Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Interlaboratory Co-validation of a UPLC-ToF MS MAM Method for Truncations of a Fc Fusion Protein

Author(s): Gang Wu, Chuanfei Yu, Qinghe Tong, Wenbo Wang, Xi Huang, Hao Li and Lan Wang*

Volume 24, Issue 10, 2023

Published on: 02 December, 2022

Page: [1315 - 1325] Pages: 11

DOI: 10.2174/1389201024666221111160403

Price: $65

Abstract

Background: Peptide-Fc fusion proteins are inherently heterogeneous and complex molecules. Protein post-translational modifications (PTMs) or truncation can arise during manufacturing or product storage. Some of these product attributes could potentially impact the efficacy or safety of the bio-molecule and are thus classified as critical quality attributes (CQAs). These CQAs should be controlled in order to ensure manufacturing and quality consistency.

Methods: A subunit UPLC-ToF MS based MAM method was developed for identity test and quantitatively monitored two critical quality attributes (CQAs) resulting from two truncations of that fusion protein (fragment 1 and 2). Three independent laboratories are involved in the method validation according to ICH Q2(R1), ICH Q6B, FDA and NMPA guidance.

Results: This developed method fully meets the pre-defined analytical target profile (ATP), including specificity, accuracy, precision, quantitation limit, linearity, range and robustness. Three independent labs co-validate a UPLC-ToF MS based MAM method for protein drug QC release and stability testing.

Conclusion: The experimental design of method validation can be a reference for LC-HRMS-based subunit MAM methods that have been widely used in the characterization of antibodies, ADCs and other protein-based biologics. This work paves the way for implementing MAM in QC with more targeted control of product quality.

Keywords: Interlaboratory, method validation, MAM, multi-attribute method, UPLC-ToF MS, fusion protein, truncation, LCMS, HRMS, subunit, CQAs, QC release testing, stability.

Graphical Abstract
[1]
Rodgers, K.R.; Chou, R.C. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. Biotechnol. Adv., 2016, 34(6), 1149-1158.
[http://dx.doi.org/10.1016/j.biotechadv.2016.07.004] [PMID: 27460206]
[2]
Wang, X.; An, Z.; Luo, W.; Xia, N.; Zhao, Q. Molecular and functional analysis of monoclonal antibodies in support of biologics devel-opment. Protein Cell, 2018, 9(1), 74-85.
[http://dx.doi.org/10.1007/s13238-017-0447-x] [PMID: 28733914]
[3]
Wooding, K.M.; Peng, W.; Mechref, Y. Characterization of pharmaceutical IgG and biosimilars using miniaturized platforms and LC-MS/MS. Curr. Pharm. Biotechnol., 2016, 17(9), 788-801.
[http://dx.doi.org/10.2174/1389201017666160401145012] [PMID: 27033511]
[4]
Rath, T.; Baker, K.; Dumont, J.A.; Peters, R.T.; Jiang, H.; Qiao, S.W.; Lencer, W.I.; Pierce, G.F.; Blumberg, R.S. Fc-fusion proteins and FcRn: Structural insights for longer-lasting and more effective therapeutics. Crit. Rev. Biotechnol., 2015, 35(2), 235-254.
[http://dx.doi.org/10.3109/07388551.2013.834293] [PMID: 24156398]
[5]
Jafari, R.; Zolbanin, N.M.; Rafatpanah, H.; Majidi, J.; Kazemi, T. Fc-fusion proteins in therapy: An updated view. Curr. Med. Chem., 2017, 24(12), 1228-1237.
[PMID: 28088904]
[6]
Ning, L.; He, B.; Zhou, P.; Derda, R.; Huang, J. Molecular design of peptide-Fc fusion drugs. Curr. Drug Metab., 2019, 20(3), 203-208.
[http://dx.doi.org/10.2174/1389200219666180821095355] [PMID: 30129406]
[7]
Roopenian, D.C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol., 2007, 7(9), 715-725.
[http://dx.doi.org/10.1038/nri2155] [PMID: 17703228]
[8]
Xu, Y.; Wang, D.; Mason, B.; Rossomando, T.; Li, N.; Liu, D.; Cheung, J.K.; Xu, W.; Raghava, S.; Katiyar, A.; Nowak, C.; Xiang, T.; Dong, D.D.; Sun, J.; Beck, A.; Liu, H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs, 2019, 11(2), 239-264.
[http://dx.doi.org/10.1080/19420862.2018.1553476] [PMID: 30543482]
[9]
Rathore, D.; Faustino, A.; Schiel, J.; Pang, E.; Boyne, M.; Rogstad, S. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev. Proteomics, 2018, 15(5), 431-449.
[http://dx.doi.org/10.1080/14789450.2018.1469982] [PMID: 29694790]
[10]
Nowak, C.; K Cheung, J.; M Dellatore, S.; Katiyar, A.; Bhat, R.; Sun, J.; Ponniah, G.; Neill, A.; Mason, B.; Beck, A.; Liu, H. Forced degradation of recombinant monoclonal antibodies: A practical guide. MAbs, 2017, 9(8), 1217-1230.
[http://dx.doi.org/10.1080/19420862.2017.1368602] [PMID: 28853987]
[11]
Pisupati, K.; Benet, A.; Tian, Y.; Okbazghi, S.; Kang, J.; Ford, M.; Saveliev, S.; Sen, K.I.; Carlson, E.; Tolbert, T.J.; Ruotolo, B.T.; Schwendeman, S.P.; Schwendeman, A. Biosimilarity under stress: A forced degradation study of Remicade® and Remsima™. MAbs, 2017, 9(7), 1197-1209.
[http://dx.doi.org/10.1080/19420862.2017.1347741] [PMID: 28787231]
[12]
Ambrogelly, A.; Gozo, S.; Katiyar, A.; Dellatore, S.; Kune, Y.; Bhat, R.; Sun, J.; Li, N.; Wang, D.; Nowak, C.; Neill, A.; Ponniah, G.; King, C.; Mason, B.; Beck, A.; Liu, H. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs, 2018, 10(4), 513-538.
[http://dx.doi.org/10.1080/19420862.2018.1438797] [PMID: 29513619]
[13]
Rogstad, S.; Faustino, A.; Ruth, A.; Keire, D.; Boyne, M.; Park, J. A retrospective evaluation of the use of mass spectrometry in FDA bio-logics license applications. J. Am. Soc. Mass Spectrom., 2017, 28(5), 786-794.
[http://dx.doi.org/10.1007/s13361-016-1531-9] [PMID: 27873217]
[14]
Shion, H.; Chakraborty, A.; Chen, X.; Sun, Q.L.; Berger, S. Structural characterization of therapeutic monoclonal antibody Trastuzumab by LC/MS and LC/MSE. Zhongguo Xin Yao Zazhi, 2014, 23(431), 418-426.
[15]
Wang, M.L. Application of UPLC/VION mass spectrometry in quality control of recombinant human albumin. Chin. Pharm. J., 2018, 53, 729-738.
[16]
Ippoliti, S.; Ying, Q.Y.; Ranbaduge, N.; Chen, W. Establishment of a robust mAb subunit product quality attribute monitoring method suitable for development, process monitoring and QC release. Waters Application Note. 720007129., 2021. Available from: https://www.waters.com/content/dam/waters/en/app-notes/2021/720007129/720007129-en.pdf
[17]
Dong, J.; Migliore, N.; Mehrman, S.J.; Cunningham, J.; Lewis, M.J.; Hu, P. High-throughput, automated protein a purification platform with multiattribute LC–MS analysis for advanced cell culture process monitoring. Anal. Chem., 2016, 88(17), 8673-8679.
[http://dx.doi.org/10.1021/acs.analchem.6b01956] [PMID: 27487007]
[18]
Rogstad, S.; Yan, H.; Wang, X.; Powers, D.; Brorson, K.; Damdinsuren, B.; Lee, S. Multi-attribute method for quality control of therapeu-tic proteins. Anal. Chem., 2019, 91(22), 14170-14177.
[http://dx.doi.org/10.1021/acs.analchem.9b03808] [PMID: 31618017]
[19]
Sokolowska, I.; Mo, J.; Rahimi Pirkolachahi, F.; McVean, C.; Meijer, L.A.T.; Switzar, L.; Balog, C.; Lewis, M.J.; Hu, P. Implementation of a high-resolution liquid chromatography−mass spectrometry method in quality control laboratories for release and stability testing of a commercial antibody product. Anal. Chem., 2020, 92(3), 2369-2373.
[http://dx.doi.org/10.1021/acs.analchem.9b05036] [PMID: 31869206]
[20]
Liu, T.; Guo, H.; Zhu, L.; Zheng, Y.; Xu, J.; Guo, Q.; Zhang, D.; Qian, W.; Dai, J.; Guo, Y.; Hou, S.; Wang, H. Fast characterization of Fc-containing proteins by middle-down mass spectrometry following IdeS digestion. Chromatographia, 2016, 79(21-22), 1491-1505.
[http://dx.doi.org/10.1007/s10337-016-3173-2]
[21]
Zhang, B.; Jeong, J.; Burgess, B.; Jazayri, M.; Tang, Y.; Taylor Zhang, Y. Development of a rapid RP-UHPLC–MS method for analysis of modifications in therapeutic monoclonal antibodies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1032, 172-181.
[http://dx.doi.org/10.1016/j.jchromb.2016.05.017] [PMID: 27233581]
[22]
Haberger, M.; Bonnington, L.; Bomans, K. Application of electrospray ionization mass spectrometry in a quality control lab. Am. Pharm. Rev., 2016, 19, 1-6.
[23]
Kellie, J.F.; Thomson, A.S.; Chen, S.; Childs, S.L.; Karlinsey, M.Z.; Mai, S.H.; White, J.R.; Biddlecombe, R.A. Biotherapeutic antibody subunit LC-MS and peptide mapping LC-MS measurements to study possible biotransformation and critical quality attributes in vivo. J. Pharm. Sci., 2019, 108(4), 1415-1422.
[http://dx.doi.org/10.1016/j.xphs.2018.11.019] [PMID: 30465782]
[24]
Liu, P.; Zhu, X.; Wu, W.; Ludwig, R.; Song, H.; Li, R.; Zhou, J.; Tao, L.; Leone, A.M. Subunit mass analysis for monitoring multiple at-tributes of monoclonal antibodies. Rapid Commun. Mass Spectrom., 2019, 33(1), 31-40.
[http://dx.doi.org/10.1002/rcm.8301] [PMID: 30286260]
[25]
Prospects and current use of the multi-attribute method for quality control of therapeutic antibodies. Yao Xue Xue Bao, 2020, 9, 2092-2098.
[26]
ICH Guideline Q2 (R1). Validation of analytical procedures: Text and methodology International Conference on Harmonisation 1996. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf
[27]
ICH guideline Q6B specifications: Test procedures and acceptance criteria for biotechnological/biological products. International Conference on Harmonisation, 1999. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-6-b-test-procedures-acceptance-criteria-biotechnological/biological-products-step-5_en.pdf
[28]
Analytical Procedures and Methods Validation for Drugs and Biologics. Guidance for Industry; U.S. Food and Drug Administration, 2015. Available from: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf 9101 analytical method validation guidance. Chinese Pharmacopeia, 2015, 4, 480-483.
[29]
9100 analytical method transfer guidance. Chinese Pharmacopeia, 2015, 4, 478-480. Available from: https://www.reach24h.com/ko/uncategorized/chinese-pharmacopoeia-understanding-42-guidelines-english-version-available.html

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy