Review Article

动脉粥样硬化:从线粒体膜电位的破坏到潜在的干预策略

卷 30, 期 38, 2023

发表于: 02 February, 2023

页: [4355 - 4373] 页: 19

弟呕挨: 10.2174/0929867330666221201120405

价格: $65

摘要

动脉粥样硬化(AS)是心血管疾病(CVD)的主要因素,其特征是动脉壁的进行性和慢性炎症过程。最近的研究表明,线粒体膜电位(deltapsi (m))的破坏直接影响电子传递链(ETC),从而导致氧化应激,其改变导致NLRP3炎性体的凋亡和活化,从而促进AS的发展。本文综述了deltapsi (m)如何通过介导氧化应激、细胞凋亡和NLRP3炎性体激活来促进AS的发展,以及通过靶向deltapsi (m)诱导的氧化应激、细胞凋亡和NLRP3炎性体激活来干预AS的潜在策略。

关键词: 动脉粥样硬化(AS)、线粒体膜电位(deltapsi (m))、治疗、活性氧(ROS)、细胞凋亡、NLRP3炎性体。

[1]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S.; B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Fredman, G.; MacNamara, K.C. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc. Res., 2021, 117(13), cvab309.
[http://dx.doi.org/10.1093/cvr/cvab309] [PMID: 34609505]
[3]
Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov., 2021, 20(8), 589-610.
[http://dx.doi.org/10.1038/s41573-021-00198-1] [PMID: 33976384]
[4]
Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res., 2014, 114(12), 1852-1866.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302721] [PMID: 24902970]
[5]
Zorova, L.D.; Demchenko, E.A.; Korshunova, G.A.; Tashlitsky, V.N.; Zorov, S.D.; Andrianova, N.V.; Popkov, V.A.; Babenko, V.A.; Pevzner, I.B.; Silachev, D.N.; Plotnikov, E.Y.; Zorov, D.B. Is the mitochondrial membrane potential (∆Ψ) correctly assessed? intracellular and intramitochondrial modifications of the ∆Ψ Probe, Rhodamine 123. Int. J. Mol. Sci., 2022, 23(1), 482.
[http://dx.doi.org/10.3390/ijms23010482] [PMID: 35008907]
[6]
Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc., 2019, 9(1), e3128.
[http://dx.doi.org/10.21769/BioProtoc.3128] [PMID: 30687773]
[7]
Stamerra, C.A.; Di Giosia, P.; Giorgini, P.; Ferri, C.; Sukhorukov, V.N.; Sahebkar, A. Mitochondrial dysfunction and cardiovascular disease: Pathophysiology and emerging therapies. Oxid. Med. Cell. Longev., 2022, 2022, 9530007.
[http://dx.doi.org/10.1155/2022/9530007] [PMID: 35958017]
[8]
Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Apostolopoulos, E.J.; Melita, H.; Katsiki, N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med. Res. Rev., 2021, 41(1), 275-313.
[http://dx.doi.org/10.1002/med.21732] [PMID: 32959403]
[9]
Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med., 2018, 50(2), 121-127.
[http://dx.doi.org/10.1080/07853890.2017.1417631] [PMID: 29237304]
[10]
Lee, J.H.; Park, A.; Oh, K.J.; Lee, S.C.; Kim, W.K.; Bae, K.H. The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. Int. J. Mol. Sci., 2019, 20(19), 4924.
[http://dx.doi.org/10.3390/ijms20194924] [PMID: 31590292]
[11]
Prasun, P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165838.
[http://dx.doi.org/10.1016/j.bbadis.2020.165838] [PMID: 32428560]
[12]
Johnson, J.; Mercado-Ayon, E.; Mercado-Ayon, Y.; Dong, Y.N.; Halawani, S.; Ngaba, L.; Lynch, D.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys., 2021, 702, 108698.
[http://dx.doi.org/10.1016/j.abb.2020.108698] [PMID: 33259796]
[13]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[14]
Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(9), 4850.
[http://dx.doi.org/10.3390/ijms22094850] [PMID: 34063708]
[15]
Momcilovic, M.; Jones, A.; Bailey, S.T.; Waldmann, C.M.; Li, R.; Lee, J.T.; Abdelhady, G.; Gomez, A.; Holloway, T.; Schmid, E.; Stout, D.; Fishbein, M.C.; Stiles, L.; Dabir, D.V.; Dubinett, S.M.; Christofk, H.; Shirihai, O.; Koehler, C.M.; Sadeghi, S.; Shackelford, D.B. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature, 2019, 575(7782), 380-384.
[http://dx.doi.org/10.1038/s41586-019-1715-0] [PMID: 31666695]
[16]
Luo, Y.; Ma, J.; Lu, W. The significance of mitochondrial dysfunction in cancer. Int. J. Mol. Sci., 2020, 21(16), 5598.
[http://dx.doi.org/10.3390/ijms21165598] [PMID: 32764295]
[17]
Chiu, H.Y.; Tay, E.X.Y.; Ong, D.S.T.; Taneja, R. Mitochondrial dysfunction at the center of cancer therapy. Antioxid. Redox Signal., 2020, 32(5), 309-330.
[http://dx.doi.org/10.1089/ars.2019.7898] [PMID: 31578870]
[18]
Ramzan, R.; Michels, S.; Weber, P.; Rhiel, A.; Irqsusi, M.; Rastan, A.J.; Culmsee, C.; Vogt, S. Protamine sulfate induces mitochondrial hyperpolarization and a subsequent increase in reactive oxygen species production. J. Pharmacol. Exp. Ther., 2019, 370(2), 308-317.
[http://dx.doi.org/10.1124/jpet.119.257725] [PMID: 31160469]
[19]
Pereira, A.G.; Jaramillo, M.L.; Remor, A.P.; Latini, A.; Davico, C.E.; da Silva, M.L.; Müller, Y.M.R.; Ammar, D.; Nazari, E.M. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain. Chemosphere, 2018, 209, 353-362.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.075] [PMID: 29935464]
[20]
Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging, 2019, 11(8), 2217-2240.
[http://dx.doi.org/10.18632/aging.101910] [PMID: 30988232]
[21]
Cong, L.; Lei, M.Y.; Liu, Z.Q.; Liu, Z.F.; Ma, Z.; Liu, K.; Li, J.; Deng, Y.; Liu, W.; Xu, B. Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food Chem. Toxicol., 2021, 153, 112283.
[http://dx.doi.org/10.1016/j.fct.2021.112283] [PMID: 34029668]
[22]
Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules, 2021, 26(1), 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[23]
Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[24]
Han, Y.; Jo, H.; Cho, J.; Dhanasekaran, D.; Song, Y. Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer. Int. J. Mol. Sci., 2019, 20(4), 925.
[http://dx.doi.org/10.3390/ijms20040925] [PMID: 30791624]
[25]
Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int. J. Mol. Sci., 2021, 22(18), 10152.
[http://dx.doi.org/10.3390/ijms221810152] [PMID: 34576315]
[26]
Cheng, C.K.; Luo, J.Y.; Lau, C.W.; Chen, Z.Y.; Tian, X.Y.; Huang, Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br. J. Pharmacol., 2020, 177(6), 1258-1277.
[http://dx.doi.org/10.1111/bph.14801] [PMID: 31347157]
[27]
Ragonese, F.; Monarca, L.; De Luca, A.; Mancinelli, L.; Mariani, M.; Corbucci, C.; Gerli, S.; Iannitti, R.G.; Leonardi, L.; Fioretti, B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil. Steril., 2021, 115(4), 1063-1073.
[http://dx.doi.org/10.1016/j.fertnstert.2020.08.016] [PMID: 33487442]
[28]
Zhong, Z.; Ramshesh, V.K.; Rehman, H.; Liu, Q.; Theruvath, T.P.; Krishnasamy, Y.; Lemasters, J.J. Acute ethanol causes hepatic mitochondrial depolarization in mice: Role of ethanol metabolism. PLoS One, 2014, 9(3), e91308.
[http://dx.doi.org/10.1371/journal.pone.0091308] [PMID: 24618581]
[29]
Zhang, X.; Lee, M.D.; Wilson, C.; McCarron, J.G. Hydrogen peroxide depolarizes mitochondria and inhibits IP3-evoked Ca2+ release in the endothelium of intact arteries. Cell Calcium, 2019, 84, 102108.
[http://dx.doi.org/10.1016/j.ceca.2019.102108] [PMID: 31715384]
[30]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[31]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[32]
Suarna, C.; Dean, R.T.; May, J.; Stocker, R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler. Thromb. Vasc. Biol., 1995, 15(10), 1616-1624.
[http://dx.doi.org/10.1161/01.ATV.15.10.1616] [PMID: 7583535]
[33]
Gniwotta, C.; Morrow, J.D.; Roberts, L.J., II; Kühn, H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 3236-3241.
[http://dx.doi.org/10.1161/01.ATV.17.11.3236] [PMID: 9409317]
[34]
Luchtefeld, M.; Grote, K.; Grothusen, C.; Bley, S.; Bandlow, N.; Selle, T.; Strüber, M.; Haverich, A.; Bavendiek, U.; Drexler, H.; Schieffer, B. Angiotensin II induces MMP-2 in a p47phox-dependent manner. Biochem. Biophys. Res. Commun., 2005, 328(1), 183-188.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.152] [PMID: 15670768]
[35]
Donnini, S.; Monti, M.; Roncone, R.; Morbidelli, L.; Rocchigiani, M.; Oliviero, S.; Casella, L.; Giachetti, A.; Schulz, R.; Ziche, M. Peroxynitrite inactivates human-tissue inhibitor of metalloproteinase-4. FEBS Lett., 2008, 582(7), 1135-1140.
[http://dx.doi.org/10.1016/j.febslet.2008.02.080] [PMID: 18336787]
[36]
Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell. Longev., 2020, 2020, 5245308.
[http://dx.doi.org/10.1155/2020/5245308] [PMID: 33014272]
[37]
Aon, M.A.; Cortassa, S.; O’Rourke, B. Redox-optimized ROS balance: A unifying hypothesis. Biochim. Biophys. Acta Bioenerg., 2010, 1797(6-7), 865-877.
[http://dx.doi.org/10.1016/j.bbabio.2010.02.016] [PMID: 20175987]
[38]
Brand, M.D.; Felber, S.M. Membrane potential of mitochondria in intact lymphocytes during early mitogenic stimulation. Biochem. J., 1984, 217(2), 453-459.
[http://dx.doi.org/10.1042/bj2170453] [PMID: 6696741]
[39]
Zhang, H.; Huang, H.M.; Carson, R.C.; Mahmood, J.; Thomas, H.M.; Gibson, G.E. Assessment of membrane potentials of mitochondrial populations in living cells. Anal. Biochem., 2001, 298(2), 170-180.
[http://dx.doi.org/10.1006/abio.2001.5348] [PMID: 11757503]
[40]
Backus, M.; Piwnica-Worms, D.; Hockett, D.; Kronauge, J.; Lieberman, M.; Ingram, P.; LeFurgey, A. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am. J. Physiol. Cell Physiol., 1993, 265(1), C178-C187.
[http://dx.doi.org/10.1152/ajpcell.1993.265.1.C178] [PMID: 8338127]
[41]
Wan, B.; Doumen, C.; Duszynski, J.; Salama, G.; Vary, T.C.; LaNoue, K.F. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am. J. Physiol., 1993, 265(2 Pt 2), H453-H460.
[PMID: 8368348]
[42]
Suski, J.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol., 2018, 1782, 357-381.
[http://dx.doi.org/10.1007/978-1-4939-7831-1_22] [PMID: 29851012]
[43]
Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.K.; Orekhov, A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology, 2020, 9(3), 60.
[http://dx.doi.org/10.3390/biology9030060] [PMID: 32245238]
[44]
Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules, 2019, 9(8), 301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[45]
Bonetta, R. Potential therapeutic applications of MnSODs and SOD-mimetics. Chemistry, 2018, 24(20), 5032-5041.
[http://dx.doi.org/10.1002/chem.201704561] [PMID: 29131419]
[46]
Batinić-Haberle, I.; Rebouças, J.S.; Spasojević, I. Superoxide dismutase mimics: Chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal., 2010, 13(6), 877-918.
[http://dx.doi.org/10.1089/ars.2009.2876] [PMID: 20095865]
[47]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[48]
Ribeiro, T.P.; Fonseca, F.L.; de Carvalho, M.D.C.; Godinho, R.M.C.; de Almeida, F.P.; Saint’Pierre, T.D.; Rey, N.A.; Fernandes, C.; Horn, A., Jr.; Pereira, M.D. Metal-based superoxide dismutase and catalase mimics reduce oxidative stress biomarkers and extend life span of Saccharomyces cerevisiae. Biochem. J., 2017, 474(2), 301-315.
[http://dx.doi.org/10.1042/BCJ20160480] [PMID: 28062841]
[49]
Mathieu, E.; Bernard, A.S.; Delsuc, N.; Quévrain, E.; Gazzah, G.; Lai, B.; Chain, F.; Langella, P.; Bachelet, M.; Masliah, J.; Seksik, P.; Policar, C. A cell-penetrant Manganese Superoxide Dismutase (MnSOD) mimic is able to complement MnSOD and exerts an antiinflammatory effect on cellular and animal models of inflammatory bowel diseases. Inorg. Chem., 2017, 56(5), 2545-2555.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02695] [PMID: 28198622]
[50]
Mathieu, E.; Bernard, A.S.; Ching, H.Y.V.; Somogyi, A.; Medjoubi, K.; Fores, J.R.; Bertrand, H.C.; Vincent, A.; Trépout, S.; Guerquin-Kern, J.L.; Scheitler, A.; Ivanović-Burmazović, I.; Seksik, P.; Delsuc, N.; Policar, C. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans., 2020, 49(7), 2323-2330.
[http://dx.doi.org/10.1039/C9DT04619D] [PMID: 32022053]
[51]
Wagner, A.H.; Kautz, O.; Fricke, K.; Zerr-Fouineau, M.; Demicheva, E.; Güldenzoph, B.; Bermejo, J.L.; Korff, T.; Hecker, M. Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2009, 29(11), 1894-1901.
[http://dx.doi.org/10.1161/ATVBAHA.109.194738] [PMID: 19729606]
[52]
Lewis, P.; Stefanovic, N.; Pete, J.; Calkin, A.C.; Giunti, S.; Thallas-Bonke, V.; Jandeleit-Dahm, K.A.; Allen, T.J.; Kola, I.; Cooper, M.E.; de Haan, J.B. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 2007, 115(16), 2178-2187.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.664250] [PMID: 17420349]
[53]
Torzewski, M.; Ochsenhirt, V.; Kleschyov, A.L.; Oelze, M.; Daiber, A.; Li, H.; Rossmann, H.; Tsimikas, S.; Reifenberg, K.; Cheng, F.; Lehr, H.A.; Blankenberg, S.; Förstermann, U.; Münzel, T.; Lackner, K.J. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 850-857.
[http://dx.doi.org/10.1161/01.ATV.0000258809.47285.07] [PMID: 17255533]
[54]
Day, B.J. Catalase and glutathione peroxidase mimics. Biochem. Pharmacol., 2009, 77(3), 285-296.
[http://dx.doi.org/10.1016/j.bcp.2008.09.029] [PMID: 18948086]
[55]
Ahwach, S.M.; Thomas, M.; Onstead-Haas, L.; Mooradian, A.D.; Haas, M.J. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells. Life Sci., 2015, 134, 9-15.
[http://dx.doi.org/10.1016/j.lfs.2015.05.004] [PMID: 26006036]
[56]
Ali, N.; Yoshizumi, M.; Tsuchiya, K.; Kyaw, M.; Fujita, Y.; Izawa, Y.; Abe, S.; Kanematsu, Y.; Kagami, S.; Tamaki, T. Ebselen inhibits p38 mitogen-activated protein kinase-mediated endothelial cell death by hydrogen peroxide. Eur. J. Pharmacol., 2004, 485(1-3), 127-135.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.079] [PMID: 14757132]
[57]
Brodsky, S.V.; Gealekman, O.; Chen, J.; Zhang, F.; Togashi, N.; Crabtree, M.; Gross, S.S.; Nasjletti, A.; Goligorsky, M.S. Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen. Circ. Res., 2004, 94(3), 377-384.
[http://dx.doi.org/10.1161/01.RES.0000111802.09964.EF] [PMID: 14670841]
[58]
Sharma, A.; Yuen, D.; Huet, O.; Pickering, R.; Stefanovic, N.; Bernatchez, P.; de Haan, J.B. Lack of glutathione peroxidase-1 facilitates a pro-inflammatory and activated vascular endothelium. Vascul. Pharmacol., 2016, 79, 32-42.
[http://dx.doi.org/10.1016/j.vph.2015.11.001] [PMID: 26569096]
[59]
Cheng, F.; Torzewski, M.; Degreif, A.; Rossmann, H.; Canisius, A.; Lackner, K.J. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: Implications for atherogenesis. PLoS One, 2013, 8(8), e72063.
[http://dx.doi.org/10.1371/journal.pone.0072063] [PMID: 23991041]
[60]
Tan, S.M.; Sharma, A.; Yuen, D.Y.C.; Stefanovic, N.; Krippner, G.; Mugesh, G.; Chai, Z.; de Haan, J.B. The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One, 2013, 8(7), e69193.
[http://dx.doi.org/10.1371/journal.pone.0069193] [PMID: 23874911]
[61]
Chew, P.; Yuen, D.Y.C.; Koh, P.; Stefanovic, N.; Febbraio, M.A.; Kola, I.; Cooper, M.E.; de Haan, J.B. Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6), 823-830.
[http://dx.doi.org/10.1161/ATVBAHA.109.186619] [PMID: 19325139]
[62]
Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants, 2021, 10(6), 890.
[http://dx.doi.org/10.3390/antiox10060890] [PMID: 34205998]
[63]
Peng, R.; Luo, M.; Tian, R.; Lu, N. Dietary nitrate attenuated endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: A critical role for NADPH oxidase. Arch. Biochem. Biophys., 2020, 689, 108453.
[http://dx.doi.org/10.1016/j.abb.2020.108453] [PMID: 32524996]
[64]
Yu, W.; Xiao, L.; Que, Y.; Li, S.; Chen, L.; Hu, P.; Xiong, R.; Seta, F.; Chen, H.; Tong, X. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165912.
[http://dx.doi.org/10.1016/j.bbadis.2020.165912] [PMID: 32777344]
[65]
Pejenaute, Á.; Cortés, A.; Marqués, J.; Montero, L.; Beloqui, Ó.; Fortuño, A.; Martí, A.; Orbe, J.; Zalba, G. NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. Int. J. Mol. Sci., 2020, 21(4), 1434.
[http://dx.doi.org/10.3390/ijms21041434] [PMID: 32093292]
[66]
Teixeira, G.; Szyndralewiez, C.; Molango, S.; Carnesecchi, S.; Heitz, F.; Wiesel, P.; Wood, J.M. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br. J. Pharmacol., 2017, 174(12), 1647-1669.
[http://dx.doi.org/10.1111/bph.13532] [PMID: 27273790]
[67]
Vendrov, A.E.; Madamanchi, N.R.; Niu, X.L.; Molnar, K.C.; Runge, M.; Szyndralewiez, C.; Page, P.; Runge, M.S. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem., 2010, 285(34), 26545-26557.
[http://dx.doi.org/10.1074/jbc.M110.143917] [PMID: 20558727]
[68]
Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C—sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 2021, 13(2), 615.
[http://dx.doi.org/10.3390/nu13020615] [PMID: 33668681]
[69]
Ray, T.; Maity, P.C.; Banerjee, S.; Deb, S.; Dasgupta, A.K.; Sarkar, S.; Sil, A.K. Vitamin C prevents cigarette smoke induced atherosclerosis in guinea pig model. J. Atheroscler. Thromb., 2010, 17(8), 817-827.
[http://dx.doi.org/10.5551/jat.2881] [PMID: 20467194]
[70]
Langlois, M.; Duprez, D.; Delanghe, J.; De Buyzere, M.; Clement, D.L. Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation, 2001, 103(14), 1863-1868.
[http://dx.doi.org/10.1161/01.CIR.103.14.1863] [PMID: 11294804]
[71]
Woo, K.S.; Yip, T.W.C.; Chook, P.; Koon, K.V.; Leong, H.C.; Feng, X.H.; Lee, A.P.W.; Kwok, T.C.Y. Vitamins B-12 and C supplementation improves arterial reactivity and structure in passive smokers: Implication in prevention of smoking-related atherosclerosis. J. Nutr. Health Aging, 2021, 25(2), 248-254.
[http://dx.doi.org/10.1007/s12603-020-1529-7] [PMID: 33491041]
[72]
Huang, H.Y.; Appel, L.J.; Croft, K.D.; Miller, E.R., III; Mori, T.A.; Puddey, I.B. Effects of vitamin C and vitamin E on in vivo lipid peroxidation: Results of a randomized controlled trial. Am. J. Clin. Nutr., 2002, 76(3), 549-555.
[http://dx.doi.org/10.1093/ajcn/76.3.549] [PMID: 12197998]
[73]
Salonen, J.T.; Nyyssönen, K.; Salonen, R.; Lakka, H.M.; Kaikkonen, J.; Porkkala-Sarataho, E.; Voutilainen, S.; Lakka, T.A.; Rissanen, T.; Leskinen, L.; Tuomainen, T.P.; Valkonen, V.P.; Ristonmaa, U.; Poulsen, H.E. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: A randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J. Intern. Med., 2000, 248(5), 377-386.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00752.x] [PMID: 11123502]
[74]
Traber, M.G. Vitamin E. Adv. Nutr., 2021, 12(3), 1047-1048.
[http://dx.doi.org/10.1093/advances/nmab019] [PMID: 33684201]
[75]
Violi, F.; Nocella, C.; Loffredo, L.; Carnevale, R.; Pignatelli, P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic. Biol. Med., 2022, 178, 26-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.11.027] [PMID: 34838937]
[76]
Corina, A.; Rangel-Zúñiga, O.A.; Jiménez-Lucena, R.; Alcalá-Díaz, J.F.; Quintana-Navarro, G.; Yubero-Serrano, E.M.; López-Moreno, J.; Delgado-Lista, J.; Tinahones, F.; Ordovás, J.M.; López-Miranda, J.; Pérez-Martínez, P. Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: The cordioprev study. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(6), 770-777.
[http://dx.doi.org/10.1093/gerona/gly195] [PMID: 30165472]
[77]
Chai, S.C.; Foley, E.M.; Arjmandi, B.H. Anti-atherogenic properties of vitamin E, aspirin, and their combination. PLoS One, 2018, 13(10), e0206315.
[http://dx.doi.org/10.1371/journal.pone.0206315] [PMID: 30359442]
[78]
Rapola, J.M.; Virtamo, J.; Ripatti, S.; Huttunen, J.K.; Albanes, D.; Taylor, P.R.; Heinonen, O.P. Randomised trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet, 1997, 349(9067), 1715-1720.
[http://dx.doi.org/10.1016/S0140-6736(97)01234-8] [PMID: 9193380]
[79]
Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet, 1999, 354(9177), 447-455.
[http://dx.doi.org/10.1016/S0140-6736(99)07072-5] [PMID: 10465168]
[80]
Yusuf, S.; Dagenais, G.; Pogue, J.; Bosch, J.; Sleight, P. Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med., 2000, 342(3), 154-160.
[http://dx.doi.org/10.1056/NEJM200001203420302] [PMID: 10639540]
[81]
Huang, J.; Weinstein, S.J.; Yu, K.; Männistö, S.; Albanes, D. Serum beta carotene and overall and cause-specific mortality. Circ. Res., 2018, 123(12), 1339-1349.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313409] [PMID: 30566060]
[82]
Karppi, J.; Laukkanen, J.A.; Mäkikallio, T.H.; Ronkainen, K.; Kurl, S. Low β-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr. Metab. Cardiovasc. Dis., 2012, 22(10), 921-928.
[http://dx.doi.org/10.1016/j.numecd.2012.01.008] [PMID: 22494809]
[83]
D’Odorico, A.; Martines, D.; Kiechl, S.; Egger, G.; Oberhollenzer, F.; Bonvicini, P.; Sturniolo, G.C.; Naccarato, R.; Willeit, J. High plasma levels of α- and β-carotene are associated with a lower risk of atherosclerosis. Atherosclerosis, 2000, 153(1), 231-239.
[http://dx.doi.org/10.1016/S0021-9150(00)00403-2] [PMID: 11058719]
[84]
Muzáková, V.; Kand’ár, R.; Meloun, M.; Skalický, J.; Královec, K.; Záková, P.; Vojtísek, P. Inverse correlation between plasma beta-carotene and interleukin-6 in patients with advanced coronary artery disease. Int. J. Vitam. Nutr. Res., 2010, 80(6), 369-377.
[http://dx.doi.org/10.1024/0300-9831/a000024] [PMID: 21792817]
[85]
Harari, A.; Melnikov, N.; Kandel Kfir, M.; Kamari, Y.; Mahler, L.; Ben-Amotz, A.; Harats, D.; Cohen, H.; Shaish, A. Dietary β-carotene rescues vitamin A deficiency and inhibits atherogenesis in apolipoprotein E-deficient mice. Nutrients, 2020, 12(6), 1625.
[http://dx.doi.org/10.3390/nu12061625] [PMID: 32492795]
[86]
Zhou, F.; Wu, X.; Pinos, I.; Abraham, B.M.; Barrett, T.J.; von Lintig, J.; Fisher, E.A.; Amengual, J. β-Carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice. J. Lipid Res., 2020, 61(11), 1491-1503.
[http://dx.doi.org/10.1194/jlr.RA120001066] [PMID: 32963037]
[87]
Amengual, J.; Coronel, J.; Marques, C.; Aradillas-García, C.; Morales, J.M.V.; Andrade, F.C.D.; Erdman, J.W., Jr; Teran-Garcia, M. β-carotene oxygenase 1 activity modulates circulating cholesterol concentrations in mice and humans. J. Nutr., 2020, 150(8), 2023-2030.
[http://dx.doi.org/10.1093/jn/nxaa143] [PMID: 32433733]
[88]
Shan, R.; Liu, N.; Yan, Y.; Liu, B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol. Res., 2021, 166, 105169.
[http://dx.doi.org/10.1016/j.phrs.2020.105169] [PMID: 33053445]
[89]
Li, B.; Luo, Y.R.; Zhang, Q.; Fu, S.H.; Chen, Y.D.; Tian, J.W.; Guo, Y. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, attenuates apoptosis of vascular smooth muscle cells and reduces atherosclerosis in diabetic apolipoprotein E–deficient mice. Vascul. Pharmacol., 2021, 140, 106854.
[http://dx.doi.org/10.1016/j.vph.2021.106854] [PMID: 33781961]
[90]
Grootaert, M.O.J.; Moulis, M.; Roth, L.; Martinet, W.; Vindis, C.; Bennett, M.R.; De Meyer, G.R.Y. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 622-634.
[http://dx.doi.org/10.1093/cvr/cvy007] [PMID: 29360955]
[91]
Babaev, V.R.; Ding, L.; Zhang, Y.; May, J.M.; Lin, P.C.; Fazio, S.; Linton, M.F. Macrophage IKKα deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2016, 36(4), 598-607.
[http://dx.doi.org/10.1161/ATVBAHA.115.306931] [PMID: 26848161]
[92]
Liu, J.; Thewke, D.P.; Su, Y.R.; Linton, M.F.; Fazio, S.; Sinensky, M.S. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 174-179.
[http://dx.doi.org/10.1161/01.ATV.0000148548.47755.22] [PMID: 15499039]
[93]
Seimon, T.; Tabas, I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res., 2009, 50, S382-S387.
[http://dx.doi.org/10.1194/jlr.R800032-JLR200] [PMID: 18953058]
[94]
Gautier, E.L.; Huby, T.; Witztum, J.L.; Ouzilleau, B.; Miller, E.R.; Saint-Charles, F.; Aucouturier, P.; Chapman, M.J.; Lesnik, P. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation, 2009, 119(13), 1795-1804.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.806158] [PMID: 19307478]
[95]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[96]
Gonzalez, L.; Trigatti, B.L. Macrophage apoptosis and necrotic core development in atherosclerosis: A rapidly advancing field with clinical relevance to imaging and therapy. Can. J. Cardiol., 2017, 33(3), 303-312.
[http://dx.doi.org/10.1016/j.cjca.2016.12.010] [PMID: 28232016]
[97]
Dadsena, S.; Zollo, C.; García-Sáez, A.J. Mechanisms of mitochondrial cell death. Biochem. Soc. Trans., 2021, 49(2), 663-674.
[http://dx.doi.org/10.1042/BST20200522] [PMID: 33704419]
[98]
Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[99]
Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie, 2017, 135, 111-125.
[http://dx.doi.org/10.1016/j.biochi.2017.02.001] [PMID: 28192157]
[100]
Larsen, B.D.; Sørensen, C.S. The caspase-activated DN ase: Apoptosis and beyond. FEBS J., 2017, 284(8), 1160-1170.
[http://dx.doi.org/10.1111/febs.13970] [PMID: 27865056]
[101]
Zamaraev, A.V.; Kopeina, G.S.; Prokhorova, E.A.; Zhivotovsky, B.; Lavrik, I.N. Post-translational modification of caspases: The other side of apoptosis regulation. Trends Cell Biol., 2017, 27(5), 322-339.
[http://dx.doi.org/10.1016/j.tcb.2017.01.003] [PMID: 28188028]
[102]
Bratton, S.B.; Salvesen, G.S. Regulation of the Apaf-1–caspase-9 apoptosome. J. Cell Sci., 2010, 123(19), 3209-3214.
[http://dx.doi.org/10.1242/jcs.073643] [PMID: 20844150]
[103]
Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Wang, D.; Peng, W.; Wu, C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res., 2021, 168, 105599.
[http://dx.doi.org/10.1016/j.phrs.2021.105599] [PMID: 33838291]
[104]
Xia, X.; Li, J.; Liang, X.; Zhang, S.; Liu, T.; Liu, J.; Arif, M.; Li, G. Ticagrelor suppresses oxidized low-density lipoprotein-induced endothelial cell apoptosis and alleviates atherosclerosis in ApoE-/- mice via downregulation of PCSK9. Mol. Med. Rep., 2019, 19(3), 1453-1462.
[PMID: 30592271]
[105]
Yang, S.; Zhang, W.; Xuan, L.; Han, F.; Lv, Y.; Wan, Z.; Liu, H.; Ren, L.; Gong, L.; Liu, L. Akebia Saponin D inhibits the formation of atherosclerosis in ApoE mice by attenuating oxidative stress-induced apoptosis in endothelial cells. Atherosclerosis, 2019, 285, 23-30.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.04.202] [PMID: 30999121]
[106]
Huang, D.; Wang, X.; Zhu, Y.; Gong, J.; Liang, J.; Song, Y.; Zhang, Y.; Liu, L.; Wei, C. Bazi bushen capsule alleviates post-menopausal atherosclerosis via GPER1-dependent anti-inflammatory and anti-apoptotic effects. Front. Pharmacol., 2021, 12, 658998.
[http://dx.doi.org/10.3389/fphar.2021.658998] [PMID: 34248622]
[107]
Fatahian, A.; Haftcheshmeh, S.M.; Azhdari, S.; Farshchi, H.K.; Nikfar, B.; Momtazi-Borojeni, A.A. Promising anti-atherosclerotic effect of berberine: Evidence from in vitro, in vivo, and clinical studies. Rev. Physiol. Biochem. Pharmacol., 2020, 178, 83-110.
[http://dx.doi.org/10.1007/112_2020_42] [PMID: 32789786]
[108]
Xing, L.; Zhou, X.; Li, A.H.; Li, H.J.; He, C.X.; Qin, W.; Zhao, D.; Li, P.Q.; Zhu, L.; Cao, H.L. Atheroprotective effects and molecular mechanism of berberine. Front. Mol. Biosci., 2021, 8, 762673.
[http://dx.doi.org/10.3389/fmolb.2021.762673] [PMID: 34869592]
[109]
Wang, L.; Deng, L.; Lin, N.; Shi, Y.; Chen, J.; Zhou, Y.; Chen, D.; Liu, S.; Li, C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci., 2020, 259, 118253.
[http://dx.doi.org/10.1016/j.lfs.2020.118253] [PMID: 32795536]
[110]
Liu, Y.; Song, A.; Wu, H.; Sun, Y.; Dai, M. Paeonol inhibits apoptosis of vascular smooth muscle cells via up-regulation of autophagy by activating class III PI3K/Beclin-1 signaling pathway. Life Sci., 2021, 264, 118714.
[http://dx.doi.org/10.1016/j.lfs.2020.118714] [PMID: 33157088]
[111]
Wang, Y.Q.; Xu, Z.M.; Wang, X.L.; Zheng, J.K.; Du, Q.; Yang, J.X.; Zhang, H.C. LncRNA FOXC2-AS1 regulated proliferation and apoptosis of vascular smooth muscle cell through targeting miR-1253/FOXF1 axis in atherosclerosis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3302-3314.
[PMID: 32271448]
[112]
Cheng, Q.; Zhang, M.; Zhang, M.; Ning, L.; Chen, D. Long non-coding RNA LOC285194 regulates vascular smooth muscle cell apoptosis in atherosclerosis. Bioengineered, 2020, 11(1), 53-60.
[http://dx.doi.org/10.1080/21655979.2019.1705054] [PMID: 31884873]
[113]
Wang, P.W.; Pang, Q.; Zhou, T.; Song, X.Y.; Pan, Y.J.; Jia, L.P.; Zhang, A.H. Irisin alleviates vascular calcification by inhibiting VSMC osteoblastic transformation and mitochondria dysfunction via AMPK/Drp1 signaling pathway in chronic kidney disease. Atherosclerosis, 2022, 346, 36-45.
[http://dx.doi.org/10.1016/j.atherosclerosis.2022.02.007] [PMID: 35255258]
[114]
Ajoolabady, A.; Bi, Y.; McClements, D.J.; Lip, G.Y.H.; Richardson, D.R.; Reiter, R.J.; Klionsky, D.J.; Ren, J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol. Res., 2022, 176, 106072.
[http://dx.doi.org/10.1016/j.phrs.2022.106072] [PMID: 35007709]
[115]
Momtazi-Borojeni, A.A.; Zabihi, N.A.; Bagheri, R.K.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Intravenous curcumin mitigates atherosclerosis progression in cholesterol-fed rabbits. Adv. Exp. Med. Biol., 2021, 1308, 45-54.
[http://dx.doi.org/10.1007/978-3-030-64872-5_5] [PMID: 33861436]
[116]
Lin, K.; Chen, H.; Chen, X.; Qian, J.; Huang, S.; Huang, W. Efficacy of curcumin on aortic atherosclerosis: A systematic review and meta-analysis in mouse studies and insights into possible mechanisms. Oxid. Med. Cell. Longev., 2020, 2020, 1520747.
[http://dx.doi.org/10.1155/2020/1520747] [PMID: 31998433]
[117]
Ouyang, S.; Yao, Y.H.; Zhang, Z.M.; Liu, J.S.; Xiang, H. Curcumin inhibits hypoxia inducible factor-1α-induced inflammation and apoptosis in macrophages through an ERK dependent pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1816-1825.
[PMID: 30840308]
[118]
Ren, J.L.; Chen, Y.; Zhang, L.S.; Zhang, Y.R.; Liu, S.M.; Yu, Y.R.; Jia, M.Z.; Tang, C.S.; Qi, Y.F.; Lu, W.W. Intermedin1-53 attenuates atherosclerotic plaque vulnerability by inhibiting CHOP-mediated apoptosis and inflammasome in macrophages. Cell Death Dis., 2021, 12(5), 436.
[http://dx.doi.org/10.1038/s41419-021-03712-w] [PMID: 33934111]
[119]
Fang, S.; Sun, S.; Cai, H.; Zou, X.; Wang, S.; Hao, X.; Wan, X.; Tian, J.; Li, Z.; He, Z.; Huang, W.; Liang, C.; Zhang, Z.; Yang, L.; Tian, J.; Yu, B.; Sun, B. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1+/- mice display increases atherosclerotic plaque stability. Theranostics, 2021, 11(19), 9358-9375.
[http://dx.doi.org/10.7150/thno.62797] [PMID: 34646375]
[120]
Galle-Treger, L.; Moreau, M.; Ballaire, R.; Poupel, L.; Huby, T.; Sasso, E.; Troise, F.; Poti, F.; Lesnik, P.; Le Goff, W.; Gautier, E.L.; Huby, T. Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis. Cardiovasc. Res., 2020, 116(3), 554-565.
[http://dx.doi.org/10.1093/cvr/cvz138] [PMID: 31119270]
[121]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[122]
Zheng, F.; Xing, S.; Gong, Z.; Mu, W.; Xing, Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm., 2014, 2014, 507208.
[http://dx.doi.org/10.1155/2014/507208] [PMID: 24999295]
[123]
Bai, B.; Yang, Y.; Wang, Q.; Li, M.; Tian, C.; Liu, Y.; Aung, L.H.H.; Li, P.; Yu, T.; Chu, X. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis., 2020, 11(9), 776.
[http://dx.doi.org/10.1038/s41419-020-02985-x] [PMID: 32948742]
[124]
Zheng, F.; Xing, S.; Gong, Z.; Xing, Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ., 2013, 22(9), 746-750.
[http://dx.doi.org/10.1016/j.hlc.2013.01.012] [PMID: 23462287]
[125]
Schunk, S.J.; Kleber, M.E.; März, W.; Pang, S.; Zewinger, S.; Triem, S.; Ege, P.; Reichert, M.C.; Krawczyk, M.; Weber, S.N.; Jaumann, I.; Schmit, D.; Sarakpi, T.; Wagenpfeil, S.; Kramann, R.; Boerwinkle, E.; Ballantyne, C.M.; Grove, M.L.; Tragante, V.; Pilbrow, A.P.; Richards, A.M.; Cameron, V.A.; Doughty, R.N.; Dubé, M.P.; Tardif, J.C.; Feroz-Zada, Y.; Sun, M.; Liu, C.; Ko, Y.A.; Quyyumi, A.A.; Hartiala, J.A.; Tang, W.H.W.; Hazen, S.L.; Allayee, H.; McDonough, C.W.; Gong, Y.; Cooper-DeHoff, R.M.; Johnson, J.A.; Scholz, M.; Teren, A.; Burkhardt, R.; Martinsson, A.; Smith, J.G.; Wallentin, L.; James, S.K.; Eriksson, N.; White, H.; Held, C.; Waterworth, D.; Trompet, S.; Jukema, J.W.; Ford, I.; Stott, D.J.; Sattar, N.; Cresci, S.; Spertus, J.A.; Campbell, H.; Tierling, S.; Walter, J.; Ampofo, E.; Niemeyer, B.A.; Lipp, P.; Schunkert, H.; Böhm, M.; Koenig, W.; Fliser, D.; Laufs, U.; Speer, T. Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur. Heart J., 2021, 42(18), 1742-1756.
[http://dx.doi.org/10.1093/eurheartj/ehab107] [PMID: 33748830]
[126]
Gu, P.; Hui, X.; Zheng, Q.; Gao, Y.; Jin, L.; Jiang, W.; Zhou, C.; Liu, T.; Huang, Y.; Liu, Q.; Nie, T.; Wang, Y.; Wang, Y.; Zhao, J.; Xu, A. Mitochondrial uncoupling protein 1 antagonizes atherosclerosis by blocking NLRP3 inflammasome–dependent interleukin-1β production. Sci. Adv., 2021, 7(50), eabl4024.
[http://dx.doi.org/10.1126/sciadv.abl4024] [PMID: 34878840]
[127]
Jiang, C.; Xie, S.; Yang, G.; Wang, N. Spotlight on NLRP3 inflammasome: Role in pathogenesis and therapies of atherosclerosis. J. Inflamm. Res., 2021, 14, 7143-7172.
[http://dx.doi.org/10.2147/JIR.S344730] [PMID: 34992411]
[128]
Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol., 2021, 18(5), 1141-1160.
[http://dx.doi.org/10.1038/s41423-021-00670-3] [PMID: 33850310]
[129]
Mathew, A.; Lindsley, T.A.; Sheridan, A.; Bhoiwala, D.L.; Hushmendy, S.F.; Yager, E.J.; Ruggiero, E.A.; Crawford, D.R. Degraded mitochondrial DNA is a newly identified subtype of the damage associated molecular pattern (DAMP) family and possible trigger of neurodegeneration. J. Alzheimers Dis., 2012, 30(3), 617-627.
[http://dx.doi.org/10.3233/JAD-2012-120145] [PMID: 22460333]
[130]
Yaron, J.R.; Gangaraju, S.; Rao, M.Y.; Kong, X.; Zhang, L.; Su, F.; Tian, Y.; Glenn, H.L.; Meldrum, D.R. K+ regulates Ca2+ to drive inflammasome signaling: Dynamic visualization of ion flux in live cells. Cell Death Dis., 2015, 6(10), e1954.
[http://dx.doi.org/10.1038/cddis.2015.277] [PMID: 26512962]
[131]
Katsnelson, M.A.; Rucker, L.G.; Russo, H.M.; Dubyak, G.R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol., 2015, 194(8), 3937-3952.
[http://dx.doi.org/10.4049/jimmunol.1402658] [PMID: 25762778]
[132]
Zhong, Z.; Zhai, Y.; Liang, S.; Mori, Y.; Han, R.; Sutterwala, F.S.; Qiao, L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun., 2013, 4(1), 1611.
[http://dx.doi.org/10.1038/ncomms2608] [PMID: 23511475]
[133]
Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202.
[http://dx.doi.org/10.1038/s41467-017-00227-x] [PMID: 28779175]
[134]
Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.M.; Persechini, P.M.; Ojcius, D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem., 2007, 282(5), 2871-2879.
[http://dx.doi.org/10.1074/jbc.M608083200] [PMID: 17132626]
[135]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[136]
Pappritz, K.; Lin, J.; El-Shafeey, M.; Fechner, H.; Kühl, U.; Alogna, A.; Spillmann, F.; Elsanhoury, A.; Schulz, R.; Tschöpe, C.; Van Linthout, S. Colchicine prevents disease progression in viral myocarditis via modulating the NLRP3 inflammasome in the cardiosplenic axis. ESC Heart Fail., 2022, 9(2), 925-941.
[http://dx.doi.org/10.1002/ehf2.13845] [PMID: 35178861]
[137]
Robertson, S.; Martínez, G.J.; Payet, C.A.; Barraclough, J.Y.; Celermajer, D.S.; Bursill, C.; Patel, S. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin. Sci., 2016, 130(14), 1237-1246.
[http://dx.doi.org/10.1042/CS20160090] [PMID: 27129183]
[138]
Li, Y.; Zhang, Y.; Lu, J.; Yin, Y.; Xie, J.; Xu, B. Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy. J. Cell. Mol. Med., 2021, 25(17), 8087-8094.
[http://dx.doi.org/10.1111/jcmm.16798] [PMID: 34312998]
[139]
Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol., 2013, 61(4), 404-410.
[http://dx.doi.org/10.1016/j.jacc.2012.10.027] [PMID: 23265346]
[140]
Samuel, M.; Tardif, J.C.; Bouabdallaoui, N.; Khairy, P.; Dubé, M.P.; Blondeau, L.; Guertin, M.C. Colchicine for secondary prevention of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Can. J. Cardiol., 2021, 37(5), 776-785.
[http://dx.doi.org/10.1016/j.cjca.2020.10.006] [PMID: 33075455]
[141]
Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; van Gaal, W.; Howes, L.; Collins, N.; Yong, A.; Bhindi, R.; Whitbourn, R.; Lee, A.; Hengel, C.; Asrress, K.; Freeman, M.; Amerena, J.; Wilson, A.; Layland, J. Colchicine in patients with acute coronary syndrome. Circulation, 2020, 142(20), 1890-1900.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050771] [PMID: 32862667]
[142]
Ambrosy, A.P.; Yang, J.; Sung, S.H.; Allen, A.R.; Fitzpatrick, J.K.; Rana, J.S.; Wagner, J.; Philip, S.; Abrahamson, D.; Granowitz, C.; Go, A.S. Triglyceride levels and residual risk of atherosclerotic cardiovascular disease events and death in adults receiving statin therapy for primary or secondary prevention: Insights from the Kp reach study. J. Am. Heart Assoc., 2021, 10(20), e020377.
[http://dx.doi.org/10.1161/JAHA.120.020377] [PMID: 34622663]
[143]
Pavlović, J.; Greenland, P.; Franco, O.H.; Kavousi, M.; Ikram, M.K.; Deckers, J.W.; Ikram, M.A.; Leening, M.J.G. Recommendations and Associated Levels of Evidence for Statin Use in Primary Prevention of Cardiovascular Disease: A Comparison at Population Level of the American Heart Association/American College of Cardiology/Multisociety, US Preventive Services Task Force, Department of Veterans Affairs/Department of Defense, Canadian Cardiovascular Society, and European Society of Cardiology/European Atherosclerosis Society Clinical Practice Guidelines. Circ. Cardiovasc. Qual. Outcomes, 2021, 14(9), e007183.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.120.007183] [PMID: 34546786]
[144]
Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immunol., 2021, 60(2), 175-199.
[http://dx.doi.org/10.1007/s12016-020-08791-9] [PMID: 32378144]
[145]
Peng, S.; Xu, L.W.; Che, X.Y.; Xiao, Q.Q.; Pu, J.; Shao, Q.; He, B. Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy. Front. Pharmacol., 2018, 9, 438.
[http://dx.doi.org/10.3389/fphar.2018.00438] [PMID: 29773990]
[146]
Chen, A.; Chen, Z.; Zhou, Y.; Wu, Y.; Xia, Y.; Lu, D.; Fan, M.; Li, S.; Chen, J.; Sun, A.; Zou, Y.; Qian, J.; Ge, J. Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation. Cell Death Dis., 2021, 12(1), 78.
[http://dx.doi.org/10.1038/s41419-021-03389-1] [PMID: 33436548]
[147]
Satoh, M.; Tabuchi, T.; Itoh, T.; Nakamura, M. NLRP3 inflammasome activation in coronary artery disease: Results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Clin. Sci., 2014, 126(3), 233-241.
[http://dx.doi.org/10.1042/CS20130043] [PMID: 23944632]
[148]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Fereidouni, M.; Barreto, G.; Sahebkar, A. NLRP3 inflammasome as a treatment target in atherosclerosis: A focus on statin therapy. Int. Immunopharmacol., 2019, 73, 146-155.
[http://dx.doi.org/10.1016/j.intimp.2019.05.006] [PMID: 31100709]
[149]
Coll, R.C.; Hill, J.R.; Day, C.J.; Zamoshnikova, A.; Boucher, D.; Massey, N.L.; Chitty, J.L.; Fraser, J.A.; Jennings, M.P.; Robertson, A.A.B.; Schroder, K. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol., 2019, 15(6), 556-559.
[http://dx.doi.org/10.1038/s41589-019-0277-7] [PMID: 31086327]
[150]
Wu, D.; Chen, Y.; Sun, Y.; Gao, Q.; Li, H.; Yang, Z.; Wang, Y.; Jiang, X.; Yu, B. Target of MCC950 in inhibition of NLRP3 inflammasome activation: A literature review. Inflammation, 2020, 43(1), 17-23.
[http://dx.doi.org/10.1007/s10753-019-01098-8] [PMID: 31646445]
[151]
Sharma, A.; Choi, J.S.Y.; Stefanovic, N.; Al-Sharea, A.; Simpson, D.S.; Mukhamedova, N.; Jandeleit-Dahm, K.; Murphy, A.J.; Sviridov, D.; Vince, J.E.; Ritchie, R.H.; de Haan, J.B. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes, 2021, 70(3), 772-787.
[http://dx.doi.org/10.2337/db20-0357] [PMID: 33323396]
[152]
Zeng, W.; Wu, D.; Sun, Y.; Suo, Y.; Yu, Q.; Zeng, M.; Gao, Q.; Yu, B.; Jiang, X.; Wang, Y. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci. Rep., 2021, 11(1), 19305.
[http://dx.doi.org/10.1038/s41598-021-98437-3] [PMID: 34588488]
[153]
Huang, Y.; Jiang, H.; Chen, Y.; Wang, X.; Yang, Y.; Tao, J.; Deng, X.; Liang, G.; Zhang, H.; Jiang, W.; Zhou, R. Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol. Med., 2018, 10(4), e8689.
[http://dx.doi.org/10.15252/emmm.201708689] [PMID: 29531021]
[154]
Chen, S.; Wang, Y.; Pan, Y.; Liu, Y.; Zheng, S.; Ding, K.; Mu, K.; Yuan, Y.; Li, Z.; Song, H.; Jin, Y.; Fu, J. Novel role for tranilast in regulating NLRP3 ubiquitination, vascular inflammation, and atherosclerosis. J. Am. Heart Assoc., 2020, 9(12), e015513.
[http://dx.doi.org/10.1161/JAHA.119.015513] [PMID: 32476536]
[155]
Zhao, J.; Wang, Z.; Yuan, Z.; Lv, S.; Su, Q. Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice. Diab. Vasc. Dis. Res., 2020, 17(6), 1479164120977441.
[http://dx.doi.org/10.1177/1479164120977441] [PMID: 33269624]
[156]
Luo, J.; Wang, X.; Jiang, X.; Liu, C.; Li, Y.; Han, X.; Zuo, X.; Li, Y.; Li, N.; Xu, Y.; Si, S. Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome related inflammation and modulating cholesterol transport. FASEB J., 2020, 34(1), 1398-1411.
[http://dx.doi.org/10.1096/fj.201900903RRR] [PMID: 31914630]
[157]
Wen, J.; Chang, Y.; Huo, S.; Li, W.; Huang, H.; Gao, Y.; Lin, H.; Zhang, J.; Zhang, Y.; Zuo, Y.; Cao, X.; Zhong, F. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging (Albany NY), 2021, 13(1), 910-932.
[http://dx.doi.org/10.18632/aging.202202] [PMID: 33290264]
[158]
Guo, D.; Sun, J.; Tian, M.; Lin, W. Fabrication of a fluorescent probe for reversibly monitoring mitochondrial membrane potential in living cells. Anal. Methods, 2021, 13(14), 1715-1719.
[http://dx.doi.org/10.1039/D0AY02294B] [PMID: 33861238]
[159]
Lin, B.; Liu, Y.; Zhang, X.; Fan, L.; Shu, Y.; Wang, J. Membrane-activated fluorescent probe for high-fidelity imaging of mitochondrial membrane potential. ACS Sens., 2021, 6(11), 4009-4018.
[http://dx.doi.org/10.1021/acssensors.1c01390] [PMID: 34757720]
[160]
Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; de la Mata, M.; Villanueva-Paz, M.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Munuera, M.; Sánchez-Alcázar, J.A. Atherosclerosis and coenzyme Q10. Int. J. Mol. Sci., 2019, 20(20), 5195.
[http://dx.doi.org/10.3390/ijms20205195] [PMID: 31635164]
[161]
Zhang, M.; Zhao, H.; Cai, J.; Li, H.; Wu, Q.; Qiao, T.; Li, K. Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet. PLoS One, 2017, 12(9), e0185688.
[http://dx.doi.org/10.1371/journal.pone.0185688] [PMID: 28961281]
[162]
Andreux, P.A.; Houtkooper, R.H.; Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov., 2013, 12(6), 465-483.
[http://dx.doi.org/10.1038/nrd4023] [PMID: 23666487]
[163]
Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med., 2020, 24(9), 4892-4899.
[http://dx.doi.org/10.1111/jcmm.15194] [PMID: 32279443]
[164]
Ulger, O.; Kubat, G.B. Therapeutic applications of mitochondrial transplantation. Biochimie, 2022, 195, 1-15.
[http://dx.doi.org/10.1016/j.biochi.2022.01.002] [PMID: 35026361]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy