawa, M.; Enokida, H. Potential tumor suppressive role of mi-croRNA 99a 3p in sunitinib resistant renal cell carcinoma cells through the regulation of RRM2. Int. J. Oncol., 2019, 54(5), 1759-1770.
[http://dx.doi.org/10.3892/ijo.2019.4736] [PMID: 30816432]
[140]
Chen, Y.; He, J.; Su, C.; Wang, H.; Chen, Y.; Guo, W.; Li, Y.; Ding, G. LINC00461 affects the survival of patients with renal cell carcinoma by acting as a competing endogenous RNA for microRNA 942. Oncol. Rep., 2019, 42(5), 1924-1934.
[http://dx.doi.org/10.3892/or.2019.7311] [PMID: 31545458]
[141]
Kovacova, J.; Juracek, J.; Poprach, A.; Kopecky, J.; Fiala, O.; Svoboda, M.; Fabian, P.; Radova, L.; Brabec, P.; Buchler, T.; Slaby, O. MiR-376b-3p is associated with long-term response to sunitinib in metastatic renal cell carcinoma patients. Cancer Genomics Proteomics, 2019, 16(5), 353-359.
[http://dx.doi.org/10.21873/cgp.20140] [PMID: 31467229]
[142]
Korkmaz, G.; le Sage, C.; Tekirdag, K.A.; Agami, R.; Gozuacik, D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy, 2012, 8(2), 165-176.
[http://dx.doi.org/10.4161/auto.8.2.18351] [PMID: 22248718]
[143]
Puente, J.; Laínez, N.; Dueñas, M.; Méndez-Vidal, M.J.; Esteban, E.; Castellano, D.; Martinez-Fernández, M.; Basterretxea, L.; Juan-Fita, M.J.; Antón, L.; León, L.; Lambea, J.; Pérez-Valderrama, B.; Vázquez, S.; Suarez, C.; del Muro, X.G.; Gallardo, E.; Maroto, J.P.; Sama-niego, M.L.; Suárez-Paniagua, B.; Sanz, J.; Paramio, J.M. Novel potential predictive markers of sunitinib outcomes in long-term responders versus primary refractory patients with metastatic clear-cell renal cell carcinoma. Oncotarget, 2017, 8(18), 30410-30421.
[http://dx.doi.org/10.18632/oncotarget.16494] [PMID: 28423742]
[144]
Goto, Y.; Kurozumi, A.; Nohata, N.; Kojima, S.; Matsushita, R.; Yoshino, H.; Yamazaki, K.; Ishida, Y.; Ichikawa, T.; Naya, Y.; Seki, N. The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget, 2016, 7(37), 59070-59086.
[http://dx.doi.org/10.18632/oncotarget.10887] [PMID: 27487138]
[145]
Lukamowicz-Rajska, M.; Mittmann, C.; Prummer, M.; Zhong, Q.; Bedke, J.; Hennenlotter, J.; Stenzl, A.; Mischo, A.; Bihr, S.; Schmidinger, M.; Vogl, U.; Blume, I.; Karlo, C.; Schraml, P.; Moch, H. MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients. Oncotarget, 2016, 7(48), 78433-78447.
[http://dx.doi.org/10.18632/oncotarget.12618] [PMID: 27738339]
[146]
Shan, L.; Liu, W.; Zhan, Y. Long Non-coding RNA CCAT1 acts as an oncogene and promotes sunitinib resistance in renal cell carcinoma. Front. Oncol., 1985, 2020, 10.
[PMID: 33072561]
[147]
Cunha, P.P.; Costa, P.M.; Morais, C.M.; Lopes, I.R.; Cardoso, A.M.; Cardoso, A.L.; Mano, M.; Jurado, A.S.; Pedroso de Lima, M.C. High-throughput screening uncovers miRNAs enhancing glioblastoma cell susceptibility to tyrosine kinase inhibitors. Hum. Mol. Genet., 2017, 26(22), 4375-4387.
[http://dx.doi.org/10.1093/hmg/ddx323] [PMID: 28973155]
[148]
Shivapurkar, N.; Mikhail, S.; Navarro, R.; Bai, W.; Marshall, J.; Hwang, J.; Pishvaian, M.; Wellstein, A.; He, A.R. Decrease in blood miR-296 predicts chemotherapy resistance and poor clinical outcome in patients receiving systemic chemotherapy for metastatic colon cancer. Int. J. Colorectal Dis., 2013, 28(6), 887.
[http://dx.doi.org/10.1007/s00384-012-1560-1] [PMID: 22892985]
[149]
Liang, P.; Ballou, B.; Lv, X.; Si, W.; Bruchez, M.P.; Huang, W.; Dong, X. Monotherapy and combination therapy using anti‐angiogenic nanoagents to fight cancer. Adv. Mater., 2021, 33(15), 2005155.
[http://dx.doi.org/10.1002/adma.202005155] [PMID: 33684242]
[150]
Mills, J.; Capece, M.; Cocucci, E.; Tessari, A.; Palmieri, D. Cancer-derived extracellular vesicle-associated micrornas in intercellular com-munication: one cell’s trash is another cell’s treasure. Int. J. Mol. Sci., 2019, 20(24), 6109.
[http://dx.doi.org/10.3390/ijms20246109] [PMID: 31817101]
[151]
Jiang, X.; Hu, S.; Liu, Q.; Qian, C.; Liu, Z.; Luo, D. Exosomal microRNA remodels the tumor microenvironment. PeerJ, 2017, 5, e4196.
[http://dx.doi.org/10.7717/peerj.4196] [PMID: 29302403]
[152]
Annese, T.; Tamma, R.; De Giorgis, M.; Ribatti, D. microRNAs biogenesis, functions and role in tumor angiogenesis. Front. Oncol., 2020, 10, 581007.
[http://dx.doi.org/10.3389/fonc.2020.581007] [PMID: 33330058]
[153]
Teppan, J.; Barth, D.A.; Prinz, F.; Jonas, K.; Pichler, M.; Klec, C. Involvement of Long Non-Coding RNAs (lncRNAs) in tumor angiogene-sis. Noncoding RNA, 2020, 6(4), 42.
[http://dx.doi.org/10.3390/ncrna6040042] [PMID: 32992718]
[154]
Li, D.; Zhang, Z.; Xia, C.; Niu, C.; Zhou, W. Non-coding RNAs in glioma microenvironment and angiogenesis. Front. Mol. Neurosci., 2021, 14, 763610.
[http://dx.doi.org/10.3389/fnmol.2021.763610] [PMID: 34803608]
[155]
Gondi, C.S.; Lakka, S.S.; Dinh, D.H.; Olivero, W.C.; Gujrati, M.; Rao, J.S. Downregulation of uPA, uPAR and MMP-9 using small, interfer-ing, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol., 2004, 1(2), 165-176.
[http://dx.doi.org/10.1017/S1740925X04000237] [PMID: 16804563]
[156]
Katsushima, K.; Natsume, A.; Ohka, F.; Shinjo, K.; Hatanaka, A.; Ichimura, N.; Sato, S.; Takahashi, S.; Kimura, H.; Totoki, Y.; Shibata, T.; Naito, M.; Kim, H.J.; Miyata, K.; Kataoka, K.; Kondo, Y. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat. Commun., 2016, 7(1), 13616.
[http://dx.doi.org/10.1038/ncomms13616] [PMID: 27922002]
[157]
Stein, C.A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther., 2017, 25(5), 1069-1075.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.023] [PMID: 28366767]
[158]
Khan, P.; Siddiqui, J.A.; Lakshmanan, I.; Ganti, A.K.; Salgia, R.; Jain, M.; Batra, S.K.; Nasser, M.W. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol. Cancer, 2021, 20(1), 54.
[http://dx.doi.org/10.1186/s12943-021-01338-2] [PMID: 33740988]
[159]
Feng, R.; Patil, S.; Zhao, X.; Miao, Z.; Qian, A. RNA therapeutics - research and clinical advancements. Front. Mol. Biosci., 2021, 8, 710738.
[http://dx.doi.org/10.3389/fmolb.2021.710738] [PMID: 34631795]
[160]
Le, B.T.; Raguraman, P.; Kosbar, T.R.; Fletcher, S.; Wilton, S.D.; Veedu, R.N. Antisense oligonucleotides targeting angiogenic factors as potential cancer therapeutics. Mol. Ther. Nucleic Acids, 2019, 14, 142-157.
[http://dx.doi.org/10.1016/j.omtn.2018.11.007] [PMID: 30594893]
[161]
Yi, D.; Xiang, W.; Zhang, Q.; Cen, Y.; Su, Q.; Zhang, F.; Lu, Y.; Zhao, H.; Fu, P. Human glioblastoma-derived mesenchymal stem cell to pericytes transition and angiogenic capacity in glioblastoma microenvironment. Cell. Physiol. Biochem., 2018, 46(1), 279-290.
[http://dx.doi.org/10.1159/000488429] [PMID: 29590646]
[162]
Liu, L.; Li, X.; Shi, Y.; Chen, H. The long noncoding RNA FTX promotes a malignant phenotype in bone marrow mesenchymal stem cells via the miR-186/c-Met axis. Biomed. Pharmacother., 2020, 131, 110666.
[http://dx.doi.org/10.1016/j.biopha.2020.110666] [PMID: 32853911]
[163]
Motamedi, M.; Hashemzadeh, C. M.; Ghasemi, S.; Mokarian, F. Plasma level of miR-21 And miR-451 in primary and recurrent breast cancer patients. Breast Cancer, 2019, 11, 293-301.
[http://dx.doi.org/10.2147/BCTT.S224333] [PMID: 31749630]
[164]
Alavian, F.; Ghasemi, S. The effectiveness of nanoparticles on gene therapy for glioblastoma cells apoptosis: a systematic review. Curr. Gene Ther., 2021, 21(3), 230-245.
[http://dx.doi.org/10.2174/1566523221666210224110454] [PMID: 33655831]
[165]
Le, P.; Romano, G.; Nana-Sinkam, P.; Acunzo, M. Non-Coding RNAs in Cancer diagnosis and therapy: focus on lung cancer. Cancers, 2021, 13(6), 1372.
[http://dx.doi.org/10.3390/cancers13061372] [PMID: 33803619]
[166]
Hilmi, C.; Guyot, M.; Pagès, G. VEGF spliced variants: possible role of anti-angiogenesis therapy. J. Nucleic Acids, 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/162692] [PMID: 22013509]
[167]
Schultheis, A.M.; Lurje, G.; Rhodes, K.E.; Zhang, W.; Yang, D.; Garcia, A.A.; Morgan, R.; Gandara, D.; Scudder, S.; Oza, A.; Hirte, H.; Fleming, G.; Roman, L.; Lenz, H.J. Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab. Clin. Cancer Res., 2008, 14(22), 7554-7563.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0351] [PMID: 19010874]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy