[1]
Uddin, M.F.; Uddin, S.A.; Hossain, M.D.; Manchur, M.A. Antioxidant, cytotoxic and phytochemical properties of the ethanol extract of Piper betle Leaf. Int. J. Pharm. Sci. Res., 2015, 6(10), 4252-4258.
[8]
Moradi, H.; Vaziri, N.D. Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease. Front. Bioscience-Landmark (FBL), 2021, 26(5), 146-161.
[9]
Hatai, B.; Banerjee, S.K. Molecular docking interaction between Superoxide dismutase (Receptor) and Phytochemicals (Ligand) From Heliotropium indicum linn for detection of potential phytoconstituents: New drug design for releasing oxidative stress condition/inflammation of osteoar. J. Pharmacogn. Phytochem., 2019, 8(2), 1700-1706. [Internet].
[12]
Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. African J Pure Appl Chem., 2010, 4(8), 142-151.
[24]
Nuraskin, C.A. Marlina; Idroes, R.; Soraya, C.; Djufri, Activities inhibition methanol extract laban leaf (Vitex pinnata) on growth of bacteria S. mutans Atcc 31987. In: 8th Annual International Conference (AIC) 2018 on Science and Engineering 12–14 September 2018; Aceh, Indonesia , 2019; p. 523.
[29]
Ariyani, F.; Amin, I.; Fardiaz, D. Ekstrak air daun sirih (Piper betle linn) sebagai antioksidan alami pada pengolahan ikan patin (pangasius hypophthalmus) asin kering. JPB Kelaut dan Perikan, 2015, 10(1), 45-49.
[30]
Mar Tin, S. Pharmacognostic study on the leaf of Piper betle L. Univ Res J., 2011, 4(1), 1-19.
[32]
Dayrit, F.M.; Guidote, A.M.; Gloriani, N.G.; De Paz-Silava, S.L.M.; Villaseñor, I.M.; Macahig, R.A.S. Philippine medicinal plants with potential immunomodulatory and anti-SARS-CoV-2 activities. Philipp. J. Sci., 2021, 150(5), 999-1015.
[33]
Kursia, S.; Lebang, J.S.; Taebe, B.; Burhan, A.; Rahim, W.O. Uji aktivitas antibakteri ekstrak etilasetat daun sirih hijau (Piper betle L.) Terhadap bakteri Staphylococcus epidermidis. Ind. J. Pharm. Sci. Technol., 2016, 3(2), 72-77.
[38]
Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res., 2019, 10(2), 494-504.
[40]
Chaudhary, K.K.; Mishra, N. A review on molecular docking: Novel tool for drug discovery. JSM Chem., 2016, 4(3), 1029.
[41]
Agarwal, S.; Mehrotra, R. An overview of molecular simulation. JSM Chem., 2016, 4(2), 1024-1028.
[45]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L. Crystal structure of sars-cov-2 main protease provides a basis for design of improved A-ketoamide inhibitors. Science (80- ), 2020, 368(6489)
[67]
Evangelina, I.A.; Herdiyati, Y.; Laviana, A.; Rikmasari, R.; Zubaedah, C. Bio-mechanism inhibitory prediction of β-sitosterol from kemangi (Ocimum basilicum l.) as an inhibitor of mura enzyme of oral bacteria: In vitro and in silico study. Adv. Appl. Bioinforma. Chem., 2021, 14, 103-115.
[68]
Tumilaar, S.G.; Fatimawali, F.; Niode, N.J.; Effendi, Y.; Idroes, R.; Adam, A.A. The potential of leaf extract of Pangium edule reinw as HIV-1 protease inhibitor: A computational biology approach. J. Appl. Pharm. Sci., 2021, 11(01), 101-110.
[70]
Chella Perumal, P.; Sowmya, S.; Pratibha, P.; Vidya, B.; Anusooriya, P.; Starlin, T. Identification of novel PPARγ agonist from GC-MS analysis of ethanolic extract of Cayratia trifolia (l.): A computational molecular simulation studies. J. Appl. Pharm. Sci., 2014, 4(9), 6-11.
[71]
Yunta, M. Docking and ligand binding affinity: Uses and pitfalls. Am J Model Optim., 2016, 4, 74-114.
[82]
Singh, S.; Gupta, A.K.; Verma, A. Molecular properties and bioactivity score of the aloe vera antioxidant compounds - in order to lead fnding. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(2), 876-881.
[88]
Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Tumilaar, S.G. Fatimawali; Idroes, R. in silico evaluation of Iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of sars-cov-2. Molecules, 2021, 26(5724), 1-23.