Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Editorial

In silico Methods for Drug Design

Author(s): Omar Deeb* and Jia Zhou

Volume 23, Issue 3, 2023

Published on: 06 December, 2022

Page: [155 - 157] Pages: 3

DOI: 10.2174/1568026623666221206093350

Next »
[1]
Makrynitsa, G.I.; Lykouras, M.; Spyroulias, G.A.; Matsoukas, M-T. In silico Drug Design. In: eLS; , 2018; pp. 1-7.
[http://dx.doi.org/10.1002/9780470015902.a0028112]
[2]
Stumpfe, D.; Bajorath, J. Similarity searching. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(2), 260-282.
[http://dx.doi.org/10.1002/wcms.23]
[3]
Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20.
[http://dx.doi.org/10.1186/s13321-015-0069-3] [PMID: 26052348]
[4]
Wolber, G.; Seidel, T.; Bendix, F.; Langer, T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today, 2008, 13(1-2), 23-29.
[http://dx.doi.org/10.1016/j.drudis.2007.09.007] [PMID: 18190860]
[5]
Lee, C.H.; Huang, H.C.; Juan, H.F. Reviewing ligand-based rational drug design: The search for an ATP synthase inhibitor. Int. J. Mol. Sci., 2011, 12(8), 5304-5318.
[http://dx.doi.org/10.3390/ijms12085304] [PMID: 21954360]
[6]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[7]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[http://dx.doi.org/10.1002/jcc.23905] [PMID: 25914306]
[8]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[9]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[PMID: 26604800]
[10]
Kumar, A.; Voet, A.; Zhang, K.Y.J. Fragment based drug design: From experimental to computational approaches. Curr. Med. Chem., 2012, 19(30), 5128-5147.
[http://dx.doi.org/10.2174/092986712803530467] [PMID: 22934764]
[11]
Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: The deconstruction–reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
[12]
Chen, H.; Zhou, X.; Gao, Y.; Chen, H.; & Zhou, J. (2017). Fragment-based drug design: Strategic advances and lessons learned. In Drug Discovery Technologies (Vol. 2-8, pp. 212-232). Elsevier Inc.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12319-4]
[13]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[14]
Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1), W442-W448.
[http://dx.doi.org/10.1093/nar/gkw287] [PMID: 27095195]

© 2024 Bentham Science Publishers | Privacy Policy