Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Review Article

Phytochemical and Pharmacological Aspects of Hygrophila Spinosa: An Overview

Author(s): Smruti Gaikwad, Lata Kothapalli* and Asha Thomas

Volume 1, 2023

Published on: 13 January, 2023

Article ID: e191022210155 Pages: 12

DOI: 10.2174/2210299X02666221019104843

open_access

Open Access Journals Promotions 2
Abstract

Background: A plant from the Acanthaceae family, Hygrophila spinosa T. Ander is geographically distributed throughout Asia and is noted for its diuretic and aphrodisiac properties in Ayurvedic literature. In the last four decades, various research teams have conducted experiments with the plant Hygrophila spinosa to screen the plant for hepatoprotective, anti-urolithiasis, diuretic, anti-hypertensive, anti-diabetic, chemoprotective, and anticancer activities along with analgesic and anti-inflammatory activity. Flavonoids, alkaloids, steroids, and triterpenoids are among the phytochemicals separated from different plant components, along with vitamins and minerals.

Objective: Considering the therapeutic value of the plant, focus on using current technology to quantify and confirm the pharmacological effects with in vitro and in vivo assays was felt and to shed light on in silico investigations.

Results: Relevant analytical tools for characterizing and quantifying phytoconstituents in the plant, along with emphasis on well-established pharmacological screening experiments on parts and whole plant extracts, commercially available formulations of H.spinosa have been elaborated. It has been discussed how to further validate the pharmacological effects using insilico methods and predictions from ADME/T analyses. H. spinosa based Phyto fabricated nanoparticle systems with gold and silver have broadened the use of plant extract as a metal. carrier which minimizesmetal. toxicity to further boost its synergistic effects in response to the growing need for targeted medicine delivery systems.

Conclusión: In light of the necessity to investigate a specific mechanism of action for each of the specific phytoconstituents contained in the plant, the present review summarizes the phytochemical and pharmacological importance of the plant in chronic illness.

Keywords: Hygrophila spinosa, Hepatoprotective, Reproductive activity, Antidiabetic, Antitumor, Phytochemicals.

[1]
Rakshit, G.; Singh, V.K.; Vichitra, A.K.; Rajpal; Chandra, P.K.; Choudhury, S.K. A multi-centric double blind homoeopathic pathogenetic trial of Hygrophila spinosa. Indian J. Res. in Homoeo., 2014, 8(1), 9-18.
[http://dx.doi.org/10.4103/0974-7168.129672]
[2]
Noor, N.; Satapathy, K.B. Phytodiversity of Dhauligiri hill and its adjoining area, Odisha, India: a floristic approach. Plant Arch., 2020, 20(1), 2093-2102.
[3]
Sree, M.D.; Joshna, A.; Lakshmi, S.M.; Kumar, D.S. A review on South Indian edible leafy vegetables. J. Glob. Trends Pharm. Sci., 2013, 4(4), 1248-1256.
[4]
Chauhan, N.S.; Dixit, V.K. Asteracantha longifolia (L.) Nees, Acanthaceae: chemistry, traditional, medicinal uses and its pharmacological activities - a review. Rev. Bras. Farmacogn., 2010, 20(5), 812-817.
[http://dx.doi.org/10.1590/S0102-695X2010005000022]
[5]
Wahengbam, S.; Kaur, G. Review on Plants extract as anti-urolithiatic and pathogenesis of urolithiasis induced by ethylene glycol. Eur. J. Mol. Clin. Med., 2020, 7(7), 4600-4615.
[6]
Singh, MK; Nagori, K; Tripathi, DK Potential analgesic & anti-pyretic herbal drugs: a comparative review of marketed products. Int. J. Phytomedicine., 2010, 2(3), 197-209.
[7]
Gaikwad, K; Dagle, P; Choughule, P; Joshi, YM; Kadam, V A review on some nephroprotective medicinal plants. Int. J. Pharm. Sci. Res., 2012, 3(8), 2451.
[8]
Rathva, B.; Patel, B.; Maurya, J.; Bera, K. Standardization and evaluation of some parameters of adaptogenic polyherbal oral dosage form. Int. J. Pharm. Sci. Rev. Res., 2017, 42(1), 1-7.
[9]
Govind, P.; Sharma, M. Ethnomedicinal plants for prevention and treatment of tumours. Int. J. Green Pharm., 2009, 3(1), 2.
[http://dx.doi.org/10.4103/0973-8258.49367]
[10]
Maiti, B. Antineoplastic effects of the root extract of Hygrophila spinosa. Proceedings of the International Conference on Current Progress in Medicinal and Aromatic Plant Research, Calcutta, India1994, pp. 135-40.
[11]
Pal, A.; Paul, A.K. Bacterial endophytes of the medicinal herb Hygrophila spinosa T.Anders and their antimicrobial activity. J. Pharm. Res. Int., 2013, 795-806.
[12]
Krishna, A.; Mohanan, S. Formulation and evaluation of liquid oral suspension of paracetamol using newly isolated and characterized Hygrophila spinosaseed mucilage as suspending agent. Asian J. Pharm. Clin. Res., 2018, 11(11), 437-441.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i11.28856]
[13]
Dash, A.K.; Dutta, G.K.; Sardar, K.K.; Sahoo, G. Ethnomedicinal importance of Hygrophila spinosaT. Anders: A review. Plant Arch., 2012, 12(1), 5-9.
[14]
Patra, A.; Jha, S.; Murthy, P. Phytochemical and pharmacological potential of Hygrophila spinosa T. anders. Pharmacogn. Rev., 2009, 3(6), 330.
[15]
Nikam, D.; Mundada, S.; Mishra, D. Kokilaksha: A potential ayurvedic herb. Int. J. Res. Ayurveda Pharm., 2012, 3(6), 780-782.
[http://dx.doi.org/10.7897/2277-4343.03616]
[16]
Sethiya, N.K.; Ahmed, N.M.; Shekh, R.M.; Kumar, V.; Kumar Singh, P.; Kumar, V. Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: an overview. J. Integr. Med., 2018, 16(5), 299-311.
[http://dx.doi.org/10.1016/j.joim.2018.07.002] [PMID: 30007830]
[17]
Silja, V.P.; Varma, K.S.; Mohanan, K.V. Ethnomedicinal plant knowledge of the Mullukuruma tribe of Wayanad district, Kerala. Indian J. Tradit. Knowl., 2008, 7, 604-612.
[18]
Kyaw, Y.M.M.; Bi, Y.; Oo, T.N.; Yang, X. Traditional medicinal plants used by the Mon people in Myanmar. J. Ethnopharmacol., 2021, 265, 113253.
[http://dx.doi.org/10.1016/j.jep.2020.113253] [PMID: 32891817]
[19]
Gomes, A.; Das, M.; Dasgupta, S.C. Haematinic effect of Hygrophila spinosa T. Anderson on experimental rodents. Indian J. Exp. Biol., 2001, 39(4), 381-382.
[PMID: 11491586]
[20]
Chanda, S.; Baravalia, Y. Screening of some plant extracts against some skin diseases caused by oxidative stress and microorganisms. Afr. J. Biotechnol., 2010, 9(21), 3210-3217.
[21]
Dey, P.; Saha, M.; Sen, A. Hepatotoxicity and the present herbal hepatoprotective scenario. Int. J. Green Pharm., 2013, 7(4), 265-273.
[http://dx.doi.org/10.4103/0973-8258.122046]
[22]
Preethi, G.P.; Gopalakrishna, H.N.; Rathnakar, U.P.; Durga, P.; Shenoy, J. Acute diuretic activity of alcoholic extracts of Hygrophila auriculata seeds in normal wistar albino rats. Int. J. Pharma Bio Sci., 2012, 3(1), 283-289.
[23]
Nadkarni, K.M. Indian Materia Medica; Popular Prakashan: Bombay, India, 1978.
[24]
Verma, D.; Singh, S.; Arya, R.; Rajan, S.; Arya, B.S.; Khurana, A.; Manchanda, R.K. Morpho-anatomical observations on homoeopathic plant drug Hygrophila spinosa T. Anderson. Pharmacogn. J., 2019, 11(2), 286-291.
[http://dx.doi.org/10.5530/pj.2019.11.44]
[25]
Misra, T.N.; Singh, R.S.; Pandey, H.S.; Singh, B.K.; Pandey, R.P. Constituents of Asteracantha longifolia. Fitoterapia, 2001, 72(2), 194-196.
[http://dx.doi.org/10.1016/S0367-326X(00)00269-0] [PMID: 11223236]
[26]
Ali, A.; Tripathi, S.K. A pentacyclic triterpenoid from Asteracantha longifolia Ness. Asian J. Chem., 2007, 19(5), 3765.
[27]
Shahid, M.; Khan, M.; Hameed, A.; Ashraf, M.; Jamil, A. Antioxidant enzymes and inorganic elements in seeds and leaves of four potential medicinal plants from Pakistan. Agrochimica, 2012, 56(6), 281-291.
[28]
Patra, A.; Murthy, N.P.; Jha, S. Pharmacognostical standardization of leaves of Hygrophila spinosaT.Anders. Phcog. J., 2009, 1(2), 82-87.
[29]
Perumal Samy, R.; Manikandan, J.; Al Qahtani, M. Evaluation of aromatic plants and compounds used to fight multidrug resistant infections. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-17.
[http://dx.doi.org/10.1155/2013/525613] [PMID: 24223059]
[30]
Parashar, V.V.; Singh, H. Investigation of Astercantha longifolia Nees. Indian J. Pharmacol., 1965, 27(4), 109-113.
[31]
Godbole, N.N.; Gunde, B.G.; Srivastava, P.D. An investigation of oil from seed of hygrophila spinosa. J. Am. Oil Chem. Soc., 1941, 18(10), 206-207.
[http://dx.doi.org/10.1007/BF02544184]
[32]
Govindachari, T.R.; Nagarajan, K.; Pai, B.R. Isolation of lupeol from the root of Asteracantha longifolia Nees. Indian J. of Sci. Res. B., 1957, 16, 72.
[33]
Choudhary, B.K.; Bandyopdhyay, N.G. Important of mineral content and medicinal properties of Moringa oleifera and Hygrophila auriculata. Sacitra Ayurveda, 1980, 50(7), 543-549.
[34]
Gupta, D.R.; Bhushan, R.; Dhiman, R.P.; Ahmed, B. Chemical examination of Asteracantha longifolia. J. Nat. Prod., 1983, 46(6), 938.
[http://dx.doi.org/10.1021/np50030a023]
[35]
Satpathy, S.; Patra, A.; Ahirwar, B. Development and validation of a novel high-performance thin-layer chromatography method for the simultaneous determination of apigenin and luteolin in Hygrophila spinosa T. Anders. J. Planar Chromatogr. Mod. TLC, 2018, 31(6), 437-443.
[http://dx.doi.org/10.1556/1006.2018.31.6.3]
[36]
Vyas, N.; Raval, M. Quantification of two marker compounds from unsaponifiable matter of Hygrophila spinosaseeds using validated TLC-Densitometric method. Int. J. Pharm. Res, 2015, 7(4), 39-46.
[37]
Hussain, A.Z.; Kumaresan, S. GC-MS analysis and antimicrobial activity of Hygrophila auriculata. Arch. Appl. Sci. Res., 2013, 5(5), 163-168.
[38]
Maji, A.K.; Maity, N.; Banerji, P.; Banerjee, D. Validated RP-HPLC-UV method for the determination of betulin in Asteracantha longifolia (L.) Nees. extract. Int. J. Phytomed., 2013, 5(2), 131-135.
[39]
Maji, A.K.; Pandit, S.; Banerji, P.; Banerjee, D. A validated RP-HPLC method for simultaneous determination of betulin, lupeol and stigmasterol in Asteracantha longifolia Nees. Int. J. Pharma Sci., 2014, 6(5), 691-695.
[40]
Jayaprakasam, R.; Ravi, T.K. In vitro screening of the biological activity of combined extracts of two medicinal plants and their standardization by validated analytical methods using standard markers. J Pharmacogn Phytochem., 2019, 8, 2305-2312.
[41]
Jayaprakasam, R.; Saleshier, M.F.; Ravi, T.K. Standardization of Hygrophila Spinosa and its formulation concerning Lupeol, by developed and validated HPTLC and RP-HPLC Methods. INDIAN DRUGS, 2015, 52(1), 13-19.
[http://dx.doi.org/10.53879/id.52.01.10182]
[42]
Sunita, S.; Abhishek, S. A comparative evaluation of phytochemical fingerprints of Asteracantha longifolia Nees. using HPTLC. Asian J. Plant Sci., 2008, 7(6), 611-614.
[http://dx.doi.org/10.3923/ajps.2008.611.614]
[43]
Hussain, M.S.; Fareed, S.; Ali, M. Preliminary phytochemical and pharmacognostical screening of the Ayurvedic drug Hygrophila auriculata (K. Schum). Pharmacogn. J., 2011, 3(23), 28-40.
[http://dx.doi.org/10.5530/pj.2011.23.5]
[44]
Hussain, M.S.; Fareed, S.; Ali, M. Simultaneous HPTLC-UV530 nm analysis and validation of bioactive lupeol and stigmasterol in Hygrophila auriculata (K. Schum) Heine. Asian Pac. J. Trop. Biomed., 2012, 2(2), S612-S617.
[http://dx.doi.org/10.1016/S2221-1691(12)60283-4]
[45]
Hussain, M.S.; Fareed, S.; Ali, M. Hyphenated chromatographic analysis of bioactive gallic acid and quercetin in Hygrophila auriculata (K. Schum) Heine growing wildly in marshy places in India by validated HPTLC method. Asian Pac. J. Trop. Biomed., 2012, 2(2), S477-S483.
[http://dx.doi.org/10.1016/S2221-1691(12)60257-3]
[46]
Deattu, N.; Suseela, L.; Narayanan, N. Chromatographic analysis of polyherbal extract and formulation by HPTLC and GC–MS methods. J. Pharm. Res., 2013, 6(1), 6-10.
[http://dx.doi.org/10.1016/j.jopr.2012.11.005]
[47]
Ghule, B.; Agrawal, P.; Lal, P.; Kothari, D.; Kotagale, N. Separation and quantification of lupeol in Hygrophila schulli by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC, 2021, 34(1), 79-87.
[http://dx.doi.org/10.1007/s00764-021-00079-8]
[48]
Usha, K.; Kasturi, G.M.; Hemalatha, P. Hepatoprotective effect ofHygrophila spinosa andCassia occidentalis on carbon tetrachloride induced liver damage in experimental rats. Indian J. Clin. Biochem., 2007, 22(2), 132-135.
[http://dx.doi.org/10.1007/BF02913331] [PMID: 23105700]
[49]
Raju, B.S.; Battu, G.R.; YB, M.L. Antihepatotoxic Activity of Hygrophila Spinosa Roots on CCl4 induced Hepatic Damage in Rats. Pharm. Res., 2011, 2(2-3), 152-155.
[50]
Sultana, S.; Ahmed, S.; Sharma, S.; Khan, N. Asteracantha longifolia suppresses oxidant-induced tissue injury and proliferation in rat liver. Asia Pacific. J. Pharmacol., 2006, 16(3/4), 123.
[51]
Raj, V.P.; Chandrasekhar, R.H.; P, V.; S A, D.; Rao, M.C.; Rao, V.J.; Nitesh, K. In vitro and in vivo hepatoprotective effects of the total alkaloid fraction of Hygrophila auriculata leaves. Indian J. Pharmacol., 2010, 42(2), 99-104.
[PMID: 20711375]
[52]
Singh, A.; Handa, S.S. Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J. Ethnopharmacol., 1995, 49(3), 119-126.
[http://dx.doi.org/10.1016/0378-8741(95)01291-5] [PMID: 8824736]
[53]
Lina, S.M.; Ashab, I.; Ishtiaq Ahmed, M.; Shahriar, M. Hepatoprotective activity of Asteracantha longifolia (Nees.) extract against anti-tuberculosis drugs induced hepatic damage in Sprague-Dawley rats. Pharmacologyonline, 2012, 3, 13-19.
[54]
Shivashangari, K.S.; Ravikumar, V.; Devaki, T. Evaluation of the protective efficacy of Asteracantha longifolia on acetaminophen-induced liver damage in rats. J. Med. Food, 2004, 7(2), 245-251.
[http://dx.doi.org/10.1089/1096620041224058] [PMID: 15298774]
[55]
Shivashangari, K.S.; Ravikumar, V.; Devaki, T.; Govindaraju, P. Effect of Asteracantha longifolia on liver antioxidant defense system during acetaminophen-induced hepatic damage in rats. J. Clin. Biochem. Nutr., 2004, 34(3), 89-94.
[http://dx.doi.org/10.3164/jcbn.34.89]
[56]
Mariappan, A.; Ramalingam, S.; Hameed, S.S.; Saravanan, R. In vivoInvestigation of hepatoprotective activity of Asteracantha Longifolia nees. on CCl4 induced hepatotoxicity in Wistar Albino Rats. Asian J. Pharm. Clin. Res., 2015, 218-222.
[57]
Abirami, N.; Shanmugaraju, V.; Mahalakshmipriya, A.; Rajathi, K. In vitro hepatoprotective and antioxidant activities of the leaf ethanolic and aqueous extracts of Asteracantha longifolia and Andrographis paniculata against lead acetate induced toxicity. Biosci. Biotechnol. Res. Asia, 2017, 6(1), 341-350.
[58]
Shailajan, S.; Chandra, N.; Sane, R.T.; Menon, S. Effect of Asteracantha longifolia Nees. against CCl4 induced liver dysfunction in rat. Indian J. Exp. Biol., 2005, 43(1), 68-75.
[PMID: 15691068]
[59]
Hewawasam, R.P.; Jayatilaka, K A P.W.; Pathirana, C.; Mudduwa, L.K.B. Protective effect of Asteracantha longifolia extract in mouse liver injury induced by carbon tetrachloride and paracetamol. J. Pharm. Pharmacol., 2010, 55(10), 1413-1418.
[http://dx.doi.org/10.1211/0022357021792] [PMID: 14607024]
[60]
Gurusamy, K.; Kokilavani, R.; Arumuasamy, K. Hepatoprotective activity of polyherbal formulation against carbon tetrachloride-induced hepatotoxicity in rats. Afr. J. Biotechnol., 2010, 9(49), 8429-8434.
[61]
Kshirsagar, A.D.; Ashok, P. Hepatoprotective and antioxidant effects of Hygrophila spinosa (K. Schum) Heine Acanthaceae stem extract. Biosci. Biotechnol. Res. Asia, 2016, 5(2), 657-662.
[62]
Sahoo, A.K.; Gandhare, B. Effect of Hygrophila spinosa T. on reproductive function of male albino rats. J. Complement. Integr. Med., 2010, 7(1), 1-20.
[http://dx.doi.org/10.2202/1553-3840.1246]
[63]
Vyas, N.Y.; Raval, M.A. Aphrodisiac and spermatogenic potential of alkaloidal fraction of Hygrophila spinosa T. Ander in rats. J. Ethnopharmacol., 2016, 194(194), 947-953.
[http://dx.doi.org/10.1016/j.jep.2016.10.080] [PMID: 27989878]
[64]
Vanage, G.; Dhumal, R.; Vijaykumar, T.; Dighe, V.; Selkar, N.; Chawda, M.; Vahlia, M. Efficacy and safety of a herbo-mineral ayurvedic formulation ′Afrodet Plus®′ in male rats. J. Ayurveda Integr. Med., 2013, 4(3), 158-164.
[http://dx.doi.org/10.4103/0975-9476.118706] [PMID: 24250145]
[65]
Vasava, A.; Dave, A.; varsakiya, J. A clinical study to evaluate the role of Churna ratnam and svaguptadichurna and its effect on seminal parameters. Int. J. Res. Ayurveda Pharm., 2017, 8(3), 145-148.
[http://dx.doi.org/10.7897/2277-4343.083187]
[66]
Dalal, P.K.; Tripathi, A.; Gupta, S.K. Vajikarana: Treatment of sexual dysfunctions based on Indian concepts. Indian J. Psychiatry, 2013, 55(6)(Suppl. 2), 273.
[http://dx.doi.org/10.4103/0019-5545.105550] [PMID: 23858267]
[67]
Hussain, S.A.; Hameed, A.; Nasir, F.; Wu, Y.; Suleria, H.A.R.; Song, Y. Evaluation of the spermatogenic activity of polyherbal formulation in oligospermic males. BioMed Res. Int., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/2070895] [PMID: 30148161]
[68]
Vyas, N.; Gamit, K.; Raval, M. Aphrodisiac and Spermatogenic Potential Of Unsaponifiable Fraction From Seeds Of Hygrophila spinosaT. Ander In Rats. Int. J. Pharm. Sci. Res., 2020, 11(10), 4902-4909.
[69]
Dominic, S.; Padmaja, V. Protective Effect of An Herbal Extract in Amlodipine Induced Testicular Dysfunction In Rats. Infertility. Hygeia: J. for Drugs and Medicines, 2017, 9(1), 22-42.
[70]
Dominic, S; Padmaja, V Preliminary study on the altered expression of 3β HSD gene in rat testis after Amlodipine and its modification by Astercantha longifolia seed extract. Hygeia: J. for drugs and medicines., 2014, 6(1), 6-11.
[71]
Chauhan, N.S.; Sharma, V.; Dixit, V.K. Effect of Asteracantha longifolia seeds on the sexual behaviour of male rats. Nat. Prod. Res., 2011, 25(15), 1423-1431.
[http://dx.doi.org/10.1080/14786410802588493] [PMID: 19753500]
[72]
Ghosh, C.; Mallick, C. Protective effect of ethanolic extract of Hygrophila auriculata seeds in cyproterone acetate-induced sexual dysfunction in male albino rats. Andrologia, 2020, 52(2), e13482.
[http://dx.doi.org/10.1111/and.13482] [PMID: 31815317]
[73]
Vyas, N.Y.; Raval, M.A. Effect of unsaponifiable fraction of seeds of Hygrophila spinosa T. Ander on testosterone production of rat Leydig cells in vitro. Asian J. Pharm. Clin. Res., 2016, 9(6), 184-186.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i6.14049]
[74]
Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, H.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian J. Urol., 2018, 5(4), 205-214.
[http://dx.doi.org/10.1016/j.ajur.2018.08.007] [PMID: 30364478]
[75]
Sathish, R.; Natarajan, K.; Nikhad, M.M. Effect of Hygrophila spinosa T. anders on ethylene glycol induced urolithiasis in rats. Asian J. Pharm. Clin. Res., 2010, 3(4), 61-63.
[76]
Ingale, K.; Thakurdesai, P.; Vyawahare, N. Effect of Hygrophila spinosa in ethylene glycol induced nephrolithiasis in rats. Indian J. Pharmacol., 2012, 44(5), 639-642.
[http://dx.doi.org/10.4103/0253-7613.100402] [PMID: 23112429]
[77]
Shirfule, A.L.; Khobragade, C.N.; Badrinarayan, P.; Borse, Y.S.; Amilkanthwar, R.H. Phytochemical analysis and antiurolithiatic activity of a polyherbal formulation. J. Herbs Spices Med. Plants, 2009, 15(1), 66-72.
[http://dx.doi.org/10.1080/10496470902787493]
[78]
Shirfule, A.L.; Racharla, V.; Qadri, S.S.Y.H.; Khandare, A.L. Exploring antiurolithic effects of gokshuradi polyherbal ayurvedic formulation in ethylene-glycol-induced urolithic rats. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/763720] [PMID: 23554833]
[79]
Hardik, K.S.; Vrushali, V.P.; Jitendra, D.V.; Vandana, B.P.; Ghanshyam, R.P. Pharmacological evaluation of anti-urolithiatic activity of UCEX01-a herbo-mineral Ayurvedic formulation. J. Pharm. Biomed. Sci., 2013, 35, 1834-1839.
[80]
Thangarathinam, N.; Jayshree, N.; Metha, A.V.; Ramanathan, L. Development, standardization and evaluation of a polyherbal syrup. Int. J. Pharm. Sci. Rev. Res., 2013, 20, 149-154.
[81]
Wright, C.I.; Van-Buren, L.; Kroner, C.I.; Koning, M.M.G. Herbal medicines as diuretics: A review of the scientific evidence. J. Ethnopharmacol., 2007, 114(1), 1-31.
[http://dx.doi.org/10.1016/j.jep.2007.07.023] [PMID: 17804183]
[82]
Hussain, S.; Ahmed, N.; Ansari, Z. Preliminary studies on diuretic effect of Hygrophila auriculata (Schum) Heine in rats. Int. J. of Health Res, 2009, 2(1), 59-64.
[83]
Babar, V.B. Comparative diuretic study of medicinal plants in individual and combination form. PharmaTutor, 2017, 5(4), 42-45.
[84]
Patra, A.; Jha, S.; Murthy, P.N. Diuretic activity of different extracts of leaves of Hygrophila spinosaT. Anders (Acanthaceae). Indian Drugs, 2011, 48(07), 50-53.
[85]
Kumar, T.; Chandrashekar, K.S.; Tripathi, D.K.; Nagori, K.; Pure, S.; Agrawal, S.; Tamsil, A.J. Standardization of “GokshuradiChurna”: An ayurvedic polyherbal formulation. J. Chem. Pharm. Res., 2011, 3(3), 742-749.
[86]
Al Disi, S.S.; Anwar, M.A.; Eid, A.H. Anti-hypertensive herbs and their mechanisms of action: Part I. Front. Pharmacol., 2016, 6, 323.
[http://dx.doi.org/10.3389/fphar.2015.00323] [PMID: 26834637]
[87]
Ingale, K.G.; Vyawahare, N.S.; Gautam, D.T.; Baviskar, N.D.; Bakal, R.L. The Antihypertensive effect of methanolic extract of Hygrophila spinosain Rats. Int. Res. J. Pharm. Appl. Sci., 2014, 4(4), 7-10.
[88]
Vijayakumar, M.; Govindarajan, R.; Rao, G.M.M.; Rao, C.V.; Shirwaikar, A.; Mehrotra, S.; Pushpangadan, P. Action of Hygrophila auriculata against streptozotocin-induced oxidative stress. J. Ethnopharmacol., 2006, 104(3), 356-361.
[http://dx.doi.org/10.1016/j.jep.2005.09.030] [PMID: 16289604]
[89]
Muthulingam, M. Antidiabetic efficacy of leaf extracts of Asteracantha longifolia (Linn.) Nees. on alloxan induced diabetics in male albino wistar rats. Int. J. Pharm. Biomed. Res., 2010, 1(2), 28-34.
[90]
Thorve, V.S.; Kshirsagar, A.D.; Vyawahare, N.S.; Thakurdesai, P.A.; Bhandare, A.M. Hygrophila spinosa T. Anders ameliorates diabetic neuropathy in wistar albino rats. J. Complement. Integr. Med., 2012, 9(1), 1-17.
[http://dx.doi.org/10.1515/1553-3840.1545]
[91]
Rastogi, A.; Shankar, S.; Mahalingam, G. Antidiabetic activity of methanolic extract of Hygrophila auriculata in adult male wistar rats. J. of Pharm. Sci. and Res, 2015, 7(3), 98.
[92]
Doss, A.; Anand, S.P. Evaluation of anti-diabetic activity of methanol and aqueous extract of Astercantha longifolia (Linn) Nees. Res. J. of Phrmacol, 2014, 8(1), 1-5.
[93]
Rastogi, A.; Shankar, S.R.; Mahalingam, G.A. Phytochemical screening, antioxidant activity and in vitro anti-diabetic activity of aqueous, methanolic, ethanolic and chloroformic extracts of Hygrophila auriculata. Int. J. Pharm. Pharm. Sci., 2014, 6(5), 557-560.
[94]
Fernando, M.R.; Wickramasinghe, S.M.D.N.; Thabrew, M.I. Extra pancreatic actions of Hygrophila longifolia. Pharm. Biol., 1998, 36(5), 352-356.
[http://dx.doi.org/10.1076/phbi.36.5.352.4659]
[95]
Venugopalan, P.; Nimisha, C.N. Antioxidant and antibacterial activity of Hygrophila spinosa T Anders root extracts. Asian J. Pharm. Pharmacol., 2019, 5(5), 959-963.
[http://dx.doi.org/10.31024/ajpp.2019.5.5.15]
[96]
Islam, M.S.; Parvin, M.S.; Islam, M.E. The protective and antioxidant effects of Hygrophila schulli seeds on oxidative damage of DNA and RBC cellular membrane. Heliyon, 2022, 8(1), e08767.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08767] [PMID: 35146152]
[97]
Anusha, P.; Immanuel, S.R. Antioxidant and antibacterial activities of leaves extract of Hygrophila auriculata (Schumach.) Heine. J. Pharmacogn. Phytochem., 2019, 8(2), 1784-1789.
[98]
Raaman, N. Antioxidant activites and phytochemical analysis of methanol extract of leaves of Hygrophila auriculata (Schumach) heine. Int. J. Curr. Pharm. Res., 2015, 7(4), 100-105.
[99]
Vijayakumar, M.; Govindarajan, R.; Shirwaikar, A.; Kumar, V.; Rawat, A.K.; Mehrotra, S.; Pushpangadan, P. Free radical scavenging, and lipid peroxidation inhibition potential of Hygrophila auriculata. Nat. Prod. Sci., 2005, 11(1), 22-26.
[100]
Hussain, M.S.; Ahamed, K.F.; Ravichandiran, V.; Ansari, M.Z. Evaluation of in vitro free radical scavenging potential of different fractions of Hygrophila auriculata (K. Schum) Heine. Asian J. Tradit. Med., 2009, 4(5), 179-187.
[101]
Sridhar, M.P.; Nandakumar, N.; Rengarajan, T.; Balasubramanian, M.P. Amelioration of mercuric chloride induced oxidative stress by Hygrophila auriculata (K. Schum) Heine via modulating the oxidant-antioxidant imbalance in rat liver. J. Biochem. Technol., 2013, 4(3), 622-627.
[102]
DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin., 2014, 64(4), 252-271.
[http://dx.doi.org/10.3322/caac.21235] [PMID: 24890451]
[103]
Uddin, S.J.; Grice, I.D.; Tiralongo, E. Cytotoxic effects of Bangladeshi medicinal plant extracts. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-7.
[http://dx.doi.org/10.1093/ecam/nep111] [PMID: 19706693]
[104]
Bhattacharya, S.; Prasanna, A.; Majumdar, P.; Kumar, R.B.; Haldar, P.K. Antitumor efficacy and amelioration of oxidative stress by Trichosanthes dioica root against Ehrlich ascites carcinoma in mice. Pharm. Biol., 2011, 49(9), 927-935.
[PMID: 21819262]
[105]
Mazumdar, U.K.; Gupta, M.; Maiti, S.; Mukherjee, D. Antitumor activity of Hygrophila spinosa on Ehrlich ascites carcinoma and sarcoma-180 induced mice. Indian J. Exp. Biol., 1997, 35(5), 473-477.
[PMID: 9378516]
[106]
Pattanayak, S.P.; Sunita, P. Antitumor potency and toxicology of an Indian Ayurvedic plant, Hygrophila spinosa. Pharmacologyonline, 2008, 2(1), 361-371.
[107]
Lampronti, I.; Khan, M.; Bianchi, N.; Ather, A.; Borgatti, M.; Vizziello, L.; Fabbri, E.; Gambari, R. Bangladeshi medicinal plant extracts inhibiting molecular interactions between nuclear factors and target DNA sequences mimicking NF-kappaB binding sites. Med. Chem., 2005, 1(4), 327-333.
[http://dx.doi.org/10.2174/1573406054368684] [PMID: 16789890]
[108]
Nabere, O.; Samson, G.; Adama, H.; Moussa, C.; Eric, S.P.; Aminata, N.P.; Jeanne, M.R.; Germaine, N.O. Antioxidant, and anticancer activities of polyphenolic compounds from three Acanthaceae medicinal species from Burkina Faso. Int. J. Phytomed., 2012, 4(4), 552.
[109]
Ahmed, S.; Rahman, A.; Mathur, M.; Athar, M.; Sultana, S. Anti-tumor promoting activity of Asteracantha longifolia against experimental hepatocarcinogenesis in rats. Food Chem. Toxicol., 2001, 39(1), 19-28.
[http://dx.doi.org/10.1016/S0278-6915(00)00103-4] [PMID: 11259848]
[110]
Nair, D.; Shridhar, N.B.; Jayakumar, K. Evaluation of anticancer activity of Asteracantha longifolia in 7,12-Dimethylbenz(a)anthracene-induced mammary gland carcinogenesis in Sprague Dawley rats. Int. J. Nutr. Pharmacol. Neurol. Dis., 2015, 5(1), 28.
[http://dx.doi.org/10.4103/2231-0738.150072]
[111]
Satpathy, S.; Patra, A.; Hussain, M.D.; Ahirwar, B. Amelioration of postmenopausal osteoporosis and anticancer properties of an antioxidant enriched fraction from Hygrophila spinosa T. Anders. S. Afr. J. Bot., 2018, 117, 247-255.
[http://dx.doi.org/10.1016/j.sajb.2018.05.033]
[112]
Patra, A.; Jha, S.; Murthy, P.; Satpathy, S.; Kumar, T. Preliminary phytochemical screening and antipyretic activity of leaf and root of Hygrophila SpinosaT.Anders. Pharmacologyonline, 2009, 1, 449-453.
[113]
Patra, A.; Jha, S.; Murthy, P.N.; Vaibhav, A.D.; Chattopadhyay, P.; Panigrahi, G.; Roy, D. Anti-inflammatory and antipyretic activities of Hygrophilaspinosa T. Anders leaves (Acanthaceae). Trop. J. Pharm. Res., 2009, 8(2), 133-137.
[http://dx.doi.org/10.4314/tjpr.v8i2.44521]
[114]
Shetty, S.C.; Bhagat, V.C.; Kore, K.J.; Shete, R.V. Screening of Astercantha Longifolia nees for it’s anti-inflammatory activity. Indian Drugs, 2008, 45(3), 215.
[115]
Sunil Kumar, K.N.; Divya, K.G.; Mattummal, R.; Erni, B.; Sathiyarajeswaran, P.; Kanakavalli, K. Pharmacological actions of contents of kabasura kudineer: a siddha formulation for fever with respiratory illness. Indian J. Pharm. Edu. Res., 2021, 55(1), 36-55.
[http://dx.doi.org/10.5530/ijper.55.1.7]
[116]
Tekulu, G.H.; Desta, A.; Hiben, M.G.; Araya, E.M. Anti-nociceptive and anti-inflammatory activity of hygrophila schulli leaves. J. Inflamm. Res., 2020, 13, 497-505.
[http://dx.doi.org/10.2147/JIR.S269717] [PMID: 32943902]
[117]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[118]
Ambrose, GO; Afees, OJ; Nwamaka, NC; Simon, N; Oluwaseun, AA; Soyinka, T; Oluwaseun, AS; Bankole, S Selection of Luteolin as a potential antagonist from molecular docking analysis of EGFR mutant. Bioinformation, 2018, 14(5), 241-247.
[http://dx.doi.org/10.6026/97320630014241]
[119]
Bagli, E.; Stefaniotou, M.; Morbidelli, L.; Ziche, M.; Psillas, K.; Murphy, C.; Fotsis, T. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Res., 2004, 64(21), 7936-7946.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3104] [PMID: 15520200]
[120]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[http://dx.doi.org/10.1016/j.canlet.2009.04.033] [PMID: 19464787]
[121]
Boparai, A.; Niazi, J.; Bajwa, N. Betulin a pentacyclic tri–terpenoid: an hour to rethink the compound. Open Access J. Trans. Med. Res, 2017, 1(2), 53-59.
[122]
Bhatt, M.H.; Prajapati, C.K.; Reddy, M.N. In silico docking studies of Lupeol with MAPK pathway proteins- Raf-1, MEK & ERK. J. Exp. Ther. Oncol., 2017, 12(2), 137-140.
[PMID: 29161781]
[123]
Ahmed, D.; Kumar, V.; Sharma, M.; Verma, A. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complement. Altern. Med., 2014, 14(1), 155.
[http://dx.doi.org/10.1186/1472-6882-14-155] [PMID: 24886138]
[124]
Malik, A.; Jamil, U.; Butt, T.T.; Waquar, S.; Gan, S.H.; Shafique, H.; Jafar, T.H. In silico and in vitro studies of lupeol and iso-orientin as potential antidiabetic agents in a rat model. Drug Des. Devel. Ther., 2019, 13, 1501-1513.
[http://dx.doi.org/10.2147/DDDT.S176698] [PMID: 31123393]
[125]
Gurupriya, S.; Cathrine, L. Molecular docking studies of isolated compounds andrographolide and betulin from methanolic leaves extract of andrographis echioides as alpha-amylase and alpha-glucosidase activators. Int. J. Of Appl. Pharm., 2021, 121-129.
[126]
Chigurupati, S.; Al-murikhy, A.; Almahmoud, S.A.; Almoshari, Y.; Saber Ahmed, A.; Vijayabalan, S.; Ghazi Felemban, S.; Raj Palanimuthu, V. Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Moringa oleifera ethanolic leaves extract from Qassim region, Saudi Arabia. Saudi J. Biol. Sci., 2022, 29(2), 854-859.
[http://dx.doi.org/10.1016/j.sjbs.2021.10.021] [PMID: 35197753]
[127]
Maharani, M.G.; Lestari, S.R.; Lukiati, B. Molecular docking studies flavonoid (quercetin, isoquercetin, and kaempferol) of single bulb garlic (Allium sativum) to inhibit lanosterol synthase as anti-hypercholesterol therapeutic strategies. AIP Conference Proceedings, 2021, 2231(1), p. 040021.
[128]
Islam, B.; Sharma, C.; Adem, A.; Aburawi, E.; Ojha, S. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug Des. Devel. Ther., 2015, 9(9), 4943-4951.
[PMID: 26357462]
[129]
Singh, S.P.; Konwar, B.K. Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Springerplus, 2012, 1(1), 69.
[http://dx.doi.org/10.1186/2193-1801-1-69] [PMID: 23556141]
[130]
Hasan, M.M.; Khan, Z.; Chowdhury, M.S.; Khan, M.A.; Moni, M.A.; Rahman, M.H. In silico molecular docking and ADME/T analysis of quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases. Inform. Med. Unlocked, 2022, 29, 100894.
[http://dx.doi.org/10.1016/j.imu.2022.100894]
[131]
Patil, A.G.; Prakash, J.K.; More, S.S.; Chandramohan, V.; Zameer, F. Exploring Banana phytosterols (Beta-sitosterol) on tight junction protein (claudin) as anti-urolithiasis contributor in Drosophila: A phyto-lithomic approach. Inform. Med. Unlocked, 2022, 100905.
[132]
Baskar, A.A.; Al Numair, K.S.; Gabriel Paulraj, M.; Alsaif, M.A.; Muamar, M.A.; Ignacimuthu, S. β-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. J. Med. Food, 2012, 15(4), 335-343.
[http://dx.doi.org/10.1089/jmf.2011.1780] [PMID: 22353013]
[133]
Manju, V.; Balasubramaniyan, V.; Nalini, N. Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1,2-dimethylhydrazine challenge. Cell. Mol. Biol. Lett., 2005, 10(3), 535-551.
[PMID: 16217561]
[134]
Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep., 2017, 15, 11-23.
[http://dx.doi.org/10.1016/j.btre.2017.03.002] [PMID: 28603692]
[135]
Satpathy, S.; Patra, A.; Ahirwar, B.; Hussain, M.D. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E, 2020, 121, 113830.
[136]
Koperuncholan, M. Bioreduction of chloroauric acid (HAuCl4) for the synthesis of gold nanoparticles (GNPs): Special empathies of pharmacological activity. Int. J. Phytopharm, 2015, 5(4), 72-80.
[137]
Das, P.; Parida, U.K. Starch coatedgold nanoparticles using hygrophila auriculata L for controlled released of anticancer drug doxorubicin. Int. J. Pharma Bio Sci., 2017, 8(4), B307-B313.
[http://dx.doi.org/10.22376/ijpbs.2017.8.4.b307-313]
[138]
Kowsalya, E.; MosaChristas, K.; Jaquline, C.R.I.; Balashanmugam, P.; Devasena, T. Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF-7 breast cancer cells. Appl. Organomet. Chem., 2021, 35(1), e607.
[http://dx.doi.org/10.1002/aoc.6071]
[139]
Bharathi, S.; Kumaran, S.; Suresh, G.; Ramesh, B.; Sundari, M.N. Phytosynthesis of silver nanoparticles using hygrophila auriculata leaf extract and assessment of their antibacterial and antioxidant properties. Int. J. Appl. Pharm., 2018, 10(6), 112-118.
[http://dx.doi.org/10.22159/ijap.2018v10i6.28605]

© 2024 Bentham Science Publishers | Privacy Policy