Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cinnamaldehyde for the Treatment of Microbial Infections: Evidence Obtained from Experimental Models

Author(s): Cristiane Santos Silva e Silva Figueiredo, Patrícia Vieira de Oliveira, Larissa dos Reis Ferreira, Thallysson José Dourado de Sousa, Mayara de Santana do Nascimento, Julliana Ribeiro Alves dos Santos, Adrielle Zagmignan, Rodrigo Assunção de Holanda, Lívia Câmara de Carvalho Galvão and Luís Cláudio Nascimento da Silva*

Volume 30, Issue 31, 2023

Published on: 08 December, 2022

Page: [3506 - 3526] Pages: 21

DOI: 10.2174/0929867329666221005105108

Price: $65

Open Access Journals Promotions 2
Abstract

Cinnamaldehyde (CNM) is a cyclic terpene alcohol found as the major compound of essential oils from some plants of the genus Cinnamomum (Lauraceae). CNM has several reported pharmacological activities, including antimicrobial, antivirulence, antioxidant, and immunomodulatory effects. These properties make CNM an attractive lead molecule for the development of anti-infective agents. In this descriptive review, we discuss the application of CNM in experimental models of microbial infection using invertebrate and vertebrate organisms. CNM (pure or in formulations) has been successfully applied in the treatment of infections caused by a range of bacterial (such as Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Streptococcus agalactiae, Vibrio cholerae) and fungal (such as Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans) pathogens. All these experimental evidence-based findings have promoted the use of cinnamaldehyde as the leading molecule for developing new anti- infective drugs.

Keywords: Cinnamomum sp., essential oils, virulence factors, immunomodulation, anti-infective agents, experimental models.

[1]
Hajimonfarednejad, M.; Ostovar, M.; Raee, M.J.; Hashempur, M.H.; Mayer, J.G.; Heydari, M. Cinnamon: A systematic review of adverse events. Clin. Nutr., 2019, 38(2), 594-602.
[http://dx.doi.org/10.1016/j.clnu.2018.03.013] [PMID: 29661513]
[2]
Kowalska, J.; Tyburski, J.; Matysiak, K.; Jakubowska, M.; Łukaszyk, J.; Krzymińska, J. Cinnamon as a useful preventive substance for the care of human and plant health. Molecules, 2021, 26(17), 5299.
[http://dx.doi.org/10.3390/molecules26175299] [PMID: 34500731]
[3]
Yakhchali, M.; Taghipour, Z.; Mirabzadeh Ardakani, M.; Alizadeh Vaghasloo, M.; Vazirian, M.; Sadrai, S. Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine. Biomed. Pharmacother., 2021, 143, 112221.
[http://dx.doi.org/10.1016/j.biopha.2021.112221] [PMID: 34563952]
[4]
Mousavi, S.M.; Jayedi, A.; Bagheri, A.; Zargarzadeh, N.; Wong, A.; Persad, E.; Akhgarjand, C.; Koohdani, F. What is the influence of cinnamon supplementation on liver enzymes? A systematic review and meta-analysis of randomized controlled trials. Phytother. Res., 2021, 35(10), 5634-5646.
[http://dx.doi.org/10.1002/ptr.7200] [PMID: 34212447]
[5]
Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog., 2018, 120, 198-203.
[http://dx.doi.org/10.1016/j.micpath.2018.04.036] [PMID: 29702210]
[6]
Moghimi, R.; Aliahmadi, A.; Rafati, H. Ultrasonic nanoemulsification of food grade trans-cinnamaldehyde: 1,8-Cineol and investigation of the mechanism of antibacterial activity. Ultrason. Sonochem., 2017, 35(Pt A), 415-421.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.020] [PMID: 28029520]
[7]
Nabavi, S.; Di Lorenzo, A.; Izadi, M.; Sobarzo-Sánchez, E.; Daglia, M.; Nabavi, S. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients, 2015, 7(9), 7729-7748.
[http://dx.doi.org/10.3390/nu7095359] [PMID: 26378575]
[8]
Faleye, O.S.; Sathiyamoorthi, E.; Lee, J.H.; Lee, J. Inhibitory effects of cinnamaldehyde derivatives on biofilm formation and virulence factors in Vibrio species. Pharmaceutics, 2021, 13(12), 2176.
[http://dx.doi.org/10.3390/pharmaceutics13122176] [PMID: 34959457]
[9]
Huang, Y.; Chen, J.; Yang, S.; Tan, T.; Wang, N.; Wang, Y.; Zhang, L.; Yang, C.; Huang, H.; Luo, J.; Luo, X. Cinnamaldehyde inhibits the function of osteosarcoma by suppressing the Wnt/β-Catenin and PI3K/Akt signaling pathways. Drug Des. Devel. Ther., 2020, 14, 4625-4637.
[http://dx.doi.org/10.2147/DDDT.S277160] [PMID: 33154629]
[10]
Mateen, S.; Rehman, M.T.; Shahzad, S.; Naeem, S.S.; Faizy, A.F.; Khan, A.Q.; Khan, M.S.; Husain, F.M.; Moin, S. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur. J. Pharmacol., 2019, 852, 14-24.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.031] [PMID: 30796902]
[11]
Zhao, H.; Wu, H.; Duan, M.; Liu, R.; Zhu, Q.; Zhang, K.; Wang, L. Cinnamaldehyde improves metabolic functions in streptozotocin-induced diabetic mice by regulating gut microbiota. Drug Des. Devel. Ther., 2021, 15, 2339-2355.
[http://dx.doi.org/10.2147/DDDT.S288011] [PMID: 34103897]
[12]
Hajinejad, M.; Ghaddaripouri, M.; Dabzadeh, M.; Forouzanfar, F.; Sahab-Negah, S. Natural cinnamaldehyde and its derivatives ameliorate neuroinflammatory pathways in neurodegenerative diseases. BioMed Res. Int., 2020, 2020, 1034325.
[http://dx.doi.org/10.1155/2020/1034325]
[13]
Mustafa, H.N. Neuro-amelioration of cinnamaldehyde in aluminum-induced Alzheimer’s disease rat model. J. Histotechnol., 2020, 43(1), 11-20.
[http://dx.doi.org/10.1080/01478885.2019.1652994] [PMID: 31460853]
[14]
Ferro, T.A.F.; Souza, E.B.; Suarez, M.A.M.; Rodrigues, J.F.S.; Pereira, D.M.S.; Mendes, S.J.F.; Gonzaga, L.F.; Machado, M.C.A.M.; Bomfim, M.R.Q.; Calixto, J.B.; Arbiser, J.L.; Monteiro-Neto, V.; André, E.; Fernandes, E.S. Topical application of cinnamaldehyde promotes faster healing of skin wounds infected with Pseudomonas aeruginosa. Molecules, 2019, 24(8), 1627.
[http://dx.doi.org/10.3390/molecules24081627] [PMID: 31027179]
[15]
Mendes, S.J.F.; Sousa, F.I.A.B.; Pereira, D.M.S.; Ferro, T.A.F.; Pereira, I.C.P.; Silva, B.L.R.; Pinheiro, A.J.M.C.R.; Mouchrek, A.Q.S.; Monteiro-Neto, V.; Costa, S.K.P.; Nascimento, J.L.M.; Grisotto, M.A.G.; da Costa, R.; Fernandes, E.S. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int. Immunopharmacol., 2016, 34, 60-70.
[http://dx.doi.org/10.1016/j.intimp.2016.02.012] [PMID: 26922677]
[16]
Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 2019, 139, 104405.
[http://dx.doi.org/10.1016/j.fitote.2019.104405] [PMID: 31707126]
[17]
Warsito, W.; Murlistyarini, S.; Suratmo, S.; Azzahra, V.; Sucahyo, A. Molecular docking compounds of cinnamaldehyde derivatives as anticancer agents. Asian Pac. J. Cancer Prev., 2021, 22(8), 2409-2419.
[http://dx.doi.org/10.31557/APJCP.2021.22.8.2409] [PMID: 34452553]
[18]
Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, H.B. Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci., 2017, 18(6), 1283.
[http://dx.doi.org/10.3390/ijms18061283]
[19]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid.-based Compl. Altern. Med., 2014, 2014, 642942.
[http://dx.doi.org/10.1155/2014/642942]
[20]
Cetin-Karaca, H.; Morgan, M.C. Inactivation of Bacillus cereus spores in infant formula by combination of high pressure and trans-cinnamaldehyde. Lebensm. Wiss. Technol., 2018, 97, 254-260.
[http://dx.doi.org/10.1016/j.lwt.2018.07.001]
[21]
Cetin-Karaca, H.; Newman, M.C. Antimicrobial efficacy of phytochemicals against Bacillus cereus in reconstituted infant rice cereal. Food Microbiol., 2018, 69, 189-195.
[http://dx.doi.org/10.1016/j.fm.2017.08.011] [PMID: 28941901]
[22]
Chan, A.C.; Ager, D.; Thompson, I.P. Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. J. Microbiol. Methods, 2013, 93(3), 209-217.
[http://dx.doi.org/10.1016/j.mimet.2013.03.021] [PMID: 23566822]
[23]
Bowles, B.L.; Miller, A.J. Antibotulinal roperties of selected aromatic and aliphatic aldehydes. J. Food Prot., 1993, 56(9), 788-794.
[http://dx.doi.org/10.4315/0362-028X-56.9.788] [PMID: 31113058]
[24]
Shahverdi, A.R.; Monsef-Esfahani, H.R.; Tavasoli, F.; Zaheri, A.; Mirjani, R. Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro. J. Food Sci., 2007, 72(1), S055-S058.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00204.x] [PMID: 17995898]
[25]
Mooyottu, S.; Kollanoor-Johny, A.; Flock, G.; Bouillaut, L.; Upadhyay, A.; Sonenshein, A.L.; Venkitanarayanan, K. Carvacrol and trans-cinnamaldehyde reduce clostridium difficile toxin production and cytotoxicity in vitro. Int. J. Mol. Sci., 2014, 15, 4415-4430.
[26]
Roshan, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of natural products against Clostridium difficile in vitro. J. Appl. Microbiol., 2017, 123(1), 92-103.
[http://dx.doi.org/10.1111/jam.13486] [PMID: 28489336]
[27]
Alanazi, S.; Alnoman, M.; Banawas, S.; Saito, R.; Sarker, M.R. The inhibitory effects of essential oil constituents against germination, outgrowth and vegetative growth of spores of Clostridium perfringens type A in laboratory medium and chicken meat. Food Microbiol., 2018, 73, 311-318.
[http://dx.doi.org/10.1016/j.fm.2018.02.003] [PMID: 29526218]
[28]
Ghosh, I.N.; Patil, S.D.; Sharma, T.K.; Srivastava, S.K.; Pathania, R.; Navani, N.K. Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: A case for judicious use of silver nanoparticles for antibacterial applications. Int. J. Nanomedicine, 2013, 8, 4721-4731.
[PMID: 24376352]
[29]
Ferro, T.A.F.; Araújo, J.M.M.; dos Santos Pinto, B.L.; dos Santos, J.S.; Souza, E.B.; da Silva, B.L.R.; Colares, V.L.P.; Novais, T.M.G.; Filho, C.M.B.; Struve, C.; Calixto, J.B.; Monteiro-Neto, V.; da Silva, L.C.N.; Fernandes, E.S. Cinnamaldehyde inhibits Staphylococcus aureus virulence factors and protects against infection in a Galleria mellonella model. Front. Microbiol., 2016, 7, 2052.
[http://dx.doi.org/10.3389/fmicb.2016.02052] [PMID: 28066373]
[30]
Ali, I.A.A.; Matinlinna, J.P.; Lévesque, C.M.; Neelakantan, P. Trans-Cinnamaldehyde attenuates Enterococcus faecalis virulence and inhibits biofilm formation. Antibiotics (Basel), 2021, 10(6), 702.
[http://dx.doi.org/10.3390/antibiotics10060702] [PMID: 34208134]
[31]
Ali, I.A.A.; Cheung, B.P.K.; Matinlinna, J.; Lévesque, C.M.; Neelakantan, P. Trans-cinnamaldehyde potently kills Enterococcus faecalis biofilm cells and prevents biofilm recovery. Microb. Pathog., 2020, 149, 104482.
[http://dx.doi.org/10.1016/j.micpath.2020.104482] [PMID: 32920147]
[32]
Gill, A.O.; Holley, R.A. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol., 2004, 70(10), 5750-5755.
[http://dx.doi.org/10.1128/AEM.70.10.5750-5755.2004] [PMID: 15466510]
[33]
Liu, Q.; Niu, H.; Zhang, W.; Mu, H.; Sun, C.; Duan, J. Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Lett. Appl. Microbiol., 2015, 60(5), 421-430.
[http://dx.doi.org/10.1111/lam.12401] [PMID: 25661823]
[34]
Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium. Lett. Appl. Microbiol., 2020, 71(2), 195-202.
[http://dx.doi.org/10.1111/lam.13308] [PMID: 32357268]
[35]
Wong, S.Y.Y.; Grant, I.R.; Friedman, M.; Elliott, C.T.; Situ, C. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl. Environ. Microbiol., 2008, 74(19), 5986-5990.
[http://dx.doi.org/10.1128/AEM.00981-08] [PMID: 18676709]
[36]
Nowotarska, S.; Nowotarski, K.; Grant, I.; Elliott, C.; Friedman, M.; Situ, C. Mechanisms of antimicrobial action of cinnamon and oregano oils, cinnamaldehyde, carvacrol, 2,5-dihydroxybenzaldehyde, and 2-hydroxy-5-methoxybenzaldehyde against Mycobacterium avium subsp. paratuberculosis (Map). Foods, 2017, 6(9), 72.
[http://dx.doi.org/10.3390/foods6090072] [PMID: 28837070]
[37]
Sawicki, R.; Golus, J.; Przekora, A.; Ludwiczuk, A.; Sieniawska, E.; Ginalska, G. Antimycobacterial activity of cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) model. Molecules, 2018, 23(9), 2381.
[http://dx.doi.org/10.3390/molecules23092381] [PMID: 30231479]
[38]
Wan, C.J.; Zhang, Y.; Liu, C.X.; Yang, Z.C. Cinnamic aldehyde, isolated from Cinnamomum cassia, alone and in combination with pyrazinamide against Mycobacterium tuberculosis in vitro and in vivo. S. Afr. J. Bot., 2022, 144, 200-205.
[http://dx.doi.org/10.1016/j.sajb.2021.08.009]
[39]
Sieniawska, E.; Sawicki, R.; Golus, J.; Georgiev, M.I. Untargetted metabolomic exploration of the Mycobacterium tuberculosis stress response to cinnamon essential oil. Biomolecules, 2020, 10(3), 357.
[http://dx.doi.org/10.3390/biom10030357] [PMID: 32111061]
[40]
Wang, S.; Kang, O.H.; Kwon, D.Y.; Moreno, D.A.; Ruiz-Alcaraz, A.J. Trans-Cinnamaldehyde exhibits synergy with conventional antibiotic against methicillin-resistant Staphylococcus aureus. Int. J. Mol. Sci., 2021, 22(5), 2752.
[http://dx.doi.org/10.3390/ijms22052752] [PMID: 33803167]
[41]
Shi, C.; Zhang, X.; Zhao, X.; Meng, R.; Liu, Z.; Chen, X.; Guo, N. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control, 2017, 71, 10-16.
[http://dx.doi.org/10.1016/j.foodcont.2016.06.020]
[42]
Jia, P.; Xue, Y.J.; Duan, X.J.; Shao, S.H. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol., 2011, 53(4), 409-416.
[http://dx.doi.org/10.1111/j.1472-765X.2011.03122.x] [PMID: 21767279]
[43]
Sharma, G.; Raturi, K.; Dang, S.; Gupta, S.; Gabrani, R. Inhibitory effect of cinnamaldehyde alone and in combination with thymol, eugenol and thymoquinone against Staphylococcus epidermidis. J. Herb. Med., 2017, 9, 68-73.
[http://dx.doi.org/10.1016/j.hermed.2016.11.001]
[44]
Albano, M.; Crulhas, B.P.; Alves, F.C.B.; Pereira, A.F.M.; Andrade, B.F.M.T.; Barbosa, L.N.; Furlanetto, A.; Lyra, L.P.S.; Rall, V.L.M.; Júnior, A.F. Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb. Pathog., 2019, 126, 231-238.
[http://dx.doi.org/10.1016/j.micpath.2018.11.009] [PMID: 30439400]
[45]
Faikoh, E.N.; Hong, Y.H.; Hu, S.Y. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae. Fish Shellfish Immunol., 2014, 38(1), 15-24.
[http://dx.doi.org/10.1016/j.fsi.2014.02.024] [PMID: 24632045]
[46]
Ribeiro, M.; Malheiro, J.; Grenho, L.; Fernandes, M.H.; Simões, M. Cytotoxicity and antimicrobial action of selected phytochemicals against planktonic and sessile Streptococcus mutans. PeerJ, 2018, 2018, e4872.
[47]
Balasubramanian, A.R.; Vasudevan, S.; Shanmugam, K.; Lévesque, C.M.; Solomon, A.P.; Neelakantan, P. Combinatorial effects of trans-cinnamaldehyde with fluoride and chlorhexidine on Streptococcus mutans. J. Appl. Microbiol., 2021, 130(2), 382-393.
[http://dx.doi.org/10.1111/jam.14794] [PMID: 32707601]
[48]
He, Z.; Huang, Z.; Jiang, W.; Zhou, W. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front. Microbiol., 2019, 10, 2241.
[http://dx.doi.org/10.3389/fmicb.2019.02241] [PMID: 31608045]
[49]
Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia, 2017, 118, 56-62.
[http://dx.doi.org/10.1016/j.fitote.2017.02.008] [PMID: 28223069]
[50]
Karumathil, D.P.; Nair, M.S.; Gaffney, J.; Kollanoor-Johny, A.; Venkitanarayanan, K. Trans-Cinnamaldehyde and eugenol increase Acinetobacter baumannii sensitivity to beta-lactam antibiotics. Front. Microbiol., 2018, 9, 1011.
[http://dx.doi.org/10.3389/fmicb.2018.01011] [PMID: 29875743]
[51]
Thirapanmethee, K.; Kanathum, P.; Khuntayaporn, P.; Huayhongthong, S.; Surassmo, S.; Chomnawang, M.T. Cinnamaldehyde: A plant-derived antimicrobial for overcoming multidrug-resistant Acinetobacter baumannii infection. Eur. J. Integr. Med., 2021, 48, 101376.
[http://dx.doi.org/10.1016/j.eujim.2021.101376]
[52]
Karumathil, D.P.; Surendran-Nair, M.; Venkitanarayanan, K. Efficacy of trans -cinnamaldehyde and eugenol in reducing Acinetobacter baumannii adhesion to and invasion of human keratinocytes and controlling wound infection in vitro. Phytother. Res., 2016, 30(12), 2053-2059.
[http://dx.doi.org/10.1002/ptr.5713] [PMID: 27619325]
[53]
Ouyang, P.; Chen, J.; Yin, L.; Geng, Y.; Chen, D.; Wang, K.; Lai, W.; Guo, H.; Fang, J.; Chen, Z.; Tang, L.; Huang, C.; Huang, X. The sub-inhibitory concentration of cinnamaldehyde resists Aeromonas hydrophila pathogenicity via inhibition of W-pili production. Aquacult. Int., 2021, 29(4), 1639-1655.
[http://dx.doi.org/10.1007/s10499-021-00705-6]
[54]
Starliper, C.E.; Ketola, H.G.; Noyes, A.D.; Schill, W.B.; Henson, F.G.; Chalupnicki, M.A.; Dittman, D.E. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp. J. Adv. Res., 2015, 6(1), 89-97.
[http://dx.doi.org/10.1016/j.jare.2013.12.007] [PMID: 25685547]
[55]
Verlinden, M.; Pasmans, F.; Mahu, M.; Vande Maele, L.; De Pauw, N.; Yang, Z.; Haesebrouck, F.; Martel, A. In vitro sensitivity of poultry Brachyspira intermedia isolates to essential oil components and in vivo reduction of Brachyspira intermedia in rearing pullets with cinnamaldehyde feed supplementation. Poult. Sci., 2013, 92(5), 1202-1207.
[http://dx.doi.org/10.3382/ps.2012-02690] [PMID: 23571329]
[56]
Yu, H.H.; Song, Y.J.; Yu, H.S.; Lee, N.K.; Paik, H.D. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics. J. Food Sci., 2020, 85(1), 157-164.
[http://dx.doi.org/10.1111/1750-3841.14989] [PMID: 31909483]
[57]
Wagle, B.R.; Upadhyay, A.; Upadhyaya, I.; Shrestha, S.; Arsi, K.; Liyanage, R.; Venkitanarayanan, K.; Donoghue, D.J.; Donoghue, A.M. Trans-cinnamaldehyde, eugenol and carvacrol reduce Campylobacter jejuni biofilms and modulate expression of select genes and proteins. Front. Microbiol., 2019, 10, 1837.
[http://dx.doi.org/10.3389/fmicb.2019.01837] [PMID: 31456771]
[58]
Abdelhamed, H.; Ozdemir, O.; Ibrahim, I.; Lawrence, M.; Karsi, A. Antibacterial activities of trans-cinnamaldehyde, caprylic acid, and β-resorcylic acid against catfish pathogens. Aquaculture, 2019, 504, 334-344.
[http://dx.doi.org/10.1016/j.aquaculture.2019.02.017]
[59]
Ooi, L.S.M.; Li, Y.; Kam, S.L.; Wang, H.; Wong, E.Y.L.; Ooi, V.E.C. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med., 2006, 34(3), 511-522.
[http://dx.doi.org/10.1142/S0192415X06004041] [PMID: 16710900]
[60]
Amalaradjou, M.A.R.; Narayanan, A.; Venkitanarayanan, K. Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression. J. Urol., 2011, 185(4), 1526-1531.
[http://dx.doi.org/10.1016/j.juro.2010.11.078] [PMID: 21334666]
[61]
Figueiredo, I.F.S.; Araújo, L.G.; Assunção, R.G.; Dutra, I.L.; Nascimento, J.R.; Rego, F.S.; Rolim, C.S.; Alves, L.S.R.; Frazão, M.A.; Cadete, S.F.; da Silva, L.C.N.; de Sá, J.C.; de Sousa, E.M.; Elias, W.P.; Nascimento, F.R.F.; Abreu, A.G. Cinnamaldehyde increases the survival of mice submitted to sepsis induced by extraintestinal pathogenic Escherichia coli. Antibiotics (Basel), 2022, 11(3), 364.
[http://dx.doi.org/10.3390/antibiotics11030364] [PMID: 35326827]
[62]
Dhara, L.; Tripathi, A. Cinnamaldehyde: A compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(1), 65-73.
[http://dx.doi.org/10.1007/s10096-019-03692-y] [PMID: 31624984]
[63]
Visvalingam, J.; Palaniappan, K.; Holley, R.A. In vitro enhancement of antibiotic susceptibility of drug resistant Escherichia coli by cinnamaldehyde. Food Control, 2017, 79, 288-291.
[http://dx.doi.org/10.1016/j.foodcont.2017.04.011]
[64]
Balázs, V.L.; Horváth, B.; Kerekes, E.; Ács, K.; Kocsis, B.; Varga, A.; Böszörményi, A.; Nagy, D.U.; Krisch, J.; Széchenyi, A.; Horváth, G. Anti-Haemophilus activity of selected essential oils detected by TLC-direct bioautography and biofilm inhibition. Molecules, 2019, 24(18), 3301.
[http://dx.doi.org/10.3390/molecules24183301] [PMID: 31514307]
[65]
Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med., 2016, 16(1), 158.
[http://dx.doi.org/10.1186/s12906-016-1134-9] [PMID: 27245046]
[66]
Topa, S.H.; Palombo, E.A.; Kingshott, P.; Blackall, L.L. Activity of cinnamaldehyde on quorum sensing and biofilm susceptibility to antibiotics in Pseudomonas aeruginosa. Microorganisms, 2020, 8(3), 455.
[http://dx.doi.org/10.3390/microorganisms8030455] [PMID: 32210139]
[67]
Topa, S.H.; Subramoni, S.; Palombo, E.A.; Kingshott, P.; Rice, S.A.; Blackall, L.L. Cinnamaldehyde disrupts biofilm formation and swarming motility of Pseudomonas aeruginosa. Microbiology (Reading), 2018, 164(9), 1087-1097.
[http://dx.doi.org/10.1099/mic.0.000692] [PMID: 29993359]
[68]
Wang, Y.; Zhang, Y.; Shi, Y.; Pan, X.; Lu, Y.; Cao, P. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microb. Pathog., 2018, 116, 26-32.
[http://dx.doi.org/10.1016/j.micpath.2018.01.009] [PMID: 29325862]
[69]
Aygül, A.; Kibar, F.; Çıragil, P. Quercetin and Cinnamaldehyde show antipathogenic activity against proteus mirabilis isolates: inhibition of swarming motility and urease activity. Flora, 2020, 25(1), 76-83.
[http://dx.doi.org/10.5578/flora.69001]
[70]
Al-Bayati, F.A.; Mohammed, M.J. Isolation, identification, and purification of cinnamaldehyde from Cinnamomum zeylanicum bark oil. An antibacterial study. Pharm. Biol., 2009, 47(1), 61-66.
[http://dx.doi.org/10.1080/13880200802430607]
[71]
Liu, Y.; Zhang, Y.; Zhou, Y.; Wang, T.; Deng, X.; Chu, X.; Zhou, T. Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins. Vet. Microbiol., 2019, 239, 108463.
[http://dx.doi.org/10.1016/j.vetmic.2019.108463] [PMID: 31767076]
[72]
Kollanoor Johny, A.; Frye, J.G.; Donoghue, A.; Donoghue, D.J.; Porwollik, S.; McClelland, M.; Venkitanarayanan, K. Gene expression response of Salmonella enterica serotype enteritidis phage type 8 to subinhibitory concentrations of the plant-derived compounds Trans-Cinnamaldehyde and Eugenol. Front. Microbiol., 2017, 8, 1828.
[http://dx.doi.org/10.3389/fmicb.2017.01828] [PMID: 29018419]
[73]
Piovezan, M.; Sayuri Uchida, N.; Fiori da Silva, A.; Grespan, R.; Regina Santos, P.; Leite Silva, E.; Kenji Nakamura Cuman, R.; Machinski Junior, M.; Martha Graton Mikcha, J. Effect of cinnamon essential oil and cinnamaldehyde on Salmonella Saintpaul biofilm on a stainless steel surface. J. Gen. Appl. Microbiol., 2014, 60(3), 119-121.
[http://dx.doi.org/10.2323/jgam.60.119] [PMID: 25008168]
[74]
Lyu, F.; Hong, Y.; Cai, J.; Wei, Q.; Zhou, X.; Ding, Y.; Liu, Z.; Liu, L. Antimicrobial effect and mechanism of cinnamon oil and gamma radiation on Shewanella putrefaciens. J. Food Sci. Technol., 2018, 55(9), 3353-3361.
[http://dx.doi.org/10.1007/s13197-018-3297-5] [PMID: 30150793]
[75]
Lyu, F.; Gao, F.; Wei, Q.; Liu, L. Changes of membrane fatty acids and proteins of Shewanella putrefaciens treated with cinnamon oil and gamma irradiation. Bioresour. Bioprocess., 2017, 4(1), 10.
[http://dx.doi.org/10.1186/s40643-017-0140-1] [PMID: 28203517]
[76]
Brackman, G.; Celen, S.; Hillaert, U.; Van Calenbergh, S.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One, 2011, 6(1), e16084.
[http://dx.doi.org/10.1371/journal.pone.0016084] [PMID: 21249192]
[77]
He, T.F.; Wang, L.H.; Niu, D.; Wen, Q.; Zeng, X.A. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch. Microbiol., 2019, 201(4), 451-458.
[http://dx.doi.org/10.1007/s00203-018-1572-5] [PMID: 30293114]
[78]
He, T.F.; Zhang, Z.H.; Zeng, X.A.; Wang, L.H.; Brennan, C.S. Determination of membrane disruption and genomic DNA binding of cinnamaldehyde to Escherichia coli by use of microbiological and spectroscopic techniques. J. Photochem. Photobiol. B, 2018, 178, 623-630.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.015] [PMID: 29306845]
[79]
Rogiers, G.; Kebede, B.T.; Van Loey, A.; Michiels, C.W. Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde. Res. Microbiol., 2017, 168(6), 536-546.
[http://dx.doi.org/10.1016/j.resmic.2017.03.001] [PMID: 28342836]
[80]
Mousavi, F.; Bojko, B.; Bessonneau, V.; Pawliszyn, J. Cinnamaldehyde characterization as an antibacterial agent toward E. coli metabolic profile using 96-Blade solid-phase microextraction coupled to liquid chromatography–mass spectrometry. J. Proteome Res., 2016, 15(3), 963-975.
[http://dx.doi.org/10.1021/acs.jproteome.5b00992] [PMID: 26811002]
[81]
Pereira, W.A.; Pereira, C.D.S.; Assunção, R.G.; da Silva, I.S.C.; Rego, F.S.; Alves, L.S.R.; Santos, J.S.; Nogueira, F.J.R.; Zagmignan, A.; Thomsen, T.T.; Løbner-Olesen, A.; Krogfelt, K.A.; da Silva, L.C.N.; Abreu, A.G. New Insights into the antimicrobial action of cinnamaldehyde towards Escherichia coli and its effects on intestinal colonization of mice. Biomolecules, 2021, 11(2), 302.
[http://dx.doi.org/10.3390/biom11020302] [PMID: 33670478]
[82]
Li, X.; Sheng, J.; Huang, G.; Ma, R.; Yin, F.; Song, D.; Zhao, C.; Ma, S. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ. Eur. J. Med. Chem., 2015, 97, 32-41.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.048] [PMID: 25938986]
[83]
Domadia, P.; Swarup, S.; Bhunia, A.; Sivaraman, J.; Dasgupta, D. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem. Pharmacol., 2007, 74(6), 831-840.
[http://dx.doi.org/10.1016/j.bcp.2007.06.029] [PMID: 17662960]
[84]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15(1), 332.
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[85]
Shreaz, S.; Shiekh, R.A.; Raja, V.; Wani, W.A.; Behbehani, J.M. Impaired ergosterol biosynthesis mediated fungicidal activity of Co(II) complex with ligand derived from cinnamaldehyde. Chem. Biol. Interact., 2016, 247, 64-74.
[http://dx.doi.org/10.1016/j.cbi.2016.01.015] [PMID: 26806515]
[86]
Khan, M.S.; Ahmad, I.; Cameotra, S. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express, 2013, 3(1), 54.
[http://dx.doi.org/10.1186/2191-0855-3-54] [PMID: 24010721]
[87]
Bang, K.H.; Lee, D.W.; Park, H.M.; Rhee, Y.H. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci. Biotechnol. Biochem., 2000, 64(5), 1061-1063.
[http://dx.doi.org/10.1271/bbb.64.1061] [PMID: 10879482]
[88]
Deng, J.; Wang, G.; Li, J.; Zhao, Y.; Wang, X. Effects of cinnamaldehyde on the cell wall of A. fumigatus and its application in treating mice with invasive pulmonary aspergillosis. Evid.-based Compl. Altern. Med., 2018, 2018, 5823209.
[89]
Wang, L.; Jin, J.; Liu, X.; Wang, Y.; Liu, Y.; Zhao, Y.; Xing, F. Effect of cinnamaldehyde on morphological alterations of Aspergillus ochraceus and expression of key genes involved in ochratoxin A biosynthesis. Toxins (Basel), 2018, 10(9), 340.
[http://dx.doi.org/10.3390/toxins10090340] [PMID: 30135391]
[90]
OuYang, Q.; Duan, X.; Li, L.; Tao, N. Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of Geotrichum citri-aurantii. Front. Microbiol., 2019, 10, 55.
[http://dx.doi.org/10.3389/fmicb.2019.00055] [PMID: 30761105]
[91]
Khan, S.N.; Khan, S.; Iqbal, J.; Khan, R.; Khan, A.U. Enhanced killing and antibiofilm activity of encapsulated cinnamaldehyde against Candida albicans. Front. Microbiol., 2017, 8, 1641.
[http://dx.doi.org/10.3389/fmicb.2017.01641] [PMID: 28900419]
[92]
Bakhtiari, S.; Jafari, S.; Taheri, J.B.; Kashi, T.S.J.; Namazi, Z.; Iman, M.; Poorberafeyi, M. The effects of cinnamaldehyde (Cinnamon derivatives) and nystatin on Candida albicans and Candida glabrata. Open Access Maced. J. Med. Sci., 2019, 7(7), 1067-1070.
[http://dx.doi.org/10.3889/oamjms.2019.245] [PMID: 31049082]
[93]
Chen, L.; Wang, Z.; Liu, L.; Qu, S.; Mao, Y.; Peng, X.; Li, Y.; Tian, J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on Vulvovaginal candidiasis and Oropharyngeal candidiasis. Appl. Microbiol. Biotechnol., 2019, 103(21-22), 9037-9055.
[http://dx.doi.org/10.1007/s00253-019-10119-3] [PMID: 31659418]
[94]
Khan, M.S.A.; Ahmad, I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother., 2012, 67(3), 618-621.
[http://dx.doi.org/10.1093/jac/dkr512] [PMID: 22167241]
[95]
Miranda-Cadena, K.; Marcos-Arias, C.; Mateo, E.; Aguirre-Urizar, J.M.; Quindós, G.; Eraso, E. In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomed. Pharmacother., 2021, 143, 112218.
[http://dx.doi.org/10.1016/j.biopha.2021.112218] [PMID: 34649348]
[96]
Mishra, P.; Gupta, P.; Pruthi, V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. Mater. Sci. Eng. C, 2021, 119, 111450.
[http://dx.doi.org/10.1016/j.msec.2020.111450] [PMID: 33321588]
[97]
Kumari, P.; Mishra, R.; Arora, N.; Chatrath, A.; Gangwar, R.; Roy, P.; Prasad, R. Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front. Microbiol., 2017, 8, 2161.
[http://dx.doi.org/10.3389/fmicb.2017.02161] [PMID: 29163441]
[98]
Ferhout, H.; Bohatier, J.; Guillot, J.; Chalchat, J.C. Antifungal activity of selected essential oils, cinnamaldehyde and carvacrol against Malassezia furfur and Candida albicans. J. Essent. Oil Res., 1999, 11(1), 119-129.
[http://dx.doi.org/10.1080/10412905.1999.9701086]
[99]
Schlemmer, K.B.; Jesus, F.P.K.; Tondolo, J.S.M.; Weiblen, C.; Azevedo, M.I.; Machado, V.S.; Botton, S.A.; Alves, S.H.; Santurio, J.M. In vitro activity of carvacrol, cinnamaldehyde and thymol combined with antifungals against Malassezia pachydermatis. J. Mycol. Med., 2019, 29(4), 375-377.
[http://dx.doi.org/10.1016/j.mycmed.2019.08.003] [PMID: 31455580]
[100]
Chen, W.; Xia, S.; Xiao, C. Complex coacervation microcapsules by tannic acid crosslinking prolong the antifungal activity of cinnamaldehyde against Aspergillus brasiliensis. Food Biosci., 2022, 47, 101686.
[http://dx.doi.org/10.1016/j.fbio.2022.101686]
[101]
Qu, S.; Yang, K.; Chen, L.; Liu, M.; Geng, Q.; He, X.; Li, Y.; Liu, Y.; Tian, J. Cinnamaldehyde, a promising natural preservative against Aspergillus flavus. Front. Microbiol., 2019, 10, 2895.
[http://dx.doi.org/10.3389/fmicb.2019.02895] [PMID: 31921070]
[102]
Wang, P.; Ma, L.; Jin, J.; Zheng, M.; Pan, L.; Zhao, Y.; Sun, X.; Liu, Y.; Xing, F. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci. Rep., 2019, 9(1), 10499.
[http://dx.doi.org/10.1038/s41598-019-47003-z] [PMID: 31324857]
[103]
Khan, M.S.A.; Ahmad, I. Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl. Microbiol. Biotechnol., 2011, 90(3), 1083-1094.
[http://dx.doi.org/10.1007/s00253-011-3152-3] [PMID: 21336686]
[104]
Abd El-Zaher, E.H.F.; El-Shouny, W.A.E.F.; Shabana, S.A.; El-Salam, O.A. Efficiency of essential oils as antifungal agents against Aspergillus fumigatus KY026061 causing Allergic Bronchopulmonary Aspergillosis (ABPA). Egypt. J. Bot., 2019, 59, 595-604.
[105]
Sun, Q.; Li, J.; Sun, Y.; Chen, Q.; Zhang, L.; Le, T. The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chem., 2020, 317, 126405.
[http://dx.doi.org/10.1016/j.foodchem.2020.126405] [PMID: 32078995]
[106]
Schlösser, I.; Prange, A. Antifungal activity of selected natural preservatives against the foodborne molds Penicillium verrucosum and Aspergillus westerdijkiae. FEMS Microbiol. Lett., 2018, 365(13), 365.
[http://dx.doi.org/10.1093/femsle/fny125] [PMID: 29846575]
[107]
Huang, F.; Kong, J.; Ju, J.; Zhang, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Xie, Y.; Yao, W. Membrane damage mechanism contributes to inhibition of trans-cinnamaldehyde on Penicillium italicum using Surface-Enhanced Raman Spectroscopy (SERS). Sci. Rep., 2019, 9(1), 490.
[http://dx.doi.org/10.1038/s41598-018-36989-7] [PMID: 30679585]
[108]
Shreaz, S.; Wani, M.Y.; Ahmad, S.R.; Ahmad, S.I.; Bhatia, R.; Athar, F.; Nikhat, M.; Khan, L.A. RETRACTED: Proton-pumping-ATPase-targeted antifungal activity of cinnamaldehyde based sulfonyl tetrazoles. Eur. J. Med. Chem., 2012, 48, 363-370.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.007] [PMID: 22209273]
[109]
Gill, A.O.; Holley, R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol., 2006, 111(2), 170-174.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.04.046] [PMID: 16828188]
[110]
Upadhyay, A.; Venkitanarayanan, K. In vivo efficacy of trans-cinnamaldehyde, carvacrol, and thymol in attenuating Listeria monocytogenes infection in a Galleria mellonella model. J. Nat. Med., 2016, 70(3), 667-672.
[http://dx.doi.org/10.1007/s11418-016-0990-4] [PMID: 27094514]
[111]
Abd El-Hamid, M.I.; Ibrahim, S.M.; Eldemery, F.; El-Mandrawy, S.A.M.; Metwally, A.S.; Khalifa, E.; Elnahriry, S.S.; Ibrahim, D. Dietary cinnamaldehyde nanoemulsion boosts growth and transcriptomes of antioxidant and immune related genes to fight Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 2021, 113, 96-105.
[http://dx.doi.org/10.1016/j.fsi.2021.03.021] [PMID: 33826939]
[112]
Yang, G.; Jin, T.; Yin, S.; Guo, D.; Zhang, C.; Xia, X.; Shi, C. trans -Cinnamaldehyde mitigated intestinal inflammation induced by Cronobacter sakazakii in newborn mice. Food Funct., 2019, 10(5), 2986-2996.
[http://dx.doi.org/10.1039/C9FO00410F] [PMID: 31074758]
[113]
Narayanan, A.; Muyyarikkandy, M.S.; Mooyottu, S.; Venkitanarayanan, K.; Amalaradjou, M.A.R. Oral supplementation of trans-cinnamaldehyde reduces uropathogenic Escherichia coli colonization in a mouse model. Lett. Appl. Microbiol., 2017, 64(3), 192-197.
[http://dx.doi.org/10.1111/lam.12713] [PMID: 28063174]
[114]
Sang, N.; Jiang, L.; Wang, Z.; Zhu, Y.; Lin, G.; Li, R.; Zhang, J. Bacteria-targeting liposomes for enhanced delivery of cinnamaldehyde and infection management. Int. J. Pharm., 2022, 612, 121356.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121356] [PMID: 34919996]
[115]
Kollanoor-Johny, A.; Mattson, T.; Baskaran, S.A.; Amalaradjou, M.A.; Babapoor, S.; March, B.; Valipe, S.; Darre, M.; Hoagland, T.; Schreiber, D.; Khan, M.I.; Donoghue, A.; Donoghue, D.; Venkitanarayanan, K. Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Appl. Environ. Microbiol., 2012, 78(8), 2981-2987.
[http://dx.doi.org/10.1128/AEM.07643-11] [PMID: 22327574]
[116]
Wang, R.; Li, S.; Jia, H.; Si, X.; Lei, Y.; Lyu, J.; Dai, Z.; Wu, Z. Protective effects of cinnamaldehyde on the inflammatory response, oxidative stress, and apoptosis in liver of Salmonella typhimurium-challenged mice. Molecules, 2021, 26(8), 2309.
[http://dx.doi.org/10.3390/molecules26082309] [PMID: 33923441]
[117]
Brackman, G.; Defoirdt, T.; Miyamoto, C.; Bossier, P.; Van Calenbergh, S.; Nelis, H.; Coenye, T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol., 2008, 8(1), 149.
[http://dx.doi.org/10.1186/1471-2180-8-149] [PMID: 18793453]
[118]
Pande, G.S.J.; Scheie, A.A.; Benneche, T.; Wille, M.; Sorgeloos, P.; Bossier, P.; Defoirdt, T. Quorum sensing-disrupting compounds protect larvae of the giant freshwater prawn Macrobrachium rosenbergii from Vibrio harveyi infection. Aquaculture, 2013, 406-407, 121-124.
[http://dx.doi.org/10.1016/j.aquaculture.2013.05.015]
[119]
Chen, S.Y.; Lee, J.J.; Chien, C.C.; Tsai, W.C.; Lu, C.H.; Chang, W.N.; Lien, C.Y. High incidence of severe neurological manifestations and high mortality rate for adult Listeria monocytogenes meningitis in Taiwan. J. Clin. Neurosci., 2020, 71, 177-185.
[http://dx.doi.org/10.1016/j.jocn.2019.08.072] [PMID: 31447369]
[120]
Carvalho, F.; Sousa, S.; Cabanes, D. How Listeria monocytogenes organizes its surface for virulence. Front. Cell. Infect. Microbiol., 2014, 4, 48.
[http://dx.doi.org/10.3389/fcimb.2014.00048] [PMID: 24809022]
[121]
Upadhyay, A.; Johny, A.K.; Amalaradjou, M.A.R.; Ananda Baskaran, S.; Kim, K.S.; Venkitanarayanan, K. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. Int. J. Food Microbiol., 2012, 157(1), 88-94.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2012.04.018] [PMID: 22608657]
[122]
Smith, M.K.; Draper, L.A.; Hazelhoff, P.J.; Cotter, P.D.; Ross, R.P.; Hill, C. A Bioengineered nisin derivative, M21A, in combination with food grade additives eradicates biofilms of Listeria monocytogenes. Front. Microbiol., 2016, 7, 1939.
[http://dx.doi.org/10.3389/fmicb.2016.01939] [PMID: 27965658]
[123]
Liu, F.; Türker Saricaoglu, F.; Avena-Bustillos, R.J.; Bridges, D.F.; Takeoka, G.R.; Wu, V.C.H.; Chiou, B. Preparation of fish skin gelatin-based nanofibers incorporating cinnamaldehyde by solution blow spinning. Int. J. Mol. Sci., 2018, 19, 618.
[124]
Liang, S.; Hu, X.; Wang, R.; Fang, M.; Yu, Y.; Xiao, X. The combination of thymol and cinnamaldehyde reduces the survival and virulence of Listeria monocytogenes on autoclaved chicken breast. J. Appl. Microbiol., 2022, 132(5), 3937-3950.
[http://dx.doi.org/10.1111/jam.15496] [PMID: 35178822]
[125]
Balasubramanian, D.; Harper, L.; Shopsin, B.; Torres, V.J. Staphylococcus aureus pathogenesis in diverse host environments. Pathog. Dis., 2017, 75(1), ftx005.
[http://dx.doi.org/10.1093/femspd/ftx005] [PMID: 28104617]
[126]
de Jong, N.W.M.; van Kessel, K.P.M.; van Strijp, J.A.G. Immune evasion by Staphylococcus aureus. Microbiol. Spectr., 2019, 7(2), 7.2.20.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0061-2019] [PMID: 30927347]
[127]
Vale de Macedo, G.H.R.; Costa, G.D.E.; Oliveira, E.R.; Damasceno, G.V.; Mendonça, J.S.P.; Silva, L.S.; Chagas, V.L.; Bazán, J.M.N.; Aliança, A.S.S.; Miranda, R.C.M.; Zagmignan, A.; Monteiro, A.S.; Nascimento da Silva, L.C. Interplay between ESKAPE pathogens and immunity in skin infections: An overview of the major determinants of virulence and antibiotic resistance. Pathogens, 2021, 10(2), 148.
[http://dx.doi.org/10.3390/pathogens10020148] [PMID: 33540588]
[128]
Guerra, F.E.; Borgogna, T.R.; Patel, D.M.; Sward, E.W.; Voyich, J.M. Epic immune battles of history: Neutrophils vs. Staphylococcus aureus. Front. Cell. Infect. Microbiol., 2017, 7, 286.
[http://dx.doi.org/10.3389/fcimb.2017.00286] [PMID: 28713774]
[129]
Budri, P.E.; Silva, N.C.C.; Bonsaglia, E.C.R.; Fernandes, A.; Araújo, J.P.; Doyama, J.T.; Gonçalves, J.L.; Santos, M.V.; Fitzgerald-Hughes, D.; Rall, V.L.M. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. J. Dairy Sci., 2015, 98(9), 5899-5904.
[http://dx.doi.org/10.3168/jds.2015-9442] [PMID: 26142866]
[130]
Kot, B.; Wierzchowska, K.; Grużewska, A.; Lohinau, D. The effects of selected phytochemicals on biofilm formed by five methicillin-resistant Staphylococcus aureus. Nat. Prod. Res., 2018, 32(11), 1299-1302.
[http://dx.doi.org/10.1080/14786419.2017.1340282] [PMID: 28627304]
[131]
Zhu, L.; Yerramilli, P.; Pruitt, L.; Ojeda Saavedra, M.; Cantu, C.C.; Olsen, R.J.; Beres, S.B.; Waller, A.S.; Musser, J.M. Genome-wide assessment of Streptococcus agalactiae genes required for survival in human whole blood and plasma. Infect. Immun., 2020, 88(10), e00357-20.
[http://dx.doi.org/10.1128/IAI.00357-20] [PMID: 32747604]
[132]
Furfaro, L.L.; Chang, B.J.; Payne, M.S. Perinatal Streptococcus agalactiae epidemiology and surveillance targets. Clin. Microbiol. Rev., 2018, 31(4), e00049-18.
[http://dx.doi.org/10.1128/CMR.00049-18] [PMID: 30111577]
[133]
Bao, X.; Yang, L.; Chen, L.; Li, B.; Li, L.; Li, Y.; Xu, Z. Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb. Pathog., 2017, 110, 359-364.
[http://dx.doi.org/10.1016/j.micpath.2017.07.022] [PMID: 28711508]
[134]
Parra-Flores, J.; Aguirre, J.; Juneja, V.; Jackson, E.E.; Cruz-Córdova, A.; Silva-Sanchez, J.; Forsythe, S. Virulence and antibiotic resistance profiles of Cronobacter sakazakii and Enterobacter spp. involved in the diarrheic hemorrhagic outbreak in Mexico. Front. Microbiol., 2018, 9, 2206.
[http://dx.doi.org/10.3389/fmicb.2018.02206] [PMID: 30319560]
[135]
Amalaradjou, M.A.R.; Venkitanarayanan, K. Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J. Food Prot., 2011, 74(2), 200-208.
[http://dx.doi.org/10.4315/0362-028X.JFP-10-296] [PMID: 21333138]
[136]
Amalaradjou, M.A.R.; Venkitanarayanan, K. Effect of trans-cinnamaldehyde on reducing resistance to environmental stresses in Cronobacter sakazakii. Foodborne Pathog. Dis., 2011, 8(3), 403-409.
[http://dx.doi.org/10.1089/fpd.2010.0691] [PMID: 21114424]
[137]
Amalaradjou, M.A.; Kim, K.; Venkitanarayanan, K. Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro. Int. J. Mol. Sci., 2014, 15(5), 8639-8655.
[http://dx.doi.org/10.3390/ijms15058639] [PMID: 24837831]
[138]
Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog., 2019, 11(1), 10.
[http://dx.doi.org/10.1186/s13099-019-0290-0] [PMID: 30828388]
[139]
Asadi Karam, M.R.; Habibi, M.; Bouzari, S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol. Immunol., 2019, 108, 56-67.
[http://dx.doi.org/10.1016/j.molimm.2019.02.007] [PMID: 30784763]
[140]
Jubelin, G.; Desvaux, M.; Schüller, S.; Etienne-Mesmin, L.; Muniesa, M.; Blanquet-Diot, S. Modulation of enterohaemorrhagic Escherichia coli survival and virulence in the human gastrointestinal tract. Microorganisms, 2018, 6(4), 115.
[http://dx.doi.org/10.3390/microorganisms6040115] [PMID: 30463258]
[141]
Kim, K.S. Human Meningitis-associated Escherichia coli. Ecosal Plus, 2016, 7(1), ecosalplus.ESP-0015-2015.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0015-2015] [PMID: 27223820]
[142]
Mendoza-Palomar, N.; Balasch-Carulla, M.; González-Di Lauro, S.; Céspedes, M.C.; Andreu, A.; Frick, M.A.; Linde, M.Á.; Soler-Palacin, P. Escherichia coli early-onset sepsis: Trends over two decades. Eur. J. Pediatr., 2017, 176(9), 1227-1234.
[http://dx.doi.org/10.1007/s00431-017-2975-z] [PMID: 28770413]
[143]
Welch, R.A. Uropathogenic Escherichia coli -associated exotoxins. Microbiol. Spectr., 2016, 4(3), 4.3.40.
[http://dx.doi.org/10.1128/microbiolspec.UTI-0011-2012] [PMID: 27337488]
[144]
Ananda Baskaran, S.; Venkitanarayanan, K. Plant-derived antimicrobials reduce E. coli o157:H7 virulence factors critical for colonization in cattle gastrointestinal tract in vitro. BioMed Res. Int., 2014, 2014, 212395.
[145]
Baskaran, S.A.; Kollanoor-Johny, A.; Nair, M.S.; Venkitanarayanan, K. Efficacy of plant-derived antimicrobials in controlling enterohemorrhagic Escherichia coli virulence in vitro. J. Food Prot., 2016, 79(11), 1965-1970.
[http://dx.doi.org/10.4315/0362-028X.JFP-16-104] [PMID: 28221905]
[146]
Amalaradjou, M.A.R.; Narayanan, A.; Baskaran, S.A.; Venkitanarayanan, K. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J. Urol., 2010, 184(1), 358-363.
[http://dx.doi.org/10.1016/j.juro.2010.03.006] [PMID: 20488489]
[147]
Kot, B.; Wicha, J.; Piechota, M.; Wolska, K.; Grużewska, A. Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turk. J. Med. Sci., 2015, 45(4), 919-924.
[http://dx.doi.org/10.3906/sag-1406-112] [PMID: 26422868]
[148]
Stensland, I.; Kim, J.; Bowring, B.; Collins, A.; Mansfield, J.; Pluske, J. A comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimentally infected with enterotoxigenic E. coli. Animals (Basel), 2015, 5(4), 1147-1168.
[http://dx.doi.org/10.3390/ani5040403] [PMID: 26610577]
[149]
Sheen, S.; Huang, C.Y.; Ramos, R.; Chien, S.Y.; Scullen, O.J.; Sommers, C. Lethality prediction for Escherichia coli O157:H7 and uropathogenic E. coli in ground chicken treated with high pressure processing and trans-cinnamaldehyde. J. Food Sci., 2018, 83(3), 740-749.
[http://dx.doi.org/10.1111/1750-3841.14059] [PMID: 29411883]
[150]
Chuang, S.; Sheen, S.; Sommers, C.H.; Sheen, L.Y. Modeling the effect of simultaneous use of allyl isothiocyanate and cinnamaldehyde on high hydrostatic pressure inactivation of Uropathogenic and Shiga toxin-producing Escherichia coli in ground chicken. J. Sci. Food Agric., 2021, 101(3), 1193-1201.
[http://dx.doi.org/10.1002/jsfa.10731] [PMID: 32785931]
[151]
Ahmed, S.A.K.S.; Rudden, M.; Smyth, T.J.; Dooley, J.S.G.; Marchant, R.; Banat, I.M. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl. Microbiol. Biotechnol., 2019, 103(8), 3521-3535.
[http://dx.doi.org/10.1007/s00253-019-09618-0] [PMID: 30852658]
[152]
Silva, A.F.; dos Santos, A.R.; Coelho Trevisan, D.A.; Ribeiro, A.B.; Zanetti Campanerut-Sá, P.A.; Kukolj, C.; de Souza, E.M.; Cardoso, R.F.; Estivalet Svidzinski, T.I.; de Abreu Filho, B.A.; Junior, M.M.; Graton Mikcha, J.M. Cinnamaldehyde induces changes in the protein profile of Salmonella typhimurium biofilm. Res. Microbiol., 2018, 169(1), 33-43.
[http://dx.doi.org/10.1016/j.resmic.2017.09.007] [PMID: 28974445]
[153]
Zhang, H.; Zhou, W.; Zhang, W.; Yang, A.; Liu, Y.; Jiang, Y.; Huang, S.; Su, J. Inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella enteritidis. J. Food Protect., 2014, 77, 927-933.
[154]
Burt, S.A.; Adolfse, S.J.M.; Ahad, D.S.A.; Tersteeg-Zijderveld, M.H.G.; Jongerius-Gortemaker, B.G.M.; Post, J.A.; Brüggemann, H.; Santos, R.R. Cinnamaldehyde, Carvacrol and organic acids affect gene expression of selected oxidative stress and inflammation markers in IPEC-J2 cells exposed to Salmonella typhimurium. Phytother. Res., 2016, 30(12), 1988-2000.
[http://dx.doi.org/10.1002/ptr.5705] [PMID: 27561686]
[155]
Amerah, A.M.; Mathis, G.; Hofacre, C.L. Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella heidelberg. Poult. Sci., 2012, 91(4), 943-947.
[http://dx.doi.org/10.3382/ps.2011-01922] [PMID: 22399734]
[156]
Rajamanikandan, S.; Jeyakanthan, J.; Srinivasan, P. Discovery of potent inhibitors targeting Vibrio harveyi LuxR through shape and e-pharmacophore based virtual screening and its biological evaluation. Microb. Pathog., 2017, 103, 40-56.
[http://dx.doi.org/10.1016/j.micpath.2016.12.003] [PMID: 27939874]
[157]
Kang, C.H.; Kim, Y.; Oh, S.J.; Mok, J.S.; Cho, M.H.; So, J.S. Antibiotic resistance of Vibrio harveyi isolated from seawater in Korea. Mar. Pollut. Bull., 2014, 86(1-2), 261-265.
[http://dx.doi.org/10.1016/j.marpolbul.2014.07.008] [PMID: 25066453]
[158]
Elmahdi, S.; DaSilva, L.V.; Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol., 2016, 57, 128-134.
[http://dx.doi.org/10.1016/j.fm.2016.02.008] [PMID: 27052711]
[159]
Shan, Z.; Wang, M.; Zhao, S.; Xie, X.; Yang, D.; Liu, W. Cinnamaldehyde exerts prophylactic and therapeutic effects against Vibrio anguillarum infection in Yesso scallop (Patinopecten yessoensis) by its direct antimicrobial activity and positive effect on the innate immunity. Aquaculture, 2021, 538, 736588.
[http://dx.doi.org/10.1016/j.aquaculture.2021.736588]
[160]
Ferling, I.; Dunn, J.D.; Ferling, A.; Soldati, T.; Hillmann, F.; Goldman, G.H. Conidial melanin of the human-pathogenic fungus Aspergillus fumigatus disrupts cell autonomous defenses in amoebae. MBio, 2020, 11(3), e00862-20.
[http://dx.doi.org/10.1128/mBio.00862-20] [PMID: 32457245]
[161]
Taguchi, Y.; Hayama, K.; Okada, M.; Sagawa, T.; Arai, R.; Abe, S. Therapeutic effects of cinnamaldehyde and potentiation of its efficacy in combination with methylcellulose on murine oral candidiasis. Nippon Ishinkin Gakkai Zasshi, 2011, 52(2), 145-152.
[http://dx.doi.org/10.3314/jjmm.52.145] [PMID: 21788726]
[162]
Ma, K.L.; Han, Z.J.; Pan, M.; Chen, M.L.; Ge, Y.Z.; Shao, J.; Wu, D.Q.; Wang, T.M.; Yan, G.M.; Wang, C.Z. Therapeutic effect of cinnamaldehyde on ulcerative colitis in mice induced by dextran sulfate sodium with Candida albicans colonization and its effect on dectin-1/TLRs/NF-κB signaling pathway. Zhongguo Zhongyao Zazhi, 2020, 45(13), 3211-3219.
[PMID: 32726031]
[163]
Deng, J.; Li, J.; Zhao, Y.; Wang, G. Effect and safety of cinnamaldehyde on immunosuppressed mice with invasive pulmonary Candidiasis. Chin. J. Integr. Med., 2021, 27(4), 286-290.
[http://dx.doi.org/10.1007/s11655-020-3075-x] [PMID: 32415645]
[164]
Deng, J.H.; Zhang, X.G.; Wang, G.S.; Luo, J.N.; Wang, J.; Qi, X.M.; Li, Y.L. Effect of Cinnamaldehyde on C. albicans cell wall and (1,3)- β – D-glucans in vivo. BMC Complement. Med. Ther., 2022, 22(1), 32.
[http://dx.doi.org/10.1186/s12906-021-03468-y] [PMID: 35101002]
[165]
Neelabh; Singh, K. Evaluation of antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii. Folia Microbiol. (Praha), 2020, 65(6), 973-987.
[http://dx.doi.org/10.1007/s12223-020-00806-4] [PMID: 32617865]
[166]
Ciurea, C.N.; Kosovski, I.B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and candidiasis—opportunism versus pathogenicity: A review of the virulence traits. Microorganisms, 2020, 8(6), 857.
[http://dx.doi.org/10.3390/microorganisms8060857] [PMID: 32517179]
[167]
Kumamoto, C.A.; Gresnigt, M.S.; Hube, B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr. Opin. Microbiol., 2020, 56, 7-15.
[http://dx.doi.org/10.1016/j.mib.2020.05.006] [PMID: 32604030]
[168]
Höfs, S.; Mogavero, S.; Hube, B. Interaction of Candida albicans with host cells: Virulence factors, host defense, escape strategies, and the microbiota. J. Microbiol., 2016, 54(3), 149-169.
[http://dx.doi.org/10.1007/s12275-016-5514-0] [PMID: 26920876]
[169]
Polke, M.; Hube, B.; Jacobsen, I.D. Candida survival strategies. Adv. Appl. Microbiol., 2015, 91, 139-235.
[http://dx.doi.org/10.1016/bs.aambs.2014.12.002] [PMID: 25911234]
[170]
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence, 2013, 4(2), 119-128.
[http://dx.doi.org/10.4161/viru.22913] [PMID: 23302789]
[171]
Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chem. Rev., 2021, 121(6), 3390-3411.
[http://dx.doi.org/10.1021/acs.chemrev.0c00199] [PMID: 32441527]
[172]
Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel), 2020, 9(6), 312.
[http://dx.doi.org/10.3390/antibiotics9060312] [PMID: 32526921]
[173]
Saracino, I.M.; Foschi, C.; Pavoni, M.; Spigarelli, R.; Valerii, M.C.; Spisni, E. Antifungal activity of natural compounds vs. Candida spp.: A mixture of cinnamaldehyde and eugenol shows promising in vitro results. Antibiotics (Basel), 2022, 11(1), 73.
[http://dx.doi.org/10.3390/antibiotics11010073] [PMID: 35052950]
[174]
da Nóbrega Alves, D.; Monteiro, A.F.M.; Andrade, P.N.; Lazarini, J.G.; Abílio, G.M.F.; Guerra, F.Q.S.; Scotti, M.T.; Scotti, L.; Rosalen, P.L.; Castro, R.D. Docking Prediction, antifungal activity, anti-biofilm effects on Candida spp., and toxicity against human cells of Cinnamaldehyde. Molecules, 2020, 25(24), 5969.
[http://dx.doi.org/10.3390/molecules25245969] [PMID: 33339401]
[175]
Shreaz, S.; Bhatia, R.; Khan, N.; Muralidhar, S.; Basir, S.F.; Manzoor, N.; Khan, L.A. Spice oil cinnamaldehyde exhibits potent anticandidal activity against fluconazole resistant clinical isolates. Fitoterapia, 2011, 82(7), 1012-1020.
[http://dx.doi.org/10.1016/j.fitote.2011.06.004] [PMID: 21708228]
[176]
Zaragoza, O. Basic principles of the virulence of Cryptococcus. Virulence, 2019, 10(1), 490-501.
[http://dx.doi.org/10.1080/21505594.2019.1614383] [PMID: 31119976]
[177]
Góralska, K.; Blaszkowska, J.; Dzikowiec, M. Neuroinfections caused by fungi. Infection, 2018, 46(4), 443-459.
[http://dx.doi.org/10.1007/s15010-018-1152-2] [PMID: 29785613]
[178]
Montoya, M.C.; Magwene, P.M.; Perfect, J.R. Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: A review. J. Fungi (Basel), 2021, 7(4), 260.
[http://dx.doi.org/10.3390/jof7040260] [PMID: 33808500]

Rights & Permissions Print Cite