Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Combined Chronic Oral Methylphenidate and Fluoxetine Treatment During Adolescence: Effects on Behavior

Author(s): Panayotis K. Thanos*, Madison McCarthy, Daniela Senior, Samantha Watts, Carly Connor, Nikki Hammond, Kenneth Blum*, Michael Hadjiargyrou, David Komatsu and Heinz Steiner

Volume 24, Issue 10, 2023

Published on: 30 November, 2022

Page: [1307 - 1314] Pages: 8

DOI: 10.2174/1389201024666221028092342

Price: $65

Abstract

Background: Attention Deficit Hyperactivity Disorder (ADHD) can be comorbid with depression, often leading to the prescription of both methylphenidate (MP) and selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine (FLX). Moreover, these drugs are often misused as cognitive enhancers. This study examined the effects of chronic oral co-administration of MP and FLX on depressive- and anxiety-like behaviors.

Methods: Adolescent rats received daily either water (control), MP, FLX, or the combination of MP plus FLX in their drinking water over the course of 4 weeks.

Results: Data analysis shows a decrease in food consumption and body weight for rats exposed to FLX or the combination of MP and FLX. Sucrose consumption was significantly greater in FLX or MP+FLX groups compared to controls. FLX-treated rats showed no effect in the elevated plus maze (EPM; open arm time) and forced swim test (FST; latency to immobility). However, rats treated with the combination (MP+FLX) showed significant anxiolytic-like and anti-depressive-like behaviors (as measured by EPM and FST), as well as significant increases in overall activity (distance traveled in open field test). Finally, the combined MP+FLX treatment induced a decrease in anxiety and depressive- like behaviors significantly greater than the response from either of these drugs alone.

Conclusion: These behavioral results characterize the long-term effects of these drugs (orally administered) that are widely co-administered and co-misused and provide important insight into the potential neurobiological and neurochemical effects. Future research will determine the potential risks of the long-term use of MP and FLX together.

Keywords: reward deficiency syndrome, dopamine, serotonin, ADHD, drug abuse.

Graphical Abstract
[1]
Visser, S.N.; Danielson, M.L.; Bitsko, R.H.; Holbrook, J.R.; Kogan, M.D.; Ghandour, R.M.; Perou, R.; Blumberg, S.J. Trends in the par-ent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011. J. Am. Acad. Child Adolesc. Psychiatry, 2014, 53(1), 34-46.
[http://dx.doi.org/10.1016/j.jaac.2013.09.001] [PMID: 24342384]
[2]
Catherine, T.G.; Robert, N.G.; Mala, K.K.; Kanniammal, C.; Arullapan, J. Assessment of prevalence of attention deficit hyperactivity dis-order among schoolchildren in selected schools. Indian J. Psychiatry, 2019, 61(3), 232-237.
[http://dx.doi.org/10.4103/psychiatry.IndianJPsychiatry_333_17] [PMID: 31142899]
[3]
Batistela, S.; Bueno, O.F.A.; Vaz, L.J.; Galduróz, J.C.F. Methylphenidate as a cognitive enhancer in healthy young people. Dement. Neuropsychol., 2016, 10(2), 134-142.
[http://dx.doi.org/10.1590/S1980-5764-2016DN1002009] [PMID: 29213444]
[4]
Bogle, K.; Smith, B. Illicit methylphenidate use: a review of prevalence, availability, pharmacology, and consequences. Curr. Drug Abuse Rev., 2009, 2(2), 157-176.
[http://dx.doi.org/10.2174/1874473710902020157] [PMID: 19630746]
[5]
Teter, C.J.; McCabe, S.E.; LaGrange, K.; Cranford, J.A.; Boyd, C.J. Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy, 2006, 26(10), 1501-1510.
[http://dx.doi.org/10.1592/phco.26.10.1501] [PMID: 16999660]
[6]
Chen, L.Y.; Crum, R.M.; Strain, E.C.; Alexander, G.C.; Kaufmann, C.; Mojtabai, R. Prescriptions, nonmedical use, and emergency de-partment visits involving prescription stimulants. J. Clin. Psychiatry, 2016, 77(3), e297-e304.
[7]
Xia, W.; Shen, L.; Zhang, J. Comorbid anxiety and depression in school-aged children with attention deficit hyperactivity disorder (ADHD) and selfreported symptoms of ADHD, anxiety, and depression among parents of school-aged children with and without ADHD. Shanghai Arch. Psychiatry, 2015, 27(6), 356-367.
[8]
Chronis-Tuscano, A.; Molina, B.S.G.; Pelham, W.E.; Applegate, B.; Dahlke, A.; Overmyer, M.; Lahey, B.B. Very early predictors of ado-lescent depression and suicide attempts in children with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry, 2010, 67(10), 1044-1051.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.127] [PMID: 20921120]
[9]
Hartz, I.; Skurtveit, S.; Steffenak, A.K.; Karlstad, Ø.; Handal, M. Psychotropic drug use among 0-17 year olds during 2004-2014: a na-tionwide prescription database study. BMC Psychiatry, 2016, 16, 1471-244X.
[10]
Van Waes, V.; Steiner, H. Fluoxetine and other SSRI antidepressants potentiate addiction-related gene regulation by psychostimulant med-ications. In: Fluoxetine: Pharmacology, Mechanisms of Action and Potential Side Effects; Nova Science Publishers: New York, 2015; pp. 207-225.
[11]
Van Waes, V.; Ehrlich, S.; Beverley, J.A.; Steiner, H. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: Potential role for 5-HT1B receptor. Neuropharmacology, 2015, 89, 77-86.
[http://dx.doi.org/10.1016/j.neuropharm.2014.08.024] [PMID: 25218038]
[12]
Moon, C.; Marion, M.; Thanos, P.K.; Steiner, H. Fluoxetine potentiates oral methylphenidate-induced gene regulation in the rat striatum. Mol. Neurobiol., 2021, 58(10), 4856-4870.
[http://dx.doi.org/10.1007/s12035-021-02466-y] [PMID: 34213723]
[13]
Thanos, P.K.; Robison, L.S.; Steier, J.; Hwang, Y.F.; Cooper, T.; Swanson, J.M.; Komatsu, D.E.; Hadjiargyrou, M.; Volkow, N.D. A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior. Pharmacol. Biochem. Behav., 2015, 131, 143-153.
[http://dx.doi.org/10.1016/j.pbb.2015.01.005] [PMID: 25641666]
[14]
Martin, C.; Fricke, D.; Vijayashanthar, A.; Lowinger, C.; Koutsomitis, D.; Popoola, D.; Hadjiargyrou, M.; Komatsu, D.E.; Thanos, P.K. Recovery from behavior and developmental effects of chronic oral methylphenidate following an abstinence period. Pharmacol. Biochem. Behav., 2018, 172, 22-32.
[http://dx.doi.org/10.1016/j.pbb.2018.07.001] [PMID: 30030127]
[15]
Aggarwal, A.; Jethani, S.L.; Rohatgi, R.K.; Kalra, J. Selective serotonin re-uptake inhibitors (SSRIs) induced weight changes: a dose and duration dependent study on albino rats. J. Clin. Diagn. Res., 2016, 10(3), AF01-3.
[http://dx.doi.org/10.7860/JCDR/2016/16482.7376] [PMID: 27134853]
[16]
Robison, L.S.; Michaelos, M.; Gandhi, J.; Fricke, D.; Miao, E.; Lam, C.Y.; Mauceri, A.; Vitale, M.; Lee, J.; Paeng, S.; Komatsu, D.E.; Hadjiargyrou, M.; Thanos, P.K. Sex differences in the physiological and behavioral effects of chronic oral methylphenidate treatment in rats. Front. Behav. Neurosci., 2017, 11(53), 53.
[http://dx.doi.org/10.3389/fnbeh.2017.00053] [PMID: 28400722]
[17]
Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc., 2007, 2(2), 322-328.
[http://dx.doi.org/10.1038/nprot.2007.44] [PMID: 17406592]
[18]
Carias, E.; Fricke, D.; Vijayashanthar, A.; Smith, L.; Somanesan, R.; Martin, C.; Kalinowski, L.; Popoola, D.; Hadjiargyrou, M.; Komatsu, D.E.; Thanos, P.K. Weekday-only chronic oral methylphenidate self-administration in male rats: Reversibility of the behavioral and phys-iological effects. Behav. Brain Res., 2019, 356, 189-196.
[http://dx.doi.org/10.1016/j.bbr.2018.08.014] [PMID: 30149034]
[19]
Poulton, A.; Briody, J.; McCorquodale, T.; Melzer, E.; Herrmann, M.; Baur, L.A.; Duque, G. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? – A prospective longitudinal study. Int. J. Pediatr. Endocrinol., 2012, 2012(1), 30-30.
[http://dx.doi.org/10.1186/1687-9856-2012-30] [PMID: 23216890]
[20]
Schertz, M.; Adesman, A.R.; Alfieri, N.E.; Bienkowski, R.S. Predictors of weight loss in children with attention deficit hyperactivity dis-order treated with stimulant medication. Pediatrics, 1996, 98(4), 763-769.
[http://dx.doi.org/10.1542/peds.98.4.763] [PMID: 8885958]
[21]
Hodges, M.R.; Echert, A.E.; Puissant, M.M.; Mouradian, G.C. Jr Fluoxetine augments ventilatory CO2 sensitivity in Brown Norway but not Sprague dawley rats. Respir. Physiol. Neurobiol., 2013, 186(2), 221-228.
[http://dx.doi.org/10.1016/j.resp.2013.02.020] [PMID: 23454023]
[22]
Domecq, J.P.; Prutsky, G.; Leppin, A.; Sonbol, M.B.; Altayar, O.; Undavalli, C.; Wang, Z.; Elraiyah, T.; Brito, J.P.; Mauck, K.F.; Lababidi, M.H.; Prokop, L.J.; Asi, N.; Wei, J.; Fidahussein, S.; Montori, V.M.; Murad, M.H. Clinical review: Drugs commonly associated with weight change: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab., 2015, 100(2), 363-370.
[http://dx.doi.org/10.1210/jc.2014-3421] [PMID: 25590213]
[23]
Serretti, A.; Mandelli, L. Antidepressants and body weight: a comprehensive review and meta-analysis. J. Clin. Psychiatry, 2010, 71(10), 1259-1272.
[http://dx.doi.org/10.4088/JCP.09r05346blu] [PMID: 21062615]
[24]
Gerasimov, M.R.; Franceschi, M.; Volkow, N.D.; Gifford, A.; Gatley, S.J.; Marsteller, D.; Molina, P.E.; Dewey, S.L. Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study. J. Pharmacol. Exp. Ther., 2000, 295(1), 51-57.
[PMID: 10991960]
[25]
Warren, B.L.; Iñiguez, S.D.; Alcantara, L.F.; Wright, K.N.; Parise, E.M.; Weakley, S.K.; Bolaños-Guzmán, C.A. Juvenile administration of concomitant methylphenidate and fluoxetine alters behavioral reactivity to reward- and mood-related stimuli and disrupts ventral tegmental area gene expression in adulthood. J. Neurosci., 2011, 31(28), 10347-10358.
[http://dx.doi.org/10.1523/JNEUROSCI.1470-11.2011] [PMID: 21753012]
[26]
Sperling, R.E.; Gomes, S.M.; Sypek, E.I.; Carey, A.N.; McLaughlin, J.P. Endogenous kappa-opioid mediation of stress-induced potentia-tion of ethanol-conditioned place preference and self-administration. Psychopharmacology, 2010, 210(2), 199-209.
[http://dx.doi.org/10.1007/s00213-010-1844-5] [PMID: 20401606]
[27]
Colaço, C.S.; Alves, S.S.; Nolli, L.M.; Pinheiro, W.O.; de Oliveira, D.G.R.; Santos, B.W.L.; Pic-Taylor, A.; Mortari, M.R.; Caldas, E.D. Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats. Metab. Brain Dis., 2020, 35(5), 739-751.
[http://dx.doi.org/10.1007/s11011-020-00547-w] [PMID: 32103409]
[28]
Zienowicz, M.; Wisłowska-Stanek, A.; Lehner, M.; Taracha, E.; Maciejak, P.; Sobolewska, A.; Szyndler, J.; Turzyńska, D.; Walkowiak, J.; Płaźnik, A. Fluoxetine-induced anxiety and nervousness. Pharmacol. Rep., 2006, 58(1), 115-119.
[PMID: 16531638]
[29]
Borycz, J.; Zapata, A.; Quiroz, C.; Volkow, N.D.; Ferré, S. 5-HT 1B receptor-mediated serotoninergic modulation of methylphenidate-induced locomotor activation in rats. Neuropsychopharmacology, 2008, 33(3), 619-626.
[http://dx.doi.org/10.1038/sj.npp.1301445] [PMID: 17487226]
[30]
Van Waes, V.; Beverley, J.; Marinelli, M.; Steiner, H. Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum. Eur. J. Neurosci., 2010, 32(3), 435-447.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07294.x] [PMID: 20704593]
[31]
Beverley, J.A.; Piekarski, C.; Van Waes, V.; Steiner, H. Potentiated gene regulation by methylphenidate plus fluoxetine treatment: Long-term gene blunting (Zif268, Homer1a) and behavioral correlates. Basal Ganglia, 2014, 4(3-4), 109-116.
[http://dx.doi.org/10.1016/j.baga.2014.10.001] [PMID: 25530939]
[32]
Kercmar, J.; Majdic, G. Sex-specific behavioral effects of fluoxetine treatment in animal models of depression and anxiety. Slov. Vet. Res., 2014, 51, 189-200.
[33]
Kobayashi, S.; Schultz, W. Influence of reward delays on responses of dopamine neurons. J. Neurosci., 2008, 28(31), 7837-7846.
[http://dx.doi.org/10.1523/JNEUROSCI.1600-08.2008] [PMID: 18667616]
[34]
Cheung, A.; Emslie, G.J.; Maynes, T.L. Efficacy and safety of antidepressants in youth depression. Canadian Child Adol Psychiatry Rev., 2004, 13(4), 98-104.
[35]
Oh, J-e.; Zupan, B.; Gross, S.; Toth, M. Paradoxical anxiogenic response of juvenile mice to fluoxetine. Neuropsychopharmacology, 2009, 34(10), 2197-2207.
[http://dx.doi.org/10.1038/npp.2009.47] [PMID: 19440190]
[36]
Ansorge, M.S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J.A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science, 2004, 306(5697), 879-881.
[http://dx.doi.org/10.1126/science.1101678] [PMID: 15514160]
[37]
Amodeo, L.R.; Greenfield, V.Y.; Humphrey, D.E.; Varela, V.; Pipkin, J.A.; Eaton, S.E.; Johnson, J.D.; Plant, C.P.; Harmony, Z.R.; Wang, L.; Crawford, C.A. Effects of acute or repeated paroxetine and fluoxetine treatment on affective behavior in male and female adolescent rats. Psychopharmacology, 2015, 232(19), 3515-3528.
[http://dx.doi.org/10.1007/s00213-015-4003-1] [PMID: 26141193]
[38]
Iñiguez, S.D.; Alcantara, L.F.; Warren, B.L.; Riggs, L.M.; Parise, E.M.; Vialou, V.; Wright, K.N.; Dayrit, G.; Nieto, S.J.; Wilkinson, M.B.; Lobo, M.K.; Neve, R.L.; Nestler, E.J.; Bolaños-Guzmán, C.A. Fluoxetine exposure during adolescence alters responses to aversive stimuli in adulthood. J. Neurosci., 2014, 34(3), 1007-1021.
[http://dx.doi.org/10.1523/JNEUROSCI.5725-12.2014] [PMID: 24431458]
[39]
Freeman, E.D. An Analysis of the Interaction of Methylphenidate and Nicotine in Adolescent Rats: Effects on BDNF; Thesis, East Tennessee State University: Ann Arbor, 2015, p. 98.
[40]
Kalinowski, L.; Connor, C.; Somanesan, R.; Carias, E.; Richer, K.; Smith, L.; Martin, C.; Mackintosh, M.; Popoola, D.; Hadjiargyrou, M.; Komatsu, D.E.; Thanos, P.K. Brief and extended abstinence from chronic oral methylphenidate treatment produces reversible behavioral and physiological effects. Dev. Psychobiol., 2020, 62(2), 170-180.
[http://dx.doi.org/10.1002/dev.21902] [PMID: 31456229]
[41]
Brookshire, B.R.; Jones, S.R. Chronic methylphenidate administration in mice produces depressive-like behaviors and altered responses to fluoxetine. Synapse, 2012, 66(9), 844-847.
[http://dx.doi.org/10.1002/syn.21569] [PMID: 22588965]
[42]
Carlezon, W.A., Jr; Mague, S.D.; Andersen, S.L. Enduring behavioral effects of early exposure to methylphenidate in rats. Biol. Psychiatry, 2003, 54(12), 1330-1337.
[http://dx.doi.org/10.1016/j.biopsych.2003.08.020] [PMID: 14675796]
[43]
Millard, S.J.; Lum, J.S.; Fernandez, F.; Weston-Green, K.; Newell, K.A. Perinatal exposure to fluoxetine increases anxiety- and depres-sive-like behaviours and alters glutamatergic markers in the prefrontal cortex and hippocampus of male adolescent rats: A comparison be-tween Sprague-Dawley rats and the Wistar-Kyoto rat model of depression. J. Psychopharmacol., 2019, 33(2), 230-243.
[http://dx.doi.org/10.1177/0269881118822141] [PMID: 30698051]
[44]
Vorhees, C.V.; Morford, L.R.; Graham, D.L.; Skelton, M.R.; Williams, M.T. Effects of periadolescent fluoxetine and paroxetine on ele-vated plus-maze, acoustic startle, and swimming immobility in rats while on and off-drug. Behav. Brain Funct., 2011, 7(1), 41.
[http://dx.doi.org/10.1186/1744-9081-7-41] [PMID: 21974752]
[45]
Boulle, F.; Pawluski, J.L.; Homberg, J.R.; Machiels, B.; Kroeze, Y.; Kumar, N.; Steinbusch, H.W.; Kenis, G.; Van den Hove, D.L. Prenatal stress and early-life exposure to fluoxetine have enduring effects on anxiety and hippocampal BDNF gene expression in adult male off-spring. Dev. Psychobiol., 2016, 58(4), 427-438.
[46]
McNamara, R.K.; Able, J.A.; Liu, Y.; Jandacek, R.; Rider, T.; Tso, P.; Lipton, J.W. Omega-3 fatty acid deficiency does not alter the effects of chronic fluoxetine treatment on central serotonin turnover or behavior in the forced swim test in female rats. Pharmacol. Biochem. Behav., 2013, 114, 1-8.
[http://dx.doi.org/10.1016/j.pbb.2013.09.010] [PMID: 24090922]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy