Review Article

心血管疾病中铁中毒靶向脂质过氧化的研究前景

卷 30, 期 31, 2023

发表于: 21 December, 2022

页: [3550 - 3561] 页: 12

弟呕挨: 10.2174/0929867330666221111162905

价格: $65

Open Access Journals Promotions 2
摘要

脂质代谢是调节正常细胞活性和死亡的复杂生化过程。铁死亡是一种新的程序性细胞死亡模式,不同于凋亡、焦亡和自噬。脂质代谢异常可导致脂质过氧化和细胞破裂死亡,脂质过氧化和细胞破裂死亡受脂氧合酶(LOX)、长链酰基辅酶a合成酶和抗氧化酶的调控。另外,LOXs和铁下垂的活性也需要Fe2+和Fe3+,并且Fe2+可以显著加速铁下垂的脂质过氧化。脂质代谢异常是心血管疾病的一定危险因素。近年来,关于铁下垂在心血管疾病发生中的重要作用的报道越来越多。减少脂质积累可减少铁下垂的发生,从而缓解心血管疾病的恶化。本文综述了脂质过氧化与铁下垂的一般机制的关系,并强调脂质过氧化是铁下垂和心血管疾病的共同点。

关键词: 脂质过氧化,脂质,心血管疾病,铁下垂,机制,脂氧化酶(LOX)。

[1]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[2]
Xia, J.; Si, H.; Yao, W.; Li, C.; Yang, G.; Tian, Y.; Hao, C. Research progress on the mechanism of ferroptosis and its clinical application. Exper. Cell Res., 2021, 409(2), 112932.
[http://dx.doi.org/10.1016/j.yexcr.2021.112932]
[3]
Imai, H.; Matsuoka, M.; Kumagai, T.; Sakamoto, T.; Koumura, T. Lipid peroxidation-dependent cell death regulated by GPx4 and Ferroptosis. Curr. Top. Microbiol. Immunol., 2016, 403, 143-170.
[http://dx.doi.org/10.1007/82_2016_508] [PMID: 28204974]
[4]
Daiha; Shin; Eun; Hye; Kim; Jaewang; Lee; Jong-Lyel; Roh. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 10, 426.
[5]
Li, C.; Dong, X.; Du, W.; Shi, X.; Chen, K.; Zhang, W.; Gao, M. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduct. Target. Ther., 2020, 5(1), 187.
[http://dx.doi.org/10.1038/s41392-020-00297-2] [PMID: 32883948]
[6]
Li, N.; Jiang, W.; Wang, W.; Xiong, R.; Wu, X.; Geng, Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol. Res., 2021, 166(5), 105466.
[http://dx.doi.org/10.1016/j.phrs.2021.105466] [PMID: 33548489]
[7]
McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[8]
Zheng, P.; Xie, Z.; Yuan, Y.; Sui, W.; Wang, C.; Gao, X.; Zhao, Y.; Zhang, F.; Gu, Y.; Hu, P.; Ye, J.; Feng, X.; Zhang, L. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Sci. Rep., 2017, 7(1), 42574.
[http://dx.doi.org/10.1038/srep42574] [PMID: 28218306]
[9]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[10]
Çolakoğlu, M.; Tunçer, S.; Banerjee, S. Emerging cellular functions of the lipid metabolizing enzyme 15-Lipoxygenase-1. Cell Prolif., 2018, 51(5), e12472.
[http://dx.doi.org/10.1111/cpr.12472] [PMID: 30062726]
[11]
Wan, J.; Ren, H.; Wang, J. Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc. Neurol., 2019, 4(2), 93-95.
[http://dx.doi.org/10.1136/svn-2018-000205] [PMID: 31338218]
[12]
Forcina, G.C.; Dixon, S.J. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics, 2019, 19(18), 1800311.
[http://dx.doi.org/10.1002/pmic.201800311] [PMID: 30888116]
[13]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[14]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun., 2016, 478(3), 1338-1343.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.124] [PMID: 27565726]
[15]
Kan, C.F.K.; Singh, A.B.; Dong, B.; Shende, V.R.; Liu, J. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(5), 577-587.
[http://dx.doi.org/10.1016/j.bbalip.2015.01.008] [PMID: 25645621]
[16]
Zhang, H.L.; Hu, B.X.; Li, Z.L.; Du, T.; Shan, J.L.; Ye, Z.P.; Peng, X.D.; Li, X.; Huang, Y.; Zhu, X.Y.; Chen, Y.H.; Feng, G.K.; Yang, D.; Deng, R.; Zhu, X.F. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat. Cell Biol., 2022, 24(1), 88-98.
[http://dx.doi.org/10.1038/s41556-021-00818-3] [PMID: 35027735]
[17]
Sha, W.; Hu, F.; Xi, Y.; Chu, Y.; Bu, S. Mechanism of Ferroptosis and its role in Type 2 Diabetes Mellitus. J. Diabetes Res., 2021, 2021(2), 1-10.
[http://dx.doi.org/10.1155/2021/9999612] [PMID: 34258295]
[18]
Shintoku, R.; Takigawa, Y.; Yamada, K.; Kubota, C.; Yoshimoto, Y.; Takeuchi, T.; Koshiishi, I.; Torii, S. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci., 2017, 108(11), 2187-2194.
[http://dx.doi.org/10.1111/cas.13380] [PMID: 28837253]
[19]
Yang, F.; Zhang, Y.; Ren, H.; Wang, J.; Shang, L.; Liu, Y.; Zhu, W.; Shi, X. Ischemia reperfusion injury promotes recurrence of hepatocellular carcinoma in fatty liver via ALOX12-12HETE-GPR31 signaling axis. J. Exper. Clin. Cancer Res., 2019, 38, 489.
[20]
Li, Q.Q.; Li, Q.; Jia, J.N.; Liu, Z.Q.; Zhou, H.H.; Mao, X.Y. 12/15 lipoxygenase: A crucial enzyme in diverse types of cell death. Neurochem. Int., 2018, 118, 34-41.
[http://dx.doi.org/10.1016/j.neuint.2018.04.002] [PMID: 29627380]
[21]
Amla, B.; Lw, C.; Hd, B. Inactivation of RIP3 kinase sensitizes to 15LOX/PEBP1-mediated ferroptotic death. Redox Biol., 2022, 50, 102232.
[22]
Sun, W.Y.; Tyurin, V.A.; Mikulska-Ruminska, K.; Shrivastava, I.H.; Anthonymuthu, T.S.; Zhai, Y.J.; Pan, M.H.; Gong, H.B.; Lu, D.H.; Sun, J.; Duan, W.J.; Korolev, S.; Abramov, A.Y.; Angelova, P.R.; Miller, I.; Beharier, O.; Mao, G.W.; Dar, H.H.; Kapralov, A.A.; Amoscato, A.A.; Hastings, T.G.; Greenamyre, T.J.; Chu, C.T.; Sadovsky, Y.; Bahar, I.; Bayır, H.; Tyurina, Y.Y.; He, R.R.; Kagan, V.E. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat. Chem. Biol., 2021, 17(4), 465-476.
[http://dx.doi.org/10.1038/s41589-020-00734-x] [PMID: 33542532]
[23]
Touaibia, M.; Faye, D.C.; Doiron, J.A.; Chiasson, A.I.; Blanchard, S.; Roy, P.P.; Surette, M.E. Structure–activity relationship studies of new sinapic acid Phenethyl Ester Analogues targeting the biosynthesis of 5-lipoxygenase products: The role of phenolic moiety, ester function, and bioisosterism. J. Nat. Prod., 2022, 85(1), 225-236.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00982] [PMID: 34995066]
[24]
Hinman, A.; Holst, C.R.; Latham, J.C.; Bruegger, J.J.; Ulas, G.; McCusker, K.P.; Amagata, A.; Davis, D.; Hoff, K.G.; Kahn-Kirby, A.H.; Kim, V.; Kosaka, Y.; Lee, E.; Malone, S.A.; Mei, J.J.; Richards, S.J.; Rivera, V.; Miller, G.; Trimmer, J.K.; Shrader, W.D. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One, 2018, 13(8), e0201369.
[http://dx.doi.org/10.1371/journal.pone.0201369] [PMID: 30110365]
[25]
Seiler, A.; Schneider, M.; Förster, H.; Roth, S.; Wirth, E.K.; Culmsee, C.; Plesnila, N.; Kremmer, E.; Rådmark, O.; Wurst, W.; Bornkamm, G.W.; Schweizer, U.; Conrad, M. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab., 2008, 8(3), 237-248.
[http://dx.doi.org/10.1016/j.cmet.2008.07.005] [PMID: 18762024]
[26]
Yao, Y.; Chen, Z.; Zhang, H.; Chen, C.; Zeng, M.; Yunis, J.; Wei, Y.; Wan, Y.; Wang, N.; Zhou, M.; Qiu, C.; Zeng, Q.; Ong, H.S.; Wang, H.; Makota, F.V.; Yang, Y.; Yang, Z.; Wang, N.; Deng, J.; Shen, C.; Xia, Y.; Yuan, L.; Lian, Z.; Deng, Y.; Guo, C.; Huang, A.; Zhou, P.; Shi, H.; Zhang, W.; Yi, H.; Li, D.; Xia, M.; Fu, J.; Wu, N.; de Haan, J.B.; Shen, N.; Zhang, W.; Liu, Z.; Yu, D. Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat. Immunol., 2021, 22(9), 1127-1139.
[http://dx.doi.org/10.1038/s41590-021-00996-0] [PMID: 34413521]
[27]
Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Okuyama, A.; Shiono, J.; Inoue, K.; Sakashita, H. Down-regulation of Glutathione Peroxidase 4 in oral cancer inhibits tumor growth through SREBP1 signaling. Anticancer Res., 2021, 41(4), 1785-1792.
[http://dx.doi.org/10.21873/anticanres.14944] [PMID: 33813383]
[28]
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Freitas, F.P.; Seibt, T. Selenium utilization by GPX4 Is required to prevent Hydroperoxide-induced Ferroptosis. Cell, 2017, 172(3), 409-422.e21..
[PMID: 29290465]
[29]
Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med., 2020, 152, 175-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.027] [PMID: 32165281]
[30]
Schneider, M.; Wortmann, M.; Mandal, P.K.; Arpornchayanon, W.; Jannasch, K.; Alves, F.; Strieth, S.; Conrad, M.; Beck, H. Absence of glutathione peroxidase 4 affects tumor angiogenesis through increased 12/15-lipoxygenase activity. Neoplasia, 2010, 12(3), 254-263.
[http://dx.doi.org/10.1593/neo.91782] [PMID: 20234819]
[31]
Thayyullathil, F.; Cheratta, A.R.; Alakkal, A.; Subburayan, K.; Pallichankandy, S.; Hannun, Y.A.; Galadari, S. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis., 2021, 12(1), 26.
[http://dx.doi.org/10.1038/s41419-020-03297-w] [PMID: 33414455]
[32]
Stoyanovsky, D.A.; Tyurina, Y.Y.; Shrivastava, I.; Bahar, I.; Kagan, V.E. Iron Catalysis of Lipid Peroxidation in Ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic. Biol. Med., 2018, 133, 153.
[PMID: 30217775]
[33]
He, Y.J.; Liu, X.Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 2020, 241, 119911.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119911] [PMID: 32143060]
[34]
Leidgens, S.; Bullough, K.Z.; Shi, H.; Li, F.; Shakoury-Elizeh, M.; Yabe, T.; Subramanian, P.; Hsu, E.; Natarajan, N.; Nandal, A.; Stemmler, T.L.; Philpott, C.C. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J. Biol. Chem., 2013, 288(24), 17791-17802.
[http://dx.doi.org/10.1074/jbc.M113.460253] [PMID: 23640898]
[35]
Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E4966-E4975.
[http://dx.doi.org/10.1073/pnas.1603244113] [PMID: 27506793]
[36]
Chen, L.; Lin, Z.; Liu, L.; Zhang, X.; Shi, W.; Ge, D.; Sun, Y. Fe 2+ /Fe 3+ Ions chelated with ultrasmall polydopamine nanoparticles induce ferroptosis for cancer therapy. ACS Biomater. Sci. Eng., 2019, 5(9), 4861-4869.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00461]
[37]
Bao, W.D.; Pang, P.; Zhou, X.T.; Hu, F.; Xiong, W.; Chen, K.; Wang, J.; Wang, F.; Xie, D.; Hu, Y.Z.; Han, Z.T.; Zhang, H.H.; Wang, W.X.; Nelson, P.T.; Chen, J.G.; Lu, Y.; Man, H.Y.; Liu, D.; Zhu, L.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ., 2021, 28(5)(Suppl. 1), 1548-1562.
[http://dx.doi.org/10.1038/s41418-020-00685-9] [PMID: 33398092]
[38]
Gray, G.M.; Macfarlane, M.G. Separation and composition of the phospholipids of ox heart. Biochem. J., 1958, 70(3), 409-425.
[http://dx.doi.org/10.1042/bj0700409] [PMID: 13596358]
[39]
Schlame, M.; Rua, D.; Greenberg, M.L. The biosynthesis and functional role of cardiolipin. Prog Lipid Res., 2000, 39(3), 288.
[http://dx.doi.org/10.1016/S0163-7827(00)00005-9]
[40]
Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev., 2005, 85(3), 1093-1129.
[http://dx.doi.org/10.1152/physrev.00006.2004] [PMID: 15987803]
[41]
Taegtmeyer, A.C.M. A scientific statement from the American heart association. Circ. Res., 2016, 118(10), E35-E35.
[PMID: 27174956]
[42]
Tomczyk, M.M.; Dolinsky, V.W. The cardiac lipidome in models of cardiovascular disease. Metabolites, 2020, 10(6), 254.
[http://dx.doi.org/10.3390/metabo10060254] [PMID: 32560541]
[43]
Guo, Y.; Lu, C.; Hu, K.; Cai, C.; Wang, W. Ferroptosis in Cardiovascular Diseases: Current status, challenges, and future perspectives. Biomolecules, 2022, 12(3), 390.
[http://dx.doi.org/10.3390/biom12030390] [PMID: 35327582]
[44]
Shao, B.; Heinecke, J.W. HDL, lipid peroxidation, and atherosclerosis. J. Lipid Res., 2009, 50(4), 599-601.
[http://dx.doi.org/10.1194/jlr.E900001-JLR200] [PMID: 19141435]
[45]
Koleini, N.; Nickel, B.E.; Edel, A.L.; Fandrich, R.R.; Ravandi, A.; Kardami, E. Oxidized phospholipids in doxorubicin-induced cardiotoxicity. Chem. Biol. Interact., 2019, 303, 35-39.
[http://dx.doi.org/10.1016/j.cbi.2019.01.032] [PMID: 30707978]
[46]
Nomura, S.O.; Karger, A.B.; Weir, N.L.; Duprez, D.A.; Tsai, M.Y. Free fatty acids, cardiovascular disease, and mortality in the multi-ethnic study of atherosclerosis. J. Clin. Lipidol., 2020, 14(4), 531-541.
[http://dx.doi.org/10.1016/j.jacl.2020.06.005] [PMID: 32651087]
[47]
Liu, Z.; Cao, S.; Chen, Q.; Fu, F.; Cheng, M.; Huang, X. MicroRNA-132 promotes atherosclerosis by inducing mitochondrial oxidative stressmediated ferroptosis. J. Southern Med. Univ., 2022, 42(1), 143-149.
[48]
Meng, Z.; Liang, H.; Zhao, J.; Gao, J.; Liu, C.; Ma, X.; Liu, J.; Liang, B.; Jiao, X.; Cao, J.; Wang, Y. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci., 2021, 284(3), 119935.
[http://dx.doi.org/10.1016/j.lfs.2021.119935] [PMID: 34508760]
[49]
Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med., 2020, 160, 92-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.026] [PMID: 32768568]
[50]
Cornelissen, A.; Guo, L.; Sakamoto, A.; Virmani, R.; Finn, A.V. New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine, 2019, 47, 598-606.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.014] [PMID: 31416722]
[51]
Xiao, F.J.; Zhang, D.; Wu, Y.; Jia, Q.H.; Zhang, L.; Li, Y.X.; Yang, Y.F.; Wang, H.; Wu, C.T.; Wang, L.S. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem. Biophys. Res. Commun., 2019, 515(3), 448-454.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.147] [PMID: 31160087]
[52]
Luo, E.F.; Li, H.X.; Qin, Y.H.; Qiao, Y.; Yan, G.L.; Yao, Y.Y.; Li, L.Q.; Hou, J.T.; Tang, C.C.; Wang, D. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J. Diabetes, 2021, 12(2), 124-137.
[http://dx.doi.org/10.4239/wjd.v12.i2.124] [PMID: 33594332]
[53]
Martinet, W.; Coornaert, I.; Puylaert, P.; De Meyer, G.R.Y. Macrophage death as a pharmacological target in atherosclerosis. Front. Pharmacol., 2019, 10, 306.
[http://dx.doi.org/10.3389/fphar.2019.00306] [PMID: 31019462]
[54]
Fernandez-Garcia, V.; Gonzalez-Ramos, S.; Avendano-Ortiz, J.; Martin-Sanz, P.; Delgado, C.; Castrillo, A.; Bosca, L. NOD1 splenic activation confers ferroptosis protection and reduces macrophage recruitment under pro-atherogenic conditions. Biomed. Pharmacother., 2022, 148, 112769-112769.
[55]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am. J. Physiol. Heart Circ. Physiol., 2018, 315(5), H1341-H1352.
[http://dx.doi.org/10.1152/ajpheart.00028.2018] [PMID: 30095969]
[56]
Li, Y.; Xiong, Z.; Yan, W.; Gao, E.; Cheng, H.; Wu, G.; Liu, Y.; Zhang, L.; Li, C.; Wang, S.; Fan, M.; Zhao, H.; Zhang, F.; Tao, L. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics, 2020, 10(12), 5623-5640.
[http://dx.doi.org/10.7150/thno.44836] [PMID: 32373236]
[57]
Tang, L.J.; Luo, X.J.; Tu, H.; Chen, H.; Xiong, X.M.; Li, N.S.; Peng, J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(2), 401-410.
[http://dx.doi.org/10.1007/s00210-020-01932-z] [PMID: 32621060]
[58]
Ma, X.H.; Liu, J.H.Z.; Liu, C.Y.; Sun, W.Y.; Duan, W.J.; Wang, G.; Kurihara, H.; He, R.R.; Li, Y.F.; Chen, Y.; Shang, H. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal. Transduct. Target. Ther., 2022, 7(1), 288.
[http://dx.doi.org/10.1038/s41392-022-01090-z] [PMID: 35970840]
[59]
Ravingerová, T.; Kindernay, L.; Barteková, M.; Ferko, M.; Adameová, A.; Zohdi, V.; Bernátová, I.; Ferenczyová, K.; Lazou, A. The molecular mechanisms of iron metabolism and its role in cardiac dysfunction and cardioprotection. Int. J. Mol. Sci., 2020, 21(21), 7889.
[http://dx.doi.org/10.3390/ijms21217889] [PMID: 33114290]
[60]
Feng, Y.; Madungwe, N.B.; Imam Aliagan, A.D.; Tombo, N.; Bopassa, J.C. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem. Biophys. Res. Commun., 2019, 520(3), 606-611.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.006] [PMID: 31623831]
[61]
Zhang, C.; He, M.; Ni, L.; He, K.; Su, K.; Deng, Y.; Li, Y.; Xia, H. The role of arachidonic acid metabolism in myocardial ischemia–reperfusion injury. Cell Biochem. Biophys., 2020, 78(3), 255-265.
[http://dx.doi.org/10.1007/s12013-020-00928-z] [PMID: 32623640]
[62]
Stamenkovic, A.; O’Hara, K.A.; Nelson, D.C.; Maddaford, T.G.; Edel, A.L.; Maddaford, G.; Dibrov, E.; Aghanoori, M.; Kirshenbaum, L.A.; Fernyhough, P.; Aliani, M.; Pierce, G.N.; Ravandi, A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2021, 320(3), H1170-H1184.
[http://dx.doi.org/10.1152/ajpheart.00237.2020] [PMID: 33513080]
[63]
He, L.; Yang, Y.; Chen, J.; Zou, P.; Li, J. Transcriptional activation of ENPP2 by FoxO4 protects cardiomyocytes from doxorubicin-induced toxicity. Mol. Med. Rep., 2021, 24(3), 668.
[http://dx.doi.org/10.3892/mmr.2021.12307] [PMID: 34296293]
[64]
Sun, W.; Wu, X.; Yu, P.; Zhang, Q.; Shen, L.; Chen, J.; Tong, H.; Fan, M.; Shi, H.; Chen, X. LncAABR07025387.1 enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis. Front. Cell Dev. Biol., 2022, 10, 672391.
[http://dx.doi.org/10.3389/fcell.2022.672391] [PMID: 35186915]
[65]
Yen, C.H.; Lin, J.L.; Sung, K.T.; Su, C.H.; Huang, W.H.; Chen, Y.Y.; Chien, S.C.; Lai, Y.H.; Lee, P.Y.; Liu, Y.Y.; Tsai, J.P.; Tsai, C.T.; Hou, C.J.Y.; Chen, Y.J.; Hsieh, Y.J.; Hung, C.L.; Hung, T.C.; Yeh, H.I. Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci. Rep., 2021, 11(1), 16501.
[http://dx.doi.org/10.1038/s41598-021-95534-1] [PMID: 34389755]
[66]
Tuunanen, H.; Ukkonen, H.; Knuuti, J. Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr. Cardiol. Rep., 2008, 10(2), 142-148.
[http://dx.doi.org/10.1007/s11886-008-0024-2] [PMID: 18417015]
[67]
Fragasso, G. Inhibition of free fatty acids metabolism as a therapeutic target in patients with heart failure. Int. J. Clin. Pract., 2007, 61(4), 603-610.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01280.x] [PMID: 17394434]
[68]
Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants, 2021, 10(12), 1864.
[http://dx.doi.org/10.3390/antiox10121864] [PMID: 34942967]
[69]
Ning, D.; Yang, X.; Wang, T.; Jiang, Q.; Yu, J.; Wang, D. Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2021, 574, 39-47.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.017] [PMID: 34438345]
[70]
Liu, B.; Zhao, C.; Li, H.; Chen, X.; Ding, Y.; Xu, S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 233-240.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.061] [PMID: 29427658]
[71]
Shi, P.; Song, C.; Qi, H.; Ren, J.; Ren, P.; Wu, J.; Xie, Y.; Zhang, M.; Sun, H.; Cao, Y. Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat. J. Nutr. Biochem., 2022, 104, 108972-108972.
[http://dx.doi.org/10.1016/j.jnutbio.2022.108972] [PMID: 35227883]
[72]
Aneja, A.; Tang, W.H.W.; Bansilal, S.; Garcia, M.J.; Farkouh, M.E. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am. J. Med., 2008, 121(9), 748-757.
[http://dx.doi.org/10.1016/j.amjmed.2008.03.046] [PMID: 18724960]
[73]
Carpentier, A.C. Abnormal myocardial dietary fatty acid metabolism and diabetic cardiomyopathy. Can. J. Cardiol., 2018, 34(5), 605-614.
[http://dx.doi.org/10.1016/j.cjca.2017.12.029] [PMID: 29627307]
[74]
Yan, X.; Chen, J.; Zhang, C.; Zhou, S.; Zhang, Z.; Chen, J.; Feng, W.; Li, X.; Tan, Y. FGF 21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J. Cell. Mol. Med., 2015, 19(7), 1557-1568.
[http://dx.doi.org/10.1111/jcmm.12530] [PMID: 25823710]
[75]
Ma, S.; Jing, F.; Zhang, R.; Chen, J.; Han, D.; Li, X.; Bo, Y.; Li, X.; Fan, M.; Li, C. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid. Med. Cell. Longev., 2017, 2017, 4602715.
[76]
Wang, X.; Chen, X.; Zhou, W.; Men, H.; Bao, T.; Sun, Y.; Wang, Q.; Tan, Y.; Keller, B.B.; Tong, Q.; Zheng, Y.; Cai, L. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm. Sin. B, 2022, 12(2), 708-722.
[http://dx.doi.org/10.1016/j.apsb.2021.10.005] [PMID: 35256941]
[77]
Zou, C.; Liu, X.; Xie, R.; Bao, Y.; Jin, Q.; Jia, X.; Li, L.; Liu, R. Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem. Biophys. Res. Commun., 2017, 486(4), 930-936.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.127] [PMID: 28347819]
[78]
Pei, Z.; Deng, Q.; Babcock, S.A.; He, E.Y.; Ren, J.; Zhang, Y. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress. Toxicol. Lett., 2018, 284, 10-20.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.018] [PMID: 29174818]
[79]
Tadokoro, T.; Ikeda, M.; Ide, T.; Deguchi, H.; Ikeda, S.; Okabe, K.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.; Imai, H.; Tsutsui, H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight, 2020, 5(9), e132747.
[http://dx.doi.org/10.1172/jci.insight.132747] [PMID: 32376803]
[80]
Kitakata, H.; Endo, J.; Ikura, H.; Moriyama, H.; Shirakawa, K.; Katsumata, Y.; Sano, M. Therapeutic targets for DOX-induced cardiomyopathy: Role of apoptosis vs. rerroptosis. Int. J. Mol. Sci., 2022, 23(3), 1414.
[http://dx.doi.org/10.3390/ijms23031414] [PMID: 35163335]
[81]
Liu, Y.; Zeng, L.; Yang, Y.; Chen, C.; Wang, D.; Wang, H. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis., 2020, 11(9), 756.
[http://dx.doi.org/10.1038/s41419-020-02948-2] [PMID: 32934217]
[82]
Hang, C. A.; Ji, Z. B.; Yl, A.; Jp, C.; Ying, L. A.; Zl, A.; Cui, W. A.; Xd, A.; Dl, A. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine., 2022, 99, 153964.
[83]
Chang, J-C.; Yang, K-T.; Chao, T-H.; Wang, I-C.; Luo, Y-P.; Ting, P-C.; Lin, J-H. Berberine protects cardiac cells against ferroptosis. Tzu-Chi Med. J., 2022, 34(3), 310-317.
[http://dx.doi.org/10.4103/tcmj.tcmj_236_21] [PMID: 35912047]
[84]
Pinto, C.; Duque, A.L.; Rodríguez-Galdón, B.; Cestero, J.J.; Macías, P. Xanthohumol prevents carbon tetrachloride-induced acute liver injury in rats. Food Chem. Toxicol., 2012, 50(10), 3405-3412.
[http://dx.doi.org/10.1016/j.fct.2012.07.035] [PMID: 22884764]
[85]
Jiefu, L.; Tingting, W.; Yalan, L.; Mengxia, W.; Haobo, L.; Irwin, M. G.; Zhengyuan, X. N-acetylcysteine restores sevoflurane postconditioning cardioprotection against myocardial ischemia-reperfusion injury in diabetic rats. J. Diabetes Res., 2016, 2015, 9213034.
[86]
Zhang, W.; Bai, X.; Zheng, X.; Xie, X.; Yuan, Z. Icariin attenuates the enhanced prothrombotic state in atherosclerotic rabbits independently of its lipid-lowering effects. Planta Med., 2013, 79(9), 731-736.
[http://dx.doi.org/10.1055/s-0032-1328551] [PMID: 23700112]
[87]
Chen, Y.; Yu, F.; Zhang, Y.; Li, M.; Di, M.; Chen, W.; Liu, X.; Zhang, Y.; Zhang, M. Traditional chinese medication tongxinluo attenuates lipidosis in Ox-LDL-stimulated macrophages by enhancing beclin-1-induced autophagy. Front. Pharmacol., 2021, 12, 673366.
[http://dx.doi.org/10.3389/fphar.2021.673366] [PMID: 34248627]
[88]
Liu, X.J.; Lv, Y.F.; Cui, W.Z.; Li, Y.; Liu, Y.; Xue, Y.T.; Dong, F. Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio, 2021, 11(11), 2966-2976.
[http://dx.doi.org/10.1002/2211-5463.13276] [PMID: 34407320]
[89]
Wang, Y.; Kuang, X.; Yin, Y.; Han, N.; Chang, L.; Wang, H.; Hou, Y.; Li, H.; Li, Z.; Liu, Y.; Hao, Y.; Wei, Y.; Wang, X.; Jia, Z. Tongxinluo prevents chronic obstructive pulmonary disease complicated with atherosclerosis by inhibiting ferroptosis and protecting against pulmonary microvascular barrier dysfunction. Biomed. Pharmacother., 2022, 145, 112367.
[http://dx.doi.org/10.1016/j.biopha.2021.112367] [PMID: 34740097]
[90]
Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep., 2020, 40(8), BSR20201807.
[http://dx.doi.org/10.1042/BSR20201807] [PMID: 32776119]
[91]
Chen, X.; Li, X.; Xu, X.; Li, L.; Liang, N.; Zhang, L.; Lv, J.; Wu, Y.C.; Yin, H. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic. Res., 2021, 55(4), 405-415.
[http://dx.doi.org/10.1080/10715762.2021.1876856] [PMID: 33455488]
[92]
Farmer, L.A.; Wu, Z.; Poon, J.F.; Zilka, O.; Lorenz, S.M.; Huehn, S.; Proneth, B.; Conrad, M.; Pratt, D.A. Intrinsic and extrinsic limitations to the design and optimization of inhibitors of lipid peroxidation and associated cell death. J. Am. Chem. Soc., 2022, 144(32), 14706-14721.
[http://dx.doi.org/10.1021/jacs.2c05252] [PMID: 35921655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy