Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Exploring the Phosphatidylcholine in Inflammatory Bowel Disease: Potential Mechanisms and Therapeutic Interventions

Author(s): Rujun Ai, Jie Xu, Guozhong Ji and Bota Cui*

Volume 28, Issue 43, 2022

Published on: 09 December, 2022

Page: [3486 - 3491] Pages: 6

DOI: 10.2174/1381612829666221124112803

Price: $65

Abstract

Background: Inflammatory bowel disease (IBD) is a significant health problem with an increasing financial burden worldwide. Although various treatment strategies have been used, the results were not satisfactory. More and more researches have proved that the application of phosphatidylcholine (PC) may become an alternative therapy for IBD.

Objective: This review aims to provide an overview of the possible mechanisms of PC and promote the potential application of PC for IBD therapy further.

Methods: A comprehensive literature search was performed in PubMed with the following keywords: ‘phosphatidylcholine’, ‘inflammatory bowel disease’, ‘Crohn's disease’, ‘inflammation’, ‘ulcerative colitis’, ‘therapy’, ‘nanomedicines’, ‘PKCζ’, ‘lysophosphatidylcholine’, ‘microbiota’ and ‘drug carrier’. The logical operators “AND” and “OR” were applied to combine different sets of the search results.

Results: Studies suggested that PC displays a significant effect in the treatment of IBD by modulating gut barrier function, remodeling gut microbiota structure, regulating polarization of macrophages, and reducing the inflammatory response. PC has also been exploited as a drug carrier for anticancer or anti-inflammation agents in multiple forms, which implies that PC has immense potential for IBD therapy.

Conclusion: PC has shown promising potential as a new therapeutic agent or a drug carrier, with a novel, stable, prolonged mechanism of action in treating IBD. However, more high-quality basic and clinical studies are needed to confirm this.

Keywords: Phosphatidylcholine, inflammatory bowel disease, ulcerative colitis, Crohn’s disease, IBD therapy, drug carrier.

[1]
Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet, 2017, 389(10080), 1741-1755.
[http://dx.doi.org/10.1016/S0140-6736(16)31711-1] [PMID: 27914655]
[2]
Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet, 2017, 389(10080), 1756-1770.
[http://dx.doi.org/10.1016/S0140-6736(16)32126-2] [PMID: 27914657]
[3]
Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet, 2017, 390(10114), 2769-2778.
[http://dx.doi.org/10.1016/S0140-6736(17)32448-0] [PMID: 29050646]
[4]
Daniluk, U.; Daniluk, J.; Kucharski, R.; Kowalczyk, T.; Pietrowska, K.; Samczuk, P.; Filimoniuk, A.; Kretowski, A.; Lebensztejn, D.; Ciborowski, M. Untargeted metabolomics and inflammatory markers profiling in children with Crohn’s disease and ulcerative colitis — a preliminary study. Inflamm. Bowel Dis., 2019, 25(7), 1120-1128.
[http://dx.doi.org/10.1093/ibd/izy402] [PMID: 30772902]
[5]
Patankar, J.V.; Müller, T.M.; Kantham, S.; Acera, M.G.; Mascia, F.; Scheibe, K.; Mahapatro, M.; Heichler, C.; Yu, Y.; Li, W.; Ruder, B.; Günther, C.; Leppkes, M.; Mathew, M.J.; Wirtz, S.; Neufert, C.; Kühl, A.A.; Paquette, J.; Jacobson, K.; Atreya, R.; Zundler, S.; Neurath, M.F.; Young, R.N.; Becker, C. E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat. Cell Biol., 2021, 23(7), 796-807.
[http://dx.doi.org/10.1038/s41556-021-00708-8] [PMID: 34239062]
[6]
Stremmel, W.; Ehehalt, R.; Staffer, S.; Stoffels, S.; Mohr, A.; Karner, M.; Braun, A. Mucosal protection by phosphatidylcholine. Dig. Dis., 2012, 30(Suppl. 3), 85-91.
[http://dx.doi.org/10.1159/000342729] [PMID: 23295697]
[7]
Sawai, T.; Drongowski, R.A.; Lampman, R.W.; Coran, A.G.; Harmon, C.M. The effect of phospholipids and fatty acids on tight-junction permeability and bacterial translocation. Pediatr. Surg. Int., 2001, 17(4), 269-274.
[http://dx.doi.org/10.1007/s003830100592] [PMID: 11409160]
[8]
Huang, F.; Subbaiah, P.V.; Holian, O.; Zhang, J.; Johnson, A.; Gertzberg, N.; Lum, H. Lysophosphatidylcholine increases endothelial permeability: role of PKCα and RhoA cross talk. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 289(2), L176-L185.
[http://dx.doi.org/10.1152/ajplung.00003.2005] [PMID: 15764646]
[9]
Stremmel, W.; Merle, U.; Zahn, A.; Autschbach, F.; Hinz, U.; Ehehalt, R. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut, 2005, 54(7), 966-971.
[http://dx.doi.org/10.1136/gut.2004.052316] [PMID: 15951544]
[10]
Tan, W.; Zhang, Q.; Dong, Z.; Yan, Y.; Fu, Y.; Liu, X.; Zhao, B.; Duan, X. Phosphatidylcholine ameliorates LPS-induced systemic inflammation and cognitive impairments via mediating the gut–brain axis balance. J. Agric. Food Chem., 2020, 68(50), 14884-14895.
[http://dx.doi.org/10.1021/acs.jafc.0c06383] [PMID: 33289390]
[11]
Wymann, M.P.; Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 162-176.
[http://dx.doi.org/10.1038/nrm2335] [PMID: 18216772]
[12]
Nandi, U.; Onyesom, I.; Douroumis, D. An in vitro evaluation of antitumor activity of Sirolimus-encapsulated liposomes in breast cancer cells. J. Pharm. Pharmacol., 2021, 73(3), 300-309.
[http://dx.doi.org/10.1093/jpp/rgaa061] [PMID: 33793879]
[13]
Mutalib, M.; Borrelli, O.; Blackstock, S.; Kiparissi, F.; Elawad, M.; Shah, N.; Lindley, K. The use of Sirolimus (rapamycin) in the management of refractory inflammatory bowel disease in children. J. Crohn’s Colitis, 2014, 8(12), 1730-1734.
[http://dx.doi.org/10.1016/j.crohns.2014.08.014] [PMID: 25240477]
[14]
Dey, P. Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases. Pharmacol. Res., 2020, 161, 105135.
[http://dx.doi.org/10.1016/j.phrs.2020.105135] [PMID: 32814166]
[15]
Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W.M.; Mercenier, A.; Nauta, A.; Garcia-Rodenas, C.L. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(3), G171-G193.
[http://dx.doi.org/10.1152/ajpgi.00048.2015] [PMID: 27908847]
[16]
Boldyreva, L.V.; Morozova, M.V.; Saydakova, S.S.; Kozhevnikova, E.N. Fat of the Gut: Epithelial phospholipids in inflammatory bowel diseases. Int. J. Mol. Sci., 2021, 22(21), 11682.
[http://dx.doi.org/10.3390/ijms222111682] [PMID: 34769112]
[17]
Stremmel, W.; Staffer, S.; Gan-Schreier, H.; Wannhoff, A.; Bach, M.; Gauss, A. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(9)(9 Pt A), 1161-1169.
[http://dx.doi.org/10.1016/j.bbalip.2016.06.019] [PMID: 27365309]
[18]
Amadei, F.; Fröhlich, B.; Stremmel, W.; Tanaka, M. Nonclassical interactions of phosphatidylcholine with mucin protect intestinal surfaces: A microinterferometry study. Langmuir, 2018, 34(46), 14046-14057.
[http://dx.doi.org/10.1021/acs.langmuir.8b03035] [PMID: 30359036]
[19]
Chen, M.; Huang, H.; Zhou, P.; Zhang, J.; Dai, Y.; Yang, D.; Fan, X.; Pan, H. Oral phosphatidylcholine improves intestinal barrier function in drug-induced liver injury in rats. Gastroenterol. Res. Pract., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/8723460] [PMID: 31565053]
[20]
Wang, Y.; Li, C.; Wang, W.; Wang, J.; Li, J.; Qian, S.; Cai, C.; Liu, Y. Serum albumin to globulin ratio is associated with the presence and severity of inflammatory bowel disease. J. Inflamm. Res., 2022, 15, 1907-1920.
[http://dx.doi.org/10.2147/JIR.S347161] [PMID: 35313674]
[21]
Siddiqi, S.; Mansbach, C.M., II Dietary and biliary phosphatidylcholine activates PKCζ in rat intestine. J. Lipid Res., 2015, 56(4), 859-870.
[http://dx.doi.org/10.1194/jlr.M056051] [PMID: 25713101]
[22]
Umemori, Y.; Kuribayashi, K.; Nirasawa, S.; Kondoh, T.; Tanaka, M.; Kobayashi, D.; Watanabe, N. Protein kinase C ζ regulates survivin expression and inhibits apoptosis in colon cancer. Int. J. Oncol., 2014, 45(3), 1043-1050.
[http://dx.doi.org/10.3892/ijo.2014.2489] [PMID: 24920238]
[23]
Karner, M.; Kocjan, A.; Stein, J.; Schreiber, S.; von Boyen, G.; Uebel, P.; Schmidt, C.; Kupcinskas, L.; Dina, I.; Zuelch, F.; Keilhauer, G.; Stremmel, W. First multicenter study of modified release phosphatidylcholine “LT-02” in ulcerative colitis: a randomized, placebo-controlled trial in mesalazine-refractory courses. Am. J. Gastroenterol., 2014, 109(7), 1041-1051.
[http://dx.doi.org/10.1038/ajg.2014.104] [PMID: 24796768]
[24]
Kaplan, G.G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(12), 720-727.
[http://dx.doi.org/10.1038/nrgastro.2015.150] [PMID: 26323879]
[25]
Li, C.; Wang, J.; Ma, R.; Li, L.; Wu, W.; Cai, D.; Lu, Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol. Res., 2022, 175, 105972.
[http://dx.doi.org/10.1016/j.phrs.2021.105972] [PMID: 34758401]
[26]
Rogler, G. Where are we heading to in pharmacological IBD therapy? Pharmacol. Res., 2015, 100, 220-227.
[http://dx.doi.org/10.1016/j.phrs.2015.07.005] [PMID: 26277232]
[27]
Li, Q.; Chen, G.; Zhu, D.; Zhang, W.; Qi, S.; Xue, X.; Wang, K.; Wu, L. Effects of dietary phosphatidylcholine and sphingomyelin on DSS-induced colitis by regulating metabolism and gut microbiota in mice. J. Nutr. Biochem., 2022, 105, 109004.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109004] [PMID: 35351615]
[28]
Stremmel, W.; Ehehalt, R.; Autschbach, F.; Karner, M. Phosphatidylcholine for steroid-refractory chronic ulcerative colitis: a randomized trial. Ann. Intern. Med., 2007, 147(9), 603-610.
[http://dx.doi.org/10.7326/0003-4819-147-9-200711060-00004] [PMID: 17975182]
[29]
Tefas, C.; Ciobanu, L.; Tanțău, M.; Moraru, C.; Socaciu, C. The potential of metabolic and lipid profiling in inflammatory bowel diseases: A pilot study. Bosn. J. Basic Med. Sci., 2020, 20(2), 262-270.
[PMID: 31368421]
[30]
Wang, R.; Gu, X.; Dai, W.; Ye, J.; Lu, F.; Chai, Y.; Fan, G.; Gonzalez, F.J.; Duan, G.; Qi, Y. A lipidomics investigation into the intervention of celastrol in experimental colitis. Mol. Biosyst., 2016, 12(5), 1436-1444.
[http://dx.doi.org/10.1039/C5MB00864F] [PMID: 27021137]
[31]
Chiou, Y.L.; Lin, S.R.; Hu, W.P.; Chang, L.S. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin. Toxicon, 2014, 92, 113-122.
[http://dx.doi.org/10.1016/j.toxicon.2014.10.013] [PMID: 25449100]
[32]
Weaver, K.N.; Herfarth, H. Gluten-free diet in IBD: Time for a recommendation? Mol. Nutr. Food Res., 2021, 65(5), 1901274.
[http://dx.doi.org/10.1002/mnfr.201901274] [PMID: 32558265]
[33]
Laing, B.B.; Lim, A.G.; Ferguson, L.R. A personalised dietary approach—a way forward to manage nutrient deficiency, effects of the western diet, and food intolerances in inflammatory bowel disease. Nutrients, 2019, 11(7), 1532.
[http://dx.doi.org/10.3390/nu11071532] [PMID: 31284450]
[34]
Kim, J.; Song, Y.; Lee, S.J.; Lee, J.E.; Chung, M.Y.; Kim, I.H.; Kim, B.H. Enzymatic preparation of food-grade L-α-glycerylphosphorylcholine from soy phosphatidylcholine or fractionated soy lecithin. Biotechnol. Prog., 2020, 36(1), e2910.
[http://dx.doi.org/10.1002/btpr.2910] [PMID: 31513729]
[35]
Chittim, C.L.; Martínez del Campo, A.; Balskus, E.P. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nat. Microbiol., 2019, 4(1), 155-163.
[http://dx.doi.org/10.1038/s41564-018-0294-4] [PMID: 30455469]
[36]
Salim, S.Y.; Söderholm, J.D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis., 2011, 17(1), 362-381.
[http://dx.doi.org/10.1002/ibd.21403] [PMID: 20725949]
[37]
Johansson, M.E.V.; Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol., 2016, 16(10), 639-649.
[http://dx.doi.org/10.1038/nri.2016.88] [PMID: 27498766]
[38]
Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol., 2017, 11(9), 821-834.
[http://dx.doi.org/10.1080/17474124.2017.1343143] [PMID: 28650209]
[39]
Sartor, R.B.; Wu, G.D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology, 2017, 152(2), 327-339.e4.
[http://dx.doi.org/10.1053/j.gastro.2016.10.012] [PMID: 27769810]
[40]
Gao, X.; Du, L.; Randell, E.; Zhang, H.; Li, K.; Li, D. Effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice. Food Funct., 2021, 12(4), 1516-1528.
[http://dx.doi.org/10.1039/D0FO02632H] [PMID: 33506827]
[41]
Li, S.C.; Hsu, W.F.; Chang, J.S.; Shih, C.K. Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis shows a stronger anti-inflammatory effect than individual strains in HT-29 cells. Nutrients, 2019, 11(5), 969.
[http://dx.doi.org/10.3390/nu11050969] [PMID: 31035617]
[42]
Deng, Z.; Yang, W.; Blair, D.; Hu, W.; Yin, M. Diversity of Brachionus plicatilis species complex (Rotifera) in inland saline waters from China: Presence of a new mitochondrial clade on the Tibetan Plateau. Mol. Phylogenet. Evol., 2022, 171, 107457.
[http://dx.doi.org/10.1016/j.ympev.2022.107457] [PMID: 35351635]
[43]
Martín, R.; Chamignon, C.; Mhedbi-Hajri, N.; Chain, F.; Derrien, M.; Escribano-Vázquez, U.; Garault, P.; Cotillard, A.; Pham, H.P.; Chervaux, C.; Bermúdez-Humarán, L.G.; Smokvina, T.; Langella, P. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep., 2019, 9(1), 5398.
[http://dx.doi.org/10.1038/s41598-019-41738-5] [PMID: 30931953]
[44]
Wang, H.B.; Wang, P.Y.; Wang, X.; Wan, Y.L.; Liu, Y.C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci., 2012, 57(12), 3126-3135.
[http://dx.doi.org/10.1007/s10620-012-2259-4] [PMID: 22684624]
[45]
Treede, I.; Braun, A.; Sparla, R.; Kühnel, M.; Giese, T.; Turner, J.R.; Anes, E.; Kulaksiz, H.; Füllekrug, J.; Stremmel, W.; Griffiths, G.; Ehehalt, R. Anti-inflammatory effects of phosphatidylcholine. J. Biol. Chem., 2007, 282(37), 27155-27164.
[http://dx.doi.org/10.1074/jbc.M704408200] [PMID: 17636253]
[46]
Pan, Y.; Ning, Y.; Hu, J.; Wang, Z.; Chen, X.; Zhao, X. The preventive effect of lactobacillus plantarum ZS62 on DSS-induced IBD by regulating oxidative stress and the immune response. Oxid. Med. Cell. Longev., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/9416794] [PMID: 34745426]
[47]
Khafaga, A.F. Exogenous phosphatidylcholine supplementation retrieve aluminum-induced toxicity in male albino rats. Environ. Sci. Pollut. Res. Int., 2017, 24(18), 15589-15598.
[http://dx.doi.org/10.1007/s11356-017-9151-x] [PMID: 28523611]
[48]
Sanchez-Lopez, E.; Zhong, Z.; Stubelius, A.; Sweeney, S.R.; Booshehri, L.M.; Antonucci, L.; Liu-Bryan, R.; Lodi, A.; Terkeltaub, R.; Lacal, J.C.; Murphy, A.N.; Hoffman, H.M.; Tiziani, S.; Guma, M.; Karin, M. Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production. Cell Metab., 2019, 29(6), 1350-1362.e7.
[http://dx.doi.org/10.1016/j.cmet.2019.03.011] [PMID: 30982734]
[49]
Treede, I.; Braun, A.; Jeliaskova, P.; Giese, T.; Füllekrug, J.; Griffiths, G.; Stremmel, W.; Ehehalt, R. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol., 2009, 9(1), 53.
[http://dx.doi.org/10.1186/1471-230X-9-53] [PMID: 19594939]
[50]
Hausmann, A.; Felmy, B.; Kunz, L.; Kroon, S.; Berthold, D.L.; Ganz, G.; Sandu, I.; Nakamura, T.; Zangger, N.S.; Zhang, Y.; Dolowschiak, T.; Fattinger, S.A.; Furter, M.; Müller-Hauser, A.A.; Barthel, M.; Vlantis, K.; Wachsmuth, L.; Kisielow, J.; Tortola, L.; Heide, D.; Heikenwälder, M.; Oxenius, A.; Kopf, M.; Schroeder, T.; Pasparakis, M.; Sellin, M.E.; Hardt, W.D. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J. Exp. Med., 2021, 218(11), e20210862.
[http://dx.doi.org/10.1084/jem.20210862] [PMID: 34529751]
[51]
Feng, T.T.; Yang, X.Y.; Hao, S.S.; Sun, F.F.; Huang, Y.; Lin, Q.S.; Pan, W. TLR-2-mediated metabolic reprogramming participates in polyene phosphatidylcholine-mediated inhibition of M1 macrophage polarization. Immunol. Res., 2020, 68(1), 28-38.
[http://dx.doi.org/10.1007/s12026-020-09125-9] [PMID: 32248343]
[52]
Triller, P.; Bachorz, J.; Synowitz, M.; Kettenmann, H.; Markovic, D. O- Vanillin attenuates the TLR2 mediated tumor-promoting phenotype of microglia. Int. J. Mol. Sci., 2020, 21(8), 2959.
[http://dx.doi.org/10.3390/ijms21082959] [PMID: 32331440]
[53]
Jung, J.Y.; Shin, J.S.; Lee, S.G.; Rhee, Y.K.; Cho, C.W.; Hong, H.D.; Lee, K.T. Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR 2-mediated activation. Int. Immunopharmacol., 2015, 28(1), 88-96.
[http://dx.doi.org/10.1016/j.intimp.2015.05.037] [PMID: 26049027]
[54]
Kovács, T.; Varga, G.; Érces, D.; Tőkés, T.; Tiszlavicz, L.; Ghyczy, M.; Boros, M.; Kaszaki, J. Dietary phosphatidylcholine supplementation attenuates inflammatory mucosal damage in a rat model of experimental colitis. Shock, 2012, 38(2), 177-185.
[http://dx.doi.org/10.1097/SHK.0b013e31825d1ed0] [PMID: 22576006]
[55]
Ben-Ami Shor, D.; Bashi, T.; Lachnish, J.; Fridkin, M.; Bizzaro, G.; Barshak, I.; Blank, M.; Shoenfeld, Y. Phosphorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: Implications for the treatment of human inflammatory bowel disease. J. Autoimmun., 2015, 56, 111-117.
[http://dx.doi.org/10.1016/j.jaut.2014.11.001] [PMID: 25479760]
[56]
Choi, Y.H.; Han, H.K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2018, 48(1), 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[57]
Jose, A.; Ninave, K.M.; Karnam, S.; Venuganti, V.V.K. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. J. Liposome Res., 2019, 29(2), 153-162.
[http://dx.doi.org/10.1080/08982104.2018.1502315] [PMID: 30022700]
[58]
Wu, Z.; Gan, Z.; Chen, B.; Chen, F.; Cao, J.; Luo, X. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomater. Sci., 2019, 7(8), 3190-3203.
[http://dx.doi.org/10.1039/C9BM00407F] [PMID: 31145392]
[59]
Gkionis, L.; Aojula, H.; Harris, L.K.; Tirella, A. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Int. J. Pharm., 2021, 604, 120711.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120711] [PMID: 34015381]
[60]
Kim, J.H.; Hong, S.S.; Lee, M.; Lee, E.H.; Rhee, I.; Chang, S.Y.; Lim, S.J. Krill oil-incorporated liposomes as an effective nanovehicle to ameliorate the inflammatory responses of DSS-induced colitis. Int. J. Nanomedicine, 2019, 14, 8305-8320.
[http://dx.doi.org/10.2147/IJN.S220053] [PMID: 31806959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy