[1]
Goins, H. Toward data-driven assessment of Caregiver’s burden for persons with dementia using machine learning models 2020 IEEE 21st International Conference on Information Reuse and Integrationfor Data Science (IRI), Aug 11-13, 2020, Las Vegas, NV, USA, pp. 379-384.2020
[2]
Alfradique-Dunham, I.; Al-Ouran, R.; von Coelln, R.; Blauwendraat, C.; Hill, E.; Luo, L.; Stillwell, A.; Young, E.; Kaw, A.; Tan, M.; Liao, C.; Hernandez, D.; Pihlstrom, L.; Grosset, D.; Shulman, L.M.; Liu, Z.; Rouleau, G.A.; Nalls, M.; Singleton, A.B.; Morris, H.; Jankovic, J.; Shulman, J.M. Genome-Wide Assoc.Study Meta-Anal. Parkinson Disease Motor Subtyp., 2021, 7(2)e557
[43]
Simrén, J.; Ashton, N.J.; Blennow, K.; Zetterberg, H.J.C.o.i.n. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr. Opin. Neurobiol., 2020, 61, 29-39.
[46]
Siddiqui, N.; Ali, J.; Parvez, S.; Zameer, S.; Najmi, A.K.; Akhtar, M.J.N. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1-42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer’s disease. Neuropharmacology, 2021, 195108662
[47]
Begcevic, I.; Brinc, D.; Brown, M.; Martinez-Morillo, E.; Goldhardt, O.; Grimmer, T.; Magdolen, V.; Batruch, I.; Diamandis, E.P.J.J.o.p. Diamandis, brain-related proteins as potential CSF biomarkers of Alzheimer’s disease: A targeted mass spectrometry approach. J. Proteomics, 2018, 182, 12-20.
[49]
Wechsler, M.E.; Vela Ramirez, J.E.; Peppas, N.A.J.I. 110th anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: crossing the blood–brain barrier. Ind. Eng. Chem. Res., 2019, 58(33), 15079-15087.
[50]
Hartl, N.; Adams, F.; Merkel, O.M.J.A.t. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood–brain barrier. Adv. Ther., 2020, 4(1)2000092
[53]
Arya, M.; Kumar, M.K.M.; Sabitha, M.; Menon, K.N.; Nair, S.C.J.J.O.D.D.S. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer’s disease. J. Drug Delivery Sci. Technol., 2019, 51, 297-309.
[55]
Anand, A.; Arya, M.; Kaithwas, G.; Singh, G.; Saraf, S.A.J.J.D.D.S. Sucrose stearate as a biosurfactant for development of rivastigmine containing nanostructured lipid carriers and assessment of its activity against dementia in C. elegans model. J. Drug Delivery Sci. Technol.,, 2018, 49(2019), 219-226.
[60]
Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M.J.C.N. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[66]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A.; Harshita, M.S. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[73]
Joshi, S.A.; Chavhan, S.S.; Sawant, K.K. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. European. J. Pharm. Biopharm., 2010, 76(2), 189-199.
[82]
Basim, P.; Gorityala, S.; Kurakula, M.J.A.O.G.R. Advances in functionalized hybrid biopolymer augmented lipid-based systems: A spotlight on their role in design of gastro retentive delivery systems. Arch Gastroenterol Res., 2021, 2(1), 35-47.
[83]
Madhu, S.; Komala, M.; Pandian, P.J.B. Formulation development and characterization of withaferin-a loaded polymeric nanoparticles for Alzheimer’s disease. Bio Nano Sci.,, 2021, 11(2), 559-566.
[84]
Li, G.; Sun, X.; Wan, X.; Wang, D.J.D.R. Lactoferrin-loaded peg/pla block copolymer targeted with anti-transferrin receptor antibodies for Alzheimer disease. Dose Response, 2020, 18(3), 155.
[85]
Lauzon, M-A.; Marcos, B.; Faucheux, N.J.C.p. Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr. Polym., 2018, 181, 801-811.
[86]
Kumar, P. Studies on the Potential of Transepidermally Delivered Neuroprotective Agent (s) Loaded Nanoconstructs Through Microneedle Induced Skin Microconduits in Management of Dementia;; Thesis, Maharaja Sayajirao University of Baroda: India, 2020.
[87]
Prathipati, B.; Rohini, P.; Kola, P.K.; Danduga, R.C.S.R. Neuroprotective effects of curcumin loaded solid lipid nanoparticles on homocysteine induced oxidative stress in vascular dementia. Curr. Res. Behav. Sci., 2021, 2100029
[88]
Scuteri, D.; Cassano, R.; Trombino, S.; Russo, R.; Mizoguchi, H.; Watanabe, C.; Hamamura, K.; Katsuyama, S.; Komatsu, T.; Morrone, L.A.J.P. Development and translation of NanoBEO, a nanotechnology-based delivery system of bergamot essential oil deprived of furocumarins, in the control of agitation in severe dementia. Pharmaceutics, 2021, 13(3), 379.
[89]
Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O.; Singh, B.J.C.; Biointerfaces, S.B. Biointerfaces, Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces, 2021, 205111838
[90]
Topal, G.R.; Mészáros, M.; Porkoláb, G.; Szecskó, A.; Polgár, T.F.; Siklós, L.; Deli, M.A.; Veszelka, S.; Bozkir, A.J.P. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics, 2020, 13(1), 38.
[91]
Thabet, Y.; Elsabahy, M.; Eissa, N.G.J.M. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods, 2022, 199, 9-15.
[92]
Dragićević, N.; Maibach, H.I.J.P.A. Lipid-based vesicles (Liposomes) and their combination with physical methods for dermal and transdermal drug delivery. In: Percutaneous Absorption; CRC Press: Florida, 2021; p. 24.
[95]
Kuo, Y-C.; Ng, I-W.; Rajesh, R.J.M.S. Glutathione-and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease. Mater Sci Eng C Mater Biol Appl.,, 2021, 127112233
[97]
Çoban, Ö.; Yıldırım, S.; Bakır, T.J.J.P.I. Alpha-lipoic acid and cyanocobalamin co-loaded nanoemulsions: development; characterization, and evaluation of stability. J. Pharm. Innov., 2021, 17, 510-520.
[101]
Vaz, G.R.; Hädrich, G.; Bidone, J.; Rodrigues, J.L.; Falkembach, M.C.; Putaux, J-L.; Hort, M.A.; Monserrat, J.M.; Varela, A.S. Junior; Teixeira, H.F.; Muccillo-Baisch, A.L.; Horn, A.P.; Dora, C.L. Development of nasal lipid nanocarriers containing curcumin for brain targeting. J. Alzheimers Dis., 2017, 59(3), 961-974.
[102]
Phan, L.M.T.; Hoang, T.X.; Vo, T.A.T.; Pham, H.L.; Le, H.T.N.; Chinnadayyala, S.R.; Kim, J.Y.; Lee, S.M.; Cho, W.W.; Kim, Y.H.J.E.R.O.M.D. Nanomaterial-based optical and electrochemical biosensors for amyloid beta and tau: potential for early diagnosis of Alzheimer’s Disease. Expert Rev. Molecul. Diagnos., 2021, 21(2), 175-193.
[113]
Aziz, F.J.C.i. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell. Immunol., 2016, 303, 1-6.
[116]
Sasi, S.; Joseph, S.K.; Arian, A.M.; Thomas, S. V.U., A., G.K., A., Nair, S. C. An updated review on the application of dendrimers as successful nanocarriers for brain delivery of therapeutic moieties. Int. J. Appl. Pharmac., 2021, 13(1), 1-9.
[121]
Nazem, A.; Mansoori, G.A.J.I.J. Nanotechnology for Alzheimer’s disease detection and treatment. Insci. J., 2011, 1(4), 169-193.