Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Atherosclerosis: From the Disruption of Mitochondrial Membrane Potential to the Potential Interventional Strategies

Author(s): Dexiang Xia, Yanmei Chen, Guifang Luo* and Dangheng Wei*

Volume 30, Issue 38, 2023

Published on: 02 February, 2023

Page: [4355 - 4373] Pages: 19

DOI: 10.2174/0929867330666221201120405

Price: $65

Abstract

Atherosclerosis (AS) is the major factor of cardiovascular disease (CVD) and is characterized by a progressive and chronic inflammatory process in the arterial wall. Recent studies have shown that disruption of the mitochondrial membrane potential (deltapsi (m)) directly affects the electron transport chain (ETC), which in turn leads to oxidative stress, and furthermore, its alteration leads to apoptosis and activation of the NLRP3 inflammasome, thereby promoting the development of AS. Here, this review describes how deltapsi (m) contributes to the development of AS by mediating oxidative stress, apoptosis, and NLRP3 inflammasome activation, and potential AS intervention strategies by targeting oxidative stress, apoptosis, and NLRP3 inflammasome activation induced by deltapsi (m).

Keywords: Atherosclerosis (AS), mitochondrial membrane potential (deltapsi (m)), therapeutics, reactive oxygen species (ROS), apoptosis, NLRP3 inflammasome.

[1]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S.; B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Fredman, G.; MacNamara, K.C. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc. Res., 2021, 117(13), cvab309.
[http://dx.doi.org/10.1093/cvr/cvab309] [PMID: 34609505]
[3]
Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov., 2021, 20(8), 589-610.
[http://dx.doi.org/10.1038/s41573-021-00198-1] [PMID: 33976384]
[4]
Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res., 2014, 114(12), 1852-1866.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302721] [PMID: 24902970]
[5]
Zorova, L.D.; Demchenko, E.A.; Korshunova, G.A.; Tashlitsky, V.N.; Zorov, S.D.; Andrianova, N.V.; Popkov, V.A.; Babenko, V.A.; Pevzner, I.B.; Silachev, D.N.; Plotnikov, E.Y.; Zorov, D.B. Is the mitochondrial membrane potential (∆Ψ) correctly assessed? intracellular and intramitochondrial modifications of the ∆Ψ Probe, Rhodamine 123. Int. J. Mol. Sci., 2022, 23(1), 482.
[http://dx.doi.org/10.3390/ijms23010482] [PMID: 35008907]
[6]
Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc., 2019, 9(1), e3128.
[http://dx.doi.org/10.21769/BioProtoc.3128] [PMID: 30687773]
[7]
Stamerra, C.A.; Di Giosia, P.; Giorgini, P.; Ferri, C.; Sukhorukov, V.N.; Sahebkar, A. Mitochondrial dysfunction and cardiovascular disease: Pathophysiology and emerging therapies. Oxid. Med. Cell. Longev., 2022, 2022, 9530007.
[http://dx.doi.org/10.1155/2022/9530007] [PMID: 35958017]
[8]
Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Apostolopoulos, E.J.; Melita, H.; Katsiki, N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med. Res. Rev., 2021, 41(1), 275-313.
[http://dx.doi.org/10.1002/med.21732] [PMID: 32959403]
[9]
Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med., 2018, 50(2), 121-127.
[http://dx.doi.org/10.1080/07853890.2017.1417631] [PMID: 29237304]
[10]
Lee, J.H.; Park, A.; Oh, K.J.; Lee, S.C.; Kim, W.K.; Bae, K.H. The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. Int. J. Mol. Sci., 2019, 20(19), 4924.
[http://dx.doi.org/10.3390/ijms20194924] [PMID: 31590292]
[11]
Prasun, P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165838.
[http://dx.doi.org/10.1016/j.bbadis.2020.165838] [PMID: 32428560]
[12]
Johnson, J.; Mercado-Ayon, E.; Mercado-Ayon, Y.; Dong, Y.N.; Halawani, S.; Ngaba, L.; Lynch, D.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys., 2021, 702, 108698.
[http://dx.doi.org/10.1016/j.abb.2020.108698] [PMID: 33259796]
[13]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[14]
Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(9), 4850.
[http://dx.doi.org/10.3390/ijms22094850] [PMID: 34063708]
[15]
Momcilovic, M.; Jones, A.; Bailey, S.T.; Waldmann, C.M.; Li, R.; Lee, J.T.; Abdelhady, G.; Gomez, A.; Holloway, T.; Schmid, E.; Stout, D.; Fishbein, M.C.; Stiles, L.; Dabir, D.V.; Dubinett, S.M.; Christofk, H.; Shirihai, O.; Koehler, C.M.; Sadeghi, S.; Shackelford, D.B. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature, 2019, 575(7782), 380-384.
[http://dx.doi.org/10.1038/s41586-019-1715-0] [PMID: 31666695]
[16]
Luo, Y.; Ma, J.; Lu, W. The significance of mitochondrial dysfunction in cancer. Int. J. Mol. Sci., 2020, 21(16), 5598.
[http://dx.doi.org/10.3390/ijms21165598] [PMID: 32764295]
[17]
Chiu, H.Y.; Tay, E.X.Y.; Ong, D.S.T.; Taneja, R. Mitochondrial dysfunction at the center of cancer therapy. Antioxid. Redox Signal., 2020, 32(5), 309-330.
[http://dx.doi.org/10.1089/ars.2019.7898] [PMID: 31578870]
[18]
Ramzan, R.; Michels, S.; Weber, P.; Rhiel, A.; Irqsusi, M.; Rastan, A.J.; Culmsee, C.; Vogt, S. Protamine sulfate induces mitochondrial hyperpolarization and a subsequent increase in reactive oxygen species production. J. Pharmacol. Exp. Ther., 2019, 370(2), 308-317.
[http://dx.doi.org/10.1124/jpet.119.257725] [PMID: 31160469]
[19]
Pereira, A.G.; Jaramillo, M.L.; Remor, A.P.; Latini, A.; Davico, C.E.; da Silva, M.L.; Müller, Y.M.R.; Ammar, D.; Nazari, E.M. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain. Chemosphere, 2018, 209, 353-362.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.075] [PMID: 29935464]
[20]
Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging, 2019, 11(8), 2217-2240.
[http://dx.doi.org/10.18632/aging.101910] [PMID: 30988232]
[21]
Cong, L.; Lei, M.Y.; Liu, Z.Q.; Liu, Z.F.; Ma, Z.; Liu, K.; Li, J.; Deng, Y.; Liu, W.; Xu, B. Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food Chem. Toxicol., 2021, 153, 112283.
[http://dx.doi.org/10.1016/j.fct.2021.112283] [PMID: 34029668]
[22]
Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules, 2021, 26(1), 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[23]
Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[24]
Han, Y.; Jo, H.; Cho, J.; Dhanasekaran, D.; Song, Y. Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer. Int. J. Mol. Sci., 2019, 20(4), 925.
[http://dx.doi.org/10.3390/ijms20040925] [PMID: 30791624]
[25]
Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int. J. Mol. Sci., 2021, 22(18), 10152.
[http://dx.doi.org/10.3390/ijms221810152] [PMID: 34576315]
[26]
Cheng, C.K.; Luo, J.Y.; Lau, C.W.; Chen, Z.Y.; Tian, X.Y.; Huang, Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br. J. Pharmacol., 2020, 177(6), 1258-1277.
[http://dx.doi.org/10.1111/bph.14801] [PMID: 31347157]
[27]
Ragonese, F.; Monarca, L.; De Luca, A.; Mancinelli, L.; Mariani, M.; Corbucci, C.; Gerli, S.; Iannitti, R.G.; Leonardi, L.; Fioretti, B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil. Steril., 2021, 115(4), 1063-1073.
[http://dx.doi.org/10.1016/j.fertnstert.2020.08.016] [PMID: 33487442]
[28]
Zhong, Z.; Ramshesh, V.K.; Rehman, H.; Liu, Q.; Theruvath, T.P.; Krishnasamy, Y.; Lemasters, J.J. Acute ethanol causes hepatic mitochondrial depolarization in mice: Role of ethanol metabolism. PLoS One, 2014, 9(3), e91308.
[http://dx.doi.org/10.1371/journal.pone.0091308] [PMID: 24618581]
[29]
Zhang, X.; Lee, M.D.; Wilson, C.; McCarron, J.G. Hydrogen peroxide depolarizes mitochondria and inhibits IP3-evoked Ca2+ release in the endothelium of intact arteries. Cell Calcium, 2019, 84, 102108.
[http://dx.doi.org/10.1016/j.ceca.2019.102108] [PMID: 31715384]
[30]
Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med., 2019, 44(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2019.4188] [PMID: 31115493]
[31]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[32]
Suarna, C.; Dean, R.T.; May, J.; Stocker, R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler. Thromb. Vasc. Biol., 1995, 15(10), 1616-1624.
[http://dx.doi.org/10.1161/01.ATV.15.10.1616] [PMID: 7583535]
[33]
Gniwotta, C.; Morrow, J.D.; Roberts, L.J., II; Kühn, H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 3236-3241.
[http://dx.doi.org/10.1161/01.ATV.17.11.3236] [PMID: 9409317]
[34]
Luchtefeld, M.; Grote, K.; Grothusen, C.; Bley, S.; Bandlow, N.; Selle, T.; Strüber, M.; Haverich, A.; Bavendiek, U.; Drexler, H.; Schieffer, B. Angiotensin II induces MMP-2 in a p47phox-dependent manner. Biochem. Biophys. Res. Commun., 2005, 328(1), 183-188.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.152] [PMID: 15670768]
[35]
Donnini, S.; Monti, M.; Roncone, R.; Morbidelli, L.; Rocchigiani, M.; Oliviero, S.; Casella, L.; Giachetti, A.; Schulz, R.; Ziche, M. Peroxynitrite inactivates human-tissue inhibitor of metalloproteinase-4. FEBS Lett., 2008, 582(7), 1135-1140.
[http://dx.doi.org/10.1016/j.febslet.2008.02.080] [PMID: 18336787]
[36]
Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell. Longev., 2020, 2020, 5245308.
[http://dx.doi.org/10.1155/2020/5245308] [PMID: 33014272]
[37]
Aon, M.A.; Cortassa, S.; O’Rourke, B. Redox-optimized ROS balance: A unifying hypothesis. Biochim. Biophys. Acta Bioenerg., 2010, 1797(6-7), 865-877.
[http://dx.doi.org/10.1016/j.bbabio.2010.02.016] [PMID: 20175987]
[38]
Brand, M.D.; Felber, S.M. Membrane potential of mitochondria in intact lymphocytes during early mitogenic stimulation. Biochem. J., 1984, 217(2), 453-459.
[http://dx.doi.org/10.1042/bj2170453] [PMID: 6696741]
[39]
Zhang, H.; Huang, H.M.; Carson, R.C.; Mahmood, J.; Thomas, H.M.; Gibson, G.E. Assessment of membrane potentials of mitochondrial populations in living cells. Anal. Biochem., 2001, 298(2), 170-180.
[http://dx.doi.org/10.1006/abio.2001.5348] [PMID: 11757503]
[40]
Backus, M.; Piwnica-Worms, D.; Hockett, D.; Kronauge, J.; Lieberman, M.; Ingram, P.; LeFurgey, A. Microprobe analysis of Tc-MIBI in heart cells: Calculation of mitochondrial membrane potential. Am. J. Physiol. Cell Physiol., 1993, 265(1), C178-C187.
[http://dx.doi.org/10.1152/ajpcell.1993.265.1.C178] [PMID: 8338127]
[41]
Wan, B.; Doumen, C.; Duszynski, J.; Salama, G.; Vary, T.C.; LaNoue, K.F. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am. J. Physiol., 1993, 265(2 Pt 2), H453-H460.
[PMID: 8368348]
[42]
Suski, J.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol., 2018, 1782, 357-381.
[http://dx.doi.org/10.1007/978-1-4939-7831-1_22] [PMID: 29851012]
[43]
Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.K.; Orekhov, A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology, 2020, 9(3), 60.
[http://dx.doi.org/10.3390/biology9030060] [PMID: 32245238]
[44]
Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules, 2019, 9(8), 301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[45]
Bonetta, R. Potential therapeutic applications of MnSODs and SOD-mimetics. Chemistry, 2018, 24(20), 5032-5041.
[http://dx.doi.org/10.1002/chem.201704561] [PMID: 29131419]
[46]
Batinić-Haberle, I.; Rebouças, J.S.; Spasojević, I. Superoxide dismutase mimics: Chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal., 2010, 13(6), 877-918.
[http://dx.doi.org/10.1089/ars.2009.2876] [PMID: 20095865]
[47]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[48]
Ribeiro, T.P.; Fonseca, F.L.; de Carvalho, M.D.C.; Godinho, R.M.C.; de Almeida, F.P.; Saint’Pierre, T.D.; Rey, N.A.; Fernandes, C.; Horn, A., Jr.; Pereira, M.D. Metal-based superoxide dismutase and catalase mimics reduce oxidative stress biomarkers and extend life span of Saccharomyces cerevisiae. Biochem. J., 2017, 474(2), 301-315.
[http://dx.doi.org/10.1042/BCJ20160480] [PMID: 28062841]
[49]
Mathieu, E.; Bernard, A.S.; Delsuc, N.; Quévrain, E.; Gazzah, G.; Lai, B.; Chain, F.; Langella, P.; Bachelet, M.; Masliah, J.; Seksik, P.; Policar, C. A cell-penetrant Manganese Superoxide Dismutase (MnSOD) mimic is able to complement MnSOD and exerts an antiinflammatory effect on cellular and animal models of inflammatory bowel diseases. Inorg. Chem., 2017, 56(5), 2545-2555.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02695] [PMID: 28198622]
[50]
Mathieu, E.; Bernard, A.S.; Ching, H.Y.V.; Somogyi, A.; Medjoubi, K.; Fores, J.R.; Bertrand, H.C.; Vincent, A.; Trépout, S.; Guerquin-Kern, J.L.; Scheitler, A.; Ivanović-Burmazović, I.; Seksik, P.; Delsuc, N.; Policar, C. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans., 2020, 49(7), 2323-2330.
[http://dx.doi.org/10.1039/C9DT04619D] [PMID: 32022053]
[51]
Wagner, A.H.; Kautz, O.; Fricke, K.; Zerr-Fouineau, M.; Demicheva, E.; Güldenzoph, B.; Bermejo, J.L.; Korff, T.; Hecker, M. Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2009, 29(11), 1894-1901.
[http://dx.doi.org/10.1161/ATVBAHA.109.194738] [PMID: 19729606]
[52]
Lewis, P.; Stefanovic, N.; Pete, J.; Calkin, A.C.; Giunti, S.; Thallas-Bonke, V.; Jandeleit-Dahm, K.A.; Allen, T.J.; Kola, I.; Cooper, M.E.; de Haan, J.B. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation, 2007, 115(16), 2178-2187.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.664250] [PMID: 17420349]
[53]
Torzewski, M.; Ochsenhirt, V.; Kleschyov, A.L.; Oelze, M.; Daiber, A.; Li, H.; Rossmann, H.; Tsimikas, S.; Reifenberg, K.; Cheng, F.; Lehr, H.A.; Blankenberg, S.; Förstermann, U.; Münzel, T.; Lackner, K.J. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 850-857.
[http://dx.doi.org/10.1161/01.ATV.0000258809.47285.07] [PMID: 17255533]
[54]
Day, B.J. Catalase and glutathione peroxidase mimics. Biochem. Pharmacol., 2009, 77(3), 285-296.
[http://dx.doi.org/10.1016/j.bcp.2008.09.029] [PMID: 18948086]
[55]
Ahwach, S.M.; Thomas, M.; Onstead-Haas, L.; Mooradian, A.D.; Haas, M.J. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells. Life Sci., 2015, 134, 9-15.
[http://dx.doi.org/10.1016/j.lfs.2015.05.004] [PMID: 26006036]
[56]
Ali, N.; Yoshizumi, M.; Tsuchiya, K.; Kyaw, M.; Fujita, Y.; Izawa, Y.; Abe, S.; Kanematsu, Y.; Kagami, S.; Tamaki, T. Ebselen inhibits p38 mitogen-activated protein kinase-mediated endothelial cell death by hydrogen peroxide. Eur. J. Pharmacol., 2004, 485(1-3), 127-135.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.079] [PMID: 14757132]
[57]
Brodsky, S.V.; Gealekman, O.; Chen, J.; Zhang, F.; Togashi, N.; Crabtree, M.; Gross, S.S.; Nasjletti, A.; Goligorsky, M.S. Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen. Circ. Res., 2004, 94(3), 377-384.
[http://dx.doi.org/10.1161/01.RES.0000111802.09964.EF] [PMID: 14670841]
[58]
Sharma, A.; Yuen, D.; Huet, O.; Pickering, R.; Stefanovic, N.; Bernatchez, P.; de Haan, J.B. Lack of glutathione peroxidase-1 facilitates a pro-inflammatory and activated vascular endothelium. Vascul. Pharmacol., 2016, 79, 32-42.
[http://dx.doi.org/10.1016/j.vph.2015.11.001] [PMID: 26569096]
[59]
Cheng, F.; Torzewski, M.; Degreif, A.; Rossmann, H.; Canisius, A.; Lackner, K.J. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: Implications for atherogenesis. PLoS One, 2013, 8(8), e72063.
[http://dx.doi.org/10.1371/journal.pone.0072063] [PMID: 23991041]
[60]
Tan, S.M.; Sharma, A.; Yuen, D.Y.C.; Stefanovic, N.; Krippner, G.; Mugesh, G.; Chai, Z.; de Haan, J.B. The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One, 2013, 8(7), e69193.
[http://dx.doi.org/10.1371/journal.pone.0069193] [PMID: 23874911]
[61]
Chew, P.; Yuen, D.Y.C.; Koh, P.; Stefanovic, N.; Febbraio, M.A.; Kola, I.; Cooper, M.E.; de Haan, J.B. Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6), 823-830.
[http://dx.doi.org/10.1161/ATVBAHA.109.186619] [PMID: 19325139]
[62]
Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants, 2021, 10(6), 890.
[http://dx.doi.org/10.3390/antiox10060890] [PMID: 34205998]
[63]
Peng, R.; Luo, M.; Tian, R.; Lu, N. Dietary nitrate attenuated endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: A critical role for NADPH oxidase. Arch. Biochem. Biophys., 2020, 689, 108453.
[http://dx.doi.org/10.1016/j.abb.2020.108453] [PMID: 32524996]
[64]
Yu, W.; Xiao, L.; Que, Y.; Li, S.; Chen, L.; Hu, P.; Xiong, R.; Seta, F.; Chen, H.; Tong, X. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165912.
[http://dx.doi.org/10.1016/j.bbadis.2020.165912] [PMID: 32777344]
[65]
Pejenaute, Á.; Cortés, A.; Marqués, J.; Montero, L.; Beloqui, Ó.; Fortuño, A.; Martí, A.; Orbe, J.; Zalba, G. NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. Int. J. Mol. Sci., 2020, 21(4), 1434.
[http://dx.doi.org/10.3390/ijms21041434] [PMID: 32093292]
[66]
Teixeira, G.; Szyndralewiez, C.; Molango, S.; Carnesecchi, S.; Heitz, F.; Wiesel, P.; Wood, J.M. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br. J. Pharmacol., 2017, 174(12), 1647-1669.
[http://dx.doi.org/10.1111/bph.13532] [PMID: 27273790]
[67]
Vendrov, A.E.; Madamanchi, N.R.; Niu, X.L.; Molnar, K.C.; Runge, M.; Szyndralewiez, C.; Page, P.; Runge, M.S. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem., 2010, 285(34), 26545-26557.
[http://dx.doi.org/10.1074/jbc.M110.143917] [PMID: 20558727]
[68]
Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C—sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 2021, 13(2), 615.
[http://dx.doi.org/10.3390/nu13020615] [PMID: 33668681]
[69]
Ray, T.; Maity, P.C.; Banerjee, S.; Deb, S.; Dasgupta, A.K.; Sarkar, S.; Sil, A.K. Vitamin C prevents cigarette smoke induced atherosclerosis in guinea pig model. J. Atheroscler. Thromb., 2010, 17(8), 817-827.
[http://dx.doi.org/10.5551/jat.2881] [PMID: 20467194]
[70]
Langlois, M.; Duprez, D.; Delanghe, J.; De Buyzere, M.; Clement, D.L. Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation, 2001, 103(14), 1863-1868.
[http://dx.doi.org/10.1161/01.CIR.103.14.1863] [PMID: 11294804]
[71]
Woo, K.S.; Yip, T.W.C.; Chook, P.; Koon, K.V.; Leong, H.C.; Feng, X.H.; Lee, A.P.W.; Kwok, T.C.Y. Vitamins B-12 and C supplementation improves arterial reactivity and structure in passive smokers: Implication in prevention of smoking-related atherosclerosis. J. Nutr. Health Aging, 2021, 25(2), 248-254.
[http://dx.doi.org/10.1007/s12603-020-1529-7] [PMID: 33491041]
[72]
Huang, H.Y.; Appel, L.J.; Croft, K.D.; Miller, E.R., III; Mori, T.A.; Puddey, I.B. Effects of vitamin C and vitamin E on in vivo lipid peroxidation: Results of a randomized controlled trial. Am. J. Clin. Nutr., 2002, 76(3), 549-555.
[http://dx.doi.org/10.1093/ajcn/76.3.549] [PMID: 12197998]
[73]
Salonen, J.T.; Nyyssönen, K.; Salonen, R.; Lakka, H.M.; Kaikkonen, J.; Porkkala-Sarataho, E.; Voutilainen, S.; Lakka, T.A.; Rissanen, T.; Leskinen, L.; Tuomainen, T.P.; Valkonen, V.P.; Ristonmaa, U.; Poulsen, H.E. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: A randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J. Intern. Med., 2000, 248(5), 377-386.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00752.x] [PMID: 11123502]
[74]
Traber, M.G. Vitamin E. Adv. Nutr., 2021, 12(3), 1047-1048.
[http://dx.doi.org/10.1093/advances/nmab019] [PMID: 33684201]
[75]
Violi, F.; Nocella, C.; Loffredo, L.; Carnevale, R.; Pignatelli, P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic. Biol. Med., 2022, 178, 26-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.11.027] [PMID: 34838937]
[76]
Corina, A.; Rangel-Zúñiga, O.A.; Jiménez-Lucena, R.; Alcalá-Díaz, J.F.; Quintana-Navarro, G.; Yubero-Serrano, E.M.; López-Moreno, J.; Delgado-Lista, J.; Tinahones, F.; Ordovás, J.M.; López-Miranda, J.; Pérez-Martínez, P. Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: The cordioprev study. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(6), 770-777.
[http://dx.doi.org/10.1093/gerona/gly195] [PMID: 30165472]
[77]
Chai, S.C.; Foley, E.M.; Arjmandi, B.H. Anti-atherogenic properties of vitamin E, aspirin, and their combination. PLoS One, 2018, 13(10), e0206315.
[http://dx.doi.org/10.1371/journal.pone.0206315] [PMID: 30359442]
[78]
Rapola, J.M.; Virtamo, J.; Ripatti, S.; Huttunen, J.K.; Albanes, D.; Taylor, P.R.; Heinonen, O.P. Randomised trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet, 1997, 349(9067), 1715-1720.
[http://dx.doi.org/10.1016/S0140-6736(97)01234-8] [PMID: 9193380]
[79]
Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet, 1999, 354(9177), 447-455.
[http://dx.doi.org/10.1016/S0140-6736(99)07072-5] [PMID: 10465168]
[80]
Yusuf, S.; Dagenais, G.; Pogue, J.; Bosch, J.; Sleight, P. Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med., 2000, 342(3), 154-160.
[http://dx.doi.org/10.1056/NEJM200001203420302] [PMID: 10639540]
[81]
Huang, J.; Weinstein, S.J.; Yu, K.; Männistö, S.; Albanes, D. Serum beta carotene and overall and cause-specific mortality. Circ. Res., 2018, 123(12), 1339-1349.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313409] [PMID: 30566060]
[82]
Karppi, J.; Laukkanen, J.A.; Mäkikallio, T.H.; Ronkainen, K.; Kurl, S. Low β-carotene concentrations increase the risk of cardiovascular disease mortality among Finnish men with risk factors. Nutr. Metab. Cardiovasc. Dis., 2012, 22(10), 921-928.
[http://dx.doi.org/10.1016/j.numecd.2012.01.008] [PMID: 22494809]
[83]
D’Odorico, A.; Martines, D.; Kiechl, S.; Egger, G.; Oberhollenzer, F.; Bonvicini, P.; Sturniolo, G.C.; Naccarato, R.; Willeit, J. High plasma levels of α- and β-carotene are associated with a lower risk of atherosclerosis. Atherosclerosis, 2000, 153(1), 231-239.
[http://dx.doi.org/10.1016/S0021-9150(00)00403-2] [PMID: 11058719]
[84]
Muzáková, V.; Kand’ár, R.; Meloun, M.; Skalický, J.; Královec, K.; Záková, P.; Vojtísek, P. Inverse correlation between plasma beta-carotene and interleukin-6 in patients with advanced coronary artery disease. Int. J. Vitam. Nutr. Res., 2010, 80(6), 369-377.
[http://dx.doi.org/10.1024/0300-9831/a000024] [PMID: 21792817]
[85]
Harari, A.; Melnikov, N.; Kandel Kfir, M.; Kamari, Y.; Mahler, L.; Ben-Amotz, A.; Harats, D.; Cohen, H.; Shaish, A. Dietary β-carotene rescues vitamin A deficiency and inhibits atherogenesis in apolipoprotein E-deficient mice. Nutrients, 2020, 12(6), 1625.
[http://dx.doi.org/10.3390/nu12061625] [PMID: 32492795]
[86]
Zhou, F.; Wu, X.; Pinos, I.; Abraham, B.M.; Barrett, T.J.; von Lintig, J.; Fisher, E.A.; Amengual, J. β-Carotene conversion to vitamin A delays atherosclerosis progression by decreasing hepatic lipid secretion in mice. J. Lipid Res., 2020, 61(11), 1491-1503.
[http://dx.doi.org/10.1194/jlr.RA120001066] [PMID: 32963037]
[87]
Amengual, J.; Coronel, J.; Marques, C.; Aradillas-García, C.; Morales, J.M.V.; Andrade, F.C.D.; Erdman, J.W., Jr; Teran-Garcia, M. β-carotene oxygenase 1 activity modulates circulating cholesterol concentrations in mice and humans. J. Nutr., 2020, 150(8), 2023-2030.
[http://dx.doi.org/10.1093/jn/nxaa143] [PMID: 32433733]
[88]
Shan, R.; Liu, N.; Yan, Y.; Liu, B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol. Res., 2021, 166, 105169.
[http://dx.doi.org/10.1016/j.phrs.2020.105169] [PMID: 33053445]
[89]
Li, B.; Luo, Y.R.; Zhang, Q.; Fu, S.H.; Chen, Y.D.; Tian, J.W.; Guo, Y. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, attenuates apoptosis of vascular smooth muscle cells and reduces atherosclerosis in diabetic apolipoprotein E–deficient mice. Vascul. Pharmacol., 2021, 140, 106854.
[http://dx.doi.org/10.1016/j.vph.2021.106854] [PMID: 33781961]
[90]
Grootaert, M.O.J.; Moulis, M.; Roth, L.; Martinet, W.; Vindis, C.; Bennett, M.R.; De Meyer, G.R.Y. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 622-634.
[http://dx.doi.org/10.1093/cvr/cvy007] [PMID: 29360955]
[91]
Babaev, V.R.; Ding, L.; Zhang, Y.; May, J.M.; Lin, P.C.; Fazio, S.; Linton, M.F. Macrophage IKKα deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2016, 36(4), 598-607.
[http://dx.doi.org/10.1161/ATVBAHA.115.306931] [PMID: 26848161]
[92]
Liu, J.; Thewke, D.P.; Su, Y.R.; Linton, M.F.; Fazio, S.; Sinensky, M.S. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 174-179.
[http://dx.doi.org/10.1161/01.ATV.0000148548.47755.22] [PMID: 15499039]
[93]
Seimon, T.; Tabas, I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res., 2009, 50, S382-S387.
[http://dx.doi.org/10.1194/jlr.R800032-JLR200] [PMID: 18953058]
[94]
Gautier, E.L.; Huby, T.; Witztum, J.L.; Ouzilleau, B.; Miller, E.R.; Saint-Charles, F.; Aucouturier, P.; Chapman, M.J.; Lesnik, P. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation, 2009, 119(13), 1795-1804.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.806158] [PMID: 19307478]
[95]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[96]
Gonzalez, L.; Trigatti, B.L. Macrophage apoptosis and necrotic core development in atherosclerosis: A rapidly advancing field with clinical relevance to imaging and therapy. Can. J. Cardiol., 2017, 33(3), 303-312.
[http://dx.doi.org/10.1016/j.cjca.2016.12.010] [PMID: 28232016]
[97]
Dadsena, S.; Zollo, C.; García-Sáez, A.J. Mechanisms of mitochondrial cell death. Biochem. Soc. Trans., 2021, 49(2), 663-674.
[http://dx.doi.org/10.1042/BST20200522] [PMID: 33704419]
[98]
Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[99]
Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie, 2017, 135, 111-125.
[http://dx.doi.org/10.1016/j.biochi.2017.02.001] [PMID: 28192157]
[100]
Larsen, B.D.; Sørensen, C.S. The caspase-activated DN ase: Apoptosis and beyond. FEBS J., 2017, 284(8), 1160-1170.
[http://dx.doi.org/10.1111/febs.13970] [PMID: 27865056]
[101]
Zamaraev, A.V.; Kopeina, G.S.; Prokhorova, E.A.; Zhivotovsky, B.; Lavrik, I.N. Post-translational modification of caspases: The other side of apoptosis regulation. Trends Cell Biol., 2017, 27(5), 322-339.
[http://dx.doi.org/10.1016/j.tcb.2017.01.003] [PMID: 28188028]
[102]
Bratton, S.B.; Salvesen, G.S. Regulation of the Apaf-1–caspase-9 apoptosome. J. Cell Sci., 2010, 123(19), 3209-3214.
[http://dx.doi.org/10.1242/jcs.073643] [PMID: 20844150]
[103]
Duan, H.; Zhang, Q.; Liu, J.; Li, R.; Wang, D.; Peng, W.; Wu, C. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis. Pharmacol. Res., 2021, 168, 105599.
[http://dx.doi.org/10.1016/j.phrs.2021.105599] [PMID: 33838291]
[104]
Xia, X.; Li, J.; Liang, X.; Zhang, S.; Liu, T.; Liu, J.; Arif, M.; Li, G. Ticagrelor suppresses oxidized low-density lipoprotein-induced endothelial cell apoptosis and alleviates atherosclerosis in ApoE-/- mice via downregulation of PCSK9. Mol. Med. Rep., 2019, 19(3), 1453-1462.
[PMID: 30592271]
[105]
Yang, S.; Zhang, W.; Xuan, L.; Han, F.; Lv, Y.; Wan, Z.; Liu, H.; Ren, L.; Gong, L.; Liu, L. Akebia Saponin D inhibits the formation of atherosclerosis in ApoE mice by attenuating oxidative stress-induced apoptosis in endothelial cells. Atherosclerosis, 2019, 285, 23-30.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.04.202] [PMID: 30999121]
[106]
Huang, D.; Wang, X.; Zhu, Y.; Gong, J.; Liang, J.; Song, Y.; Zhang, Y.; Liu, L.; Wei, C. Bazi bushen capsule alleviates post-menopausal atherosclerosis via GPER1-dependent anti-inflammatory and anti-apoptotic effects. Front. Pharmacol., 2021, 12, 658998.
[http://dx.doi.org/10.3389/fphar.2021.658998] [PMID: 34248622]
[107]
Fatahian, A.; Haftcheshmeh, S.M.; Azhdari, S.; Farshchi, H.K.; Nikfar, B.; Momtazi-Borojeni, A.A. Promising anti-atherosclerotic effect of berberine: Evidence from in vitro, in vivo, and clinical studies. Rev. Physiol. Biochem. Pharmacol., 2020, 178, 83-110.
[http://dx.doi.org/10.1007/112_2020_42] [PMID: 32789786]
[108]
Xing, L.; Zhou, X.; Li, A.H.; Li, H.J.; He, C.X.; Qin, W.; Zhao, D.; Li, P.Q.; Zhu, L.; Cao, H.L. Atheroprotective effects and molecular mechanism of berberine. Front. Mol. Biosci., 2021, 8, 762673.
[http://dx.doi.org/10.3389/fmolb.2021.762673] [PMID: 34869592]
[109]
Wang, L.; Deng, L.; Lin, N.; Shi, Y.; Chen, J.; Zhou, Y.; Chen, D.; Liu, S.; Li, C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci., 2020, 259, 118253.
[http://dx.doi.org/10.1016/j.lfs.2020.118253] [PMID: 32795536]
[110]
Liu, Y.; Song, A.; Wu, H.; Sun, Y.; Dai, M. Paeonol inhibits apoptosis of vascular smooth muscle cells via up-regulation of autophagy by activating class III PI3K/Beclin-1 signaling pathway. Life Sci., 2021, 264, 118714.
[http://dx.doi.org/10.1016/j.lfs.2020.118714] [PMID: 33157088]
[111]
Wang, Y.Q.; Xu, Z.M.; Wang, X.L.; Zheng, J.K.; Du, Q.; Yang, J.X.; Zhang, H.C. LncRNA FOXC2-AS1 regulated proliferation and apoptosis of vascular smooth muscle cell through targeting miR-1253/FOXF1 axis in atherosclerosis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3302-3314.
[PMID: 32271448]
[112]
Cheng, Q.; Zhang, M.; Zhang, M.; Ning, L.; Chen, D. Long non-coding RNA LOC285194 regulates vascular smooth muscle cell apoptosis in atherosclerosis. Bioengineered, 2020, 11(1), 53-60.
[http://dx.doi.org/10.1080/21655979.2019.1705054] [PMID: 31884873]
[113]
Wang, P.W.; Pang, Q.; Zhou, T.; Song, X.Y.; Pan, Y.J.; Jia, L.P.; Zhang, A.H. Irisin alleviates vascular calcification by inhibiting VSMC osteoblastic transformation and mitochondria dysfunction via AMPK/Drp1 signaling pathway in chronic kidney disease. Atherosclerosis, 2022, 346, 36-45.
[http://dx.doi.org/10.1016/j.atherosclerosis.2022.02.007] [PMID: 35255258]
[114]
Ajoolabady, A.; Bi, Y.; McClements, D.J.; Lip, G.Y.H.; Richardson, D.R.; Reiter, R.J.; Klionsky, D.J.; Ren, J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol. Res., 2022, 176, 106072.
[http://dx.doi.org/10.1016/j.phrs.2022.106072] [PMID: 35007709]
[115]
Momtazi-Borojeni, A.A.; Zabihi, N.A.; Bagheri, R.K.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Intravenous curcumin mitigates atherosclerosis progression in cholesterol-fed rabbits. Adv. Exp. Med. Biol., 2021, 1308, 45-54.
[http://dx.doi.org/10.1007/978-3-030-64872-5_5] [PMID: 33861436]
[116]
Lin, K.; Chen, H.; Chen, X.; Qian, J.; Huang, S.; Huang, W. Efficacy of curcumin on aortic atherosclerosis: A systematic review and meta-analysis in mouse studies and insights into possible mechanisms. Oxid. Med. Cell. Longev., 2020, 2020, 1520747.
[http://dx.doi.org/10.1155/2020/1520747] [PMID: 31998433]
[117]
Ouyang, S.; Yao, Y.H.; Zhang, Z.M.; Liu, J.S.; Xiang, H. Curcumin inhibits hypoxia inducible factor-1α-induced inflammation and apoptosis in macrophages through an ERK dependent pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1816-1825.
[PMID: 30840308]
[118]
Ren, J.L.; Chen, Y.; Zhang, L.S.; Zhang, Y.R.; Liu, S.M.; Yu, Y.R.; Jia, M.Z.; Tang, C.S.; Qi, Y.F.; Lu, W.W. Intermedin1-53 attenuates atherosclerotic plaque vulnerability by inhibiting CHOP-mediated apoptosis and inflammasome in macrophages. Cell Death Dis., 2021, 12(5), 436.
[http://dx.doi.org/10.1038/s41419-021-03712-w] [PMID: 33934111]
[119]
Fang, S.; Sun, S.; Cai, H.; Zou, X.; Wang, S.; Hao, X.; Wan, X.; Tian, J.; Li, Z.; He, Z.; Huang, W.; Liang, C.; Zhang, Z.; Yang, L.; Tian, J.; Yu, B.; Sun, B. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1+/- mice display increases atherosclerotic plaque stability. Theranostics, 2021, 11(19), 9358-9375.
[http://dx.doi.org/10.7150/thno.62797] [PMID: 34646375]
[120]
Galle-Treger, L.; Moreau, M.; Ballaire, R.; Poupel, L.; Huby, T.; Sasso, E.; Troise, F.; Poti, F.; Lesnik, P.; Le Goff, W.; Gautier, E.L.; Huby, T. Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis. Cardiovasc. Res., 2020, 116(3), 554-565.
[http://dx.doi.org/10.1093/cvr/cvz138] [PMID: 31119270]
[121]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[122]
Zheng, F.; Xing, S.; Gong, Z.; Mu, W.; Xing, Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm., 2014, 2014, 507208.
[http://dx.doi.org/10.1155/2014/507208] [PMID: 24999295]
[123]
Bai, B.; Yang, Y.; Wang, Q.; Li, M.; Tian, C.; Liu, Y.; Aung, L.H.H.; Li, P.; Yu, T.; Chu, X. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis., 2020, 11(9), 776.
[http://dx.doi.org/10.1038/s41419-020-02985-x] [PMID: 32948742]
[124]
Zheng, F.; Xing, S.; Gong, Z.; Xing, Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ., 2013, 22(9), 746-750.
[http://dx.doi.org/10.1016/j.hlc.2013.01.012] [PMID: 23462287]
[125]
Schunk, S.J.; Kleber, M.E.; März, W.; Pang, S.; Zewinger, S.; Triem, S.; Ege, P.; Reichert, M.C.; Krawczyk, M.; Weber, S.N.; Jaumann, I.; Schmit, D.; Sarakpi, T.; Wagenpfeil, S.; Kramann, R.; Boerwinkle, E.; Ballantyne, C.M.; Grove, M.L.; Tragante, V.; Pilbrow, A.P.; Richards, A.M.; Cameron, V.A.; Doughty, R.N.; Dubé, M.P.; Tardif, J.C.; Feroz-Zada, Y.; Sun, M.; Liu, C.; Ko, Y.A.; Quyyumi, A.A.; Hartiala, J.A.; Tang, W.H.W.; Hazen, S.L.; Allayee, H.; McDonough, C.W.; Gong, Y.; Cooper-DeHoff, R.M.; Johnson, J.A.; Scholz, M.; Teren, A.; Burkhardt, R.; Martinsson, A.; Smith, J.G.; Wallentin, L.; James, S.K.; Eriksson, N.; White, H.; Held, C.; Waterworth, D.; Trompet, S.; Jukema, J.W.; Ford, I.; Stott, D.J.; Sattar, N.; Cresci, S.; Spertus, J.A.; Campbell, H.; Tierling, S.; Walter, J.; Ampofo, E.; Niemeyer, B.A.; Lipp, P.; Schunkert, H.; Böhm, M.; Koenig, W.; Fliser, D.; Laufs, U.; Speer, T. Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality. Eur. Heart J., 2021, 42(18), 1742-1756.
[http://dx.doi.org/10.1093/eurheartj/ehab107] [PMID: 33748830]
[126]
Gu, P.; Hui, X.; Zheng, Q.; Gao, Y.; Jin, L.; Jiang, W.; Zhou, C.; Liu, T.; Huang, Y.; Liu, Q.; Nie, T.; Wang, Y.; Wang, Y.; Zhao, J.; Xu, A. Mitochondrial uncoupling protein 1 antagonizes atherosclerosis by blocking NLRP3 inflammasome–dependent interleukin-1β production. Sci. Adv., 2021, 7(50), eabl4024.
[http://dx.doi.org/10.1126/sciadv.abl4024] [PMID: 34878840]
[127]
Jiang, C.; Xie, S.; Yang, G.; Wang, N. Spotlight on NLRP3 inflammasome: Role in pathogenesis and therapies of atherosclerosis. J. Inflamm. Res., 2021, 14, 7143-7172.
[http://dx.doi.org/10.2147/JIR.S344730] [PMID: 34992411]
[128]
Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol., 2021, 18(5), 1141-1160.
[http://dx.doi.org/10.1038/s41423-021-00670-3] [PMID: 33850310]
[129]
Mathew, A.; Lindsley, T.A.; Sheridan, A.; Bhoiwala, D.L.; Hushmendy, S.F.; Yager, E.J.; Ruggiero, E.A.; Crawford, D.R. Degraded mitochondrial DNA is a newly identified subtype of the damage associated molecular pattern (DAMP) family and possible trigger of neurodegeneration. J. Alzheimers Dis., 2012, 30(3), 617-627.
[http://dx.doi.org/10.3233/JAD-2012-120145] [PMID: 22460333]
[130]
Yaron, J.R.; Gangaraju, S.; Rao, M.Y.; Kong, X.; Zhang, L.; Su, F.; Tian, Y.; Glenn, H.L.; Meldrum, D.R. K+ regulates Ca2+ to drive inflammasome signaling: Dynamic visualization of ion flux in live cells. Cell Death Dis., 2015, 6(10), e1954.
[http://dx.doi.org/10.1038/cddis.2015.277] [PMID: 26512962]
[131]
Katsnelson, M.A.; Rucker, L.G.; Russo, H.M.; Dubyak, G.R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol., 2015, 194(8), 3937-3952.
[http://dx.doi.org/10.4049/jimmunol.1402658] [PMID: 25762778]
[132]
Zhong, Z.; Zhai, Y.; Liang, S.; Mori, Y.; Han, R.; Sutterwala, F.S.; Qiao, L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun., 2013, 4(1), 1611.
[http://dx.doi.org/10.1038/ncomms2608] [PMID: 23511475]
[133]
Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202.
[http://dx.doi.org/10.1038/s41467-017-00227-x] [PMID: 28779175]
[134]
Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.M.; Persechini, P.M.; Ojcius, D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem., 2007, 282(5), 2871-2879.
[http://dx.doi.org/10.1074/jbc.M608083200] [PMID: 17132626]
[135]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[136]
Pappritz, K.; Lin, J.; El-Shafeey, M.; Fechner, H.; Kühl, U.; Alogna, A.; Spillmann, F.; Elsanhoury, A.; Schulz, R.; Tschöpe, C.; Van Linthout, S. Colchicine prevents disease progression in viral myocarditis via modulating the NLRP3 inflammasome in the cardiosplenic axis. ESC Heart Fail., 2022, 9(2), 925-941.
[http://dx.doi.org/10.1002/ehf2.13845] [PMID: 35178861]
[137]
Robertson, S.; Martínez, G.J.; Payet, C.A.; Barraclough, J.Y.; Celermajer, D.S.; Bursill, C.; Patel, S. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin. Sci., 2016, 130(14), 1237-1246.
[http://dx.doi.org/10.1042/CS20160090] [PMID: 27129183]
[138]
Li, Y.; Zhang, Y.; Lu, J.; Yin, Y.; Xie, J.; Xu, B. Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy. J. Cell. Mol. Med., 2021, 25(17), 8087-8094.
[http://dx.doi.org/10.1111/jcmm.16798] [PMID: 34312998]
[139]
Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol., 2013, 61(4), 404-410.
[http://dx.doi.org/10.1016/j.jacc.2012.10.027] [PMID: 23265346]
[140]
Samuel, M.; Tardif, J.C.; Bouabdallaoui, N.; Khairy, P.; Dubé, M.P.; Blondeau, L.; Guertin, M.C. Colchicine for secondary prevention of cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Can. J. Cardiol., 2021, 37(5), 776-785.
[http://dx.doi.org/10.1016/j.cjca.2020.10.006] [PMID: 33075455]
[141]
Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; van Gaal, W.; Howes, L.; Collins, N.; Yong, A.; Bhindi, R.; Whitbourn, R.; Lee, A.; Hengel, C.; Asrress, K.; Freeman, M.; Amerena, J.; Wilson, A.; Layland, J. Colchicine in patients with acute coronary syndrome. Circulation, 2020, 142(20), 1890-1900.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050771] [PMID: 32862667]
[142]
Ambrosy, A.P.; Yang, J.; Sung, S.H.; Allen, A.R.; Fitzpatrick, J.K.; Rana, J.S.; Wagner, J.; Philip, S.; Abrahamson, D.; Granowitz, C.; Go, A.S. Triglyceride levels and residual risk of atherosclerotic cardiovascular disease events and death in adults receiving statin therapy for primary or secondary prevention: Insights from the Kp reach study. J. Am. Heart Assoc., 2021, 10(20), e020377.
[http://dx.doi.org/10.1161/JAHA.120.020377] [PMID: 34622663]
[143]
Pavlović, J.; Greenland, P.; Franco, O.H.; Kavousi, M.; Ikram, M.K.; Deckers, J.W.; Ikram, M.A.; Leening, M.J.G. Recommendations and Associated Levels of Evidence for Statin Use in Primary Prevention of Cardiovascular Disease: A Comparison at Population Level of the American Heart Association/American College of Cardiology/Multisociety, US Preventive Services Task Force, Department of Veterans Affairs/Department of Defense, Canadian Cardiovascular Society, and European Society of Cardiology/European Atherosclerosis Society Clinical Practice Guidelines. Circ. Cardiovasc. Qual. Outcomes, 2021, 14(9), e007183.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.120.007183] [PMID: 34546786]
[144]
Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immunol., 2021, 60(2), 175-199.
[http://dx.doi.org/10.1007/s12016-020-08791-9] [PMID: 32378144]
[145]
Peng, S.; Xu, L.W.; Che, X.Y.; Xiao, Q.Q.; Pu, J.; Shao, Q.; He, B. Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy. Front. Pharmacol., 2018, 9, 438.
[http://dx.doi.org/10.3389/fphar.2018.00438] [PMID: 29773990]
[146]
Chen, A.; Chen, Z.; Zhou, Y.; Wu, Y.; Xia, Y.; Lu, D.; Fan, M.; Li, S.; Chen, J.; Sun, A.; Zou, Y.; Qian, J.; Ge, J. Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation. Cell Death Dis., 2021, 12(1), 78.
[http://dx.doi.org/10.1038/s41419-021-03389-1] [PMID: 33436548]
[147]
Satoh, M.; Tabuchi, T.; Itoh, T.; Nakamura, M. NLRP3 inflammasome activation in coronary artery disease: Results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Clin. Sci., 2014, 126(3), 233-241.
[http://dx.doi.org/10.1042/CS20130043] [PMID: 23944632]
[148]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Fereidouni, M.; Barreto, G.; Sahebkar, A. NLRP3 inflammasome as a treatment target in atherosclerosis: A focus on statin therapy. Int. Immunopharmacol., 2019, 73, 146-155.
[http://dx.doi.org/10.1016/j.intimp.2019.05.006] [PMID: 31100709]
[149]
Coll, R.C.; Hill, J.R.; Day, C.J.; Zamoshnikova, A.; Boucher, D.; Massey, N.L.; Chitty, J.L.; Fraser, J.A.; Jennings, M.P.; Robertson, A.A.B.; Schroder, K. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol., 2019, 15(6), 556-559.
[http://dx.doi.org/10.1038/s41589-019-0277-7] [PMID: 31086327]
[150]
Wu, D.; Chen, Y.; Sun, Y.; Gao, Q.; Li, H.; Yang, Z.; Wang, Y.; Jiang, X.; Yu, B. Target of MCC950 in inhibition of NLRP3 inflammasome activation: A literature review. Inflammation, 2020, 43(1), 17-23.
[http://dx.doi.org/10.1007/s10753-019-01098-8] [PMID: 31646445]
[151]
Sharma, A.; Choi, J.S.Y.; Stefanovic, N.; Al-Sharea, A.; Simpson, D.S.; Mukhamedova, N.; Jandeleit-Dahm, K.; Murphy, A.J.; Sviridov, D.; Vince, J.E.; Ritchie, R.H.; de Haan, J.B. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes, 2021, 70(3), 772-787.
[http://dx.doi.org/10.2337/db20-0357] [PMID: 33323396]
[152]
Zeng, W.; Wu, D.; Sun, Y.; Suo, Y.; Yu, Q.; Zeng, M.; Gao, Q.; Yu, B.; Jiang, X.; Wang, Y. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci. Rep., 2021, 11(1), 19305.
[http://dx.doi.org/10.1038/s41598-021-98437-3] [PMID: 34588488]
[153]
Huang, Y.; Jiang, H.; Chen, Y.; Wang, X.; Yang, Y.; Tao, J.; Deng, X.; Liang, G.; Zhang, H.; Jiang, W.; Zhou, R. Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol. Med., 2018, 10(4), e8689.
[http://dx.doi.org/10.15252/emmm.201708689] [PMID: 29531021]
[154]
Chen, S.; Wang, Y.; Pan, Y.; Liu, Y.; Zheng, S.; Ding, K.; Mu, K.; Yuan, Y.; Li, Z.; Song, H.; Jin, Y.; Fu, J. Novel role for tranilast in regulating NLRP3 ubiquitination, vascular inflammation, and atherosclerosis. J. Am. Heart Assoc., 2020, 9(12), e015513.
[http://dx.doi.org/10.1161/JAHA.119.015513] [PMID: 32476536]
[155]
Zhao, J.; Wang, Z.; Yuan, Z.; Lv, S.; Su, Q. Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice. Diab. Vasc. Dis. Res., 2020, 17(6), 1479164120977441.
[http://dx.doi.org/10.1177/1479164120977441] [PMID: 33269624]
[156]
Luo, J.; Wang, X.; Jiang, X.; Liu, C.; Li, Y.; Han, X.; Zuo, X.; Li, Y.; Li, N.; Xu, Y.; Si, S. Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome related inflammation and modulating cholesterol transport. FASEB J., 2020, 34(1), 1398-1411.
[http://dx.doi.org/10.1096/fj.201900903RRR] [PMID: 31914630]
[157]
Wen, J.; Chang, Y.; Huo, S.; Li, W.; Huang, H.; Gao, Y.; Lin, H.; Zhang, J.; Zhang, Y.; Zuo, Y.; Cao, X.; Zhong, F. Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging (Albany NY), 2021, 13(1), 910-932.
[http://dx.doi.org/10.18632/aging.202202] [PMID: 33290264]
[158]
Guo, D.; Sun, J.; Tian, M.; Lin, W. Fabrication of a fluorescent probe for reversibly monitoring mitochondrial membrane potential in living cells. Anal. Methods, 2021, 13(14), 1715-1719.
[http://dx.doi.org/10.1039/D0AY02294B] [PMID: 33861238]
[159]
Lin, B.; Liu, Y.; Zhang, X.; Fan, L.; Shu, Y.; Wang, J. Membrane-activated fluorescent probe for high-fidelity imaging of mitochondrial membrane potential. ACS Sens., 2021, 6(11), 4009-4018.
[http://dx.doi.org/10.1021/acssensors.1c01390] [PMID: 34757720]
[160]
Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; de la Mata, M.; Villanueva-Paz, M.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Munuera, M.; Sánchez-Alcázar, J.A. Atherosclerosis and coenzyme Q10. Int. J. Mol. Sci., 2019, 20(20), 5195.
[http://dx.doi.org/10.3390/ijms20205195] [PMID: 31635164]
[161]
Zhang, M.; Zhao, H.; Cai, J.; Li, H.; Wu, Q.; Qiao, T.; Li, K. Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet. PLoS One, 2017, 12(9), e0185688.
[http://dx.doi.org/10.1371/journal.pone.0185688] [PMID: 28961281]
[162]
Andreux, P.A.; Houtkooper, R.H.; Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov., 2013, 12(6), 465-483.
[http://dx.doi.org/10.1038/nrd4023] [PMID: 23666487]
[163]
Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med., 2020, 24(9), 4892-4899.
[http://dx.doi.org/10.1111/jcmm.15194] [PMID: 32279443]
[164]
Ulger, O.; Kubat, G.B. Therapeutic applications of mitochondrial transplantation. Biochimie, 2022, 195, 1-15.
[http://dx.doi.org/10.1016/j.biochi.2022.01.002] [PMID: 35026361]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy