Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Achievements and Bottlenecks of PEGylation in Nano-delivery Systems

Author(s): Ruoyu Shen and Hong Yuan*

Volume 30, Issue 12, 2023

Published on: 14 November, 2022

Page: [1386 - 1405] Pages: 20

DOI: 10.2174/0929867329666220929152644

Price: $65

Open Access Journals Promotions 2
Abstract

Poly(ethylene glycol) (PEG) has been widely applied in the biomedical field as a gold standard. The conjugation of PEG to proteins, peptides, oligonucleotides (DNA, small interfering RNA (siRNA), microRNA (miRNA)) and nanoparticles, also known as PEGylation, is a common method to improve the efficiency of drug delivery and pharmacokinetics in vivo. The effect of PEGylation on the in vivo fate of various formulations has been and continues to be extensively studied based on the successful PEGylation of proteins to improve in vivo circulation time and reduce immunogenicity. The PEG shell protects the particles from aggregation, immune recognition, and phagocytosis, thereby prolonging the in vivo circulation time. This article mainly describes the development background, advantages and applications of PEGylation in the field of drug delivery, its defects or development bottlenecks, and possible alternatives.

Keywords: PEGylation, drug delivery, bioconjugation, nanomedicine, anti-PEG antibody, PEG immunogenicity.

[1]
Harris, J.M.; Martin, N.E.; Modi, M. Pegylation. Clin. Pharmacokinet., 2001, 40(7), 539-551.
[http://dx.doi.org/10.2165/00003088-200140070-00005] [PMID: 11510630]
[2]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[3]
Yadav, D.; Dewangan, H.K. PEGYLATION: an important approach for novel drug delivery system. J. Biomater. Sci. Polym. Ed., 2021, 32(2), 266-280.
[http://dx.doi.org/10.1080/09205063.2020.1825304] [PMID: 32942961]
[4]
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
[http://dx.doi.org/10.1016/S1359-6446(05)03575-0] [PMID: 16243265]
[5]
Bré, L.P.; Zheng, Y.; Pêgo, A.P.; Wang, W. Taking tissue adhesives to the future: from traditional synthetic to new biomimetic approaches. Biomater. Sci., 2013, 1(3), 239-253.
[http://dx.doi.org/10.1039/C2BM00121G] [PMID: 32481849]
[6]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[7]
Alconcel, S.N.S.; Baas, A.S.; Maynard, H.D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem., 2011, 2(7), 1442-1448.
[http://dx.doi.org/10.1039/c1py00034a]
[8]
Sebak, A.A.; Gomaa, I.E.O.; ElMeshad, A.N.; Farag, M.H.; Breitinger, U.; Breitinger, H.G.; AbdelKader, M.H. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting – Part I: In vitro release and intracellular uptake perspective. Int. J. Nanomedicine, 2020, 15, 8845-8862.
[http://dx.doi.org/10.2147/IJN.S273713] [PMID: 33204091]
[9]
Davis, F.F. The origin of pegnology. Adv. Drug Deliv. Rev., 2002, 54(4), 457-458.
[http://dx.doi.org/10.1016/S0169-409X(02)00021-2] [PMID: 12052708]
[10]
Abuchowski, A.; McCoy, J.R.; Palczuk, N.C.; van Es, T.; Davis, F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem., 1977, 252(11), 3582-3586.
[http://dx.doi.org/10.1016/S0021-9258(17)40292-4] [PMID: 16907]
[11]
Veronese, F.M.; Harris, J.M. Introduction and overview of peptide and protein pegylation. Adv. Drug Deliv. Rev., 2002, 54(4), 453-456.
[http://dx.doi.org/10.1016/S0169-409X(02)00020-0] [PMID: 12052707]
[12]
Delgado, C.; Francis, G.E.; Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst., 1992, 9(3-4), 249-304.
[PMID: 1458545]
[13]
Hershfield, M.S.; Buckley, R.H.; Greenberg, M.L.; Melton, A.L.; Schiff, R.; Hatem, C.; Kurtzberg, J.; Markert, M.L.; Kobayashi, R.H.; Kobayashi, A.L.; Abuchowski, A. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med., 1987, 316(10), 589-596.
[http://dx.doi.org/10.1056/NEJM198703053161005] [PMID: 3807953]
[14]
Sehon, A.H. Carl Prausnitz Memorial Lecture. Suppression of antibody responses by chemically modified antigens. Int. Arch. Allergy Immunol., 1991, 94(1-4), 11-20.
[http://dx.doi.org/10.1159/000235318] [PMID: 1937863]
[15]
Okahata, Y.; Mori, T. Lipid-coated enzymes as efficient catalysts in organic media. Trends Biotechnol., 1997, 15(2), 50-54.
[http://dx.doi.org/10.1016/S0167-7799(97)84203-5]
[16]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[17]
Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci., 2016, 105(2), 460-475.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[18]
Mejía-Manzano, L.A.; Vázquez-Villegas, P.; González-Valdez, J. Perspectives, tendencies, and guidelines in affinity-based strategies for the recovery and purification of PEGylated proteins. Adv. Polym. Technol., 2020, 2020(2), 1-12.
[http://dx.doi.org/10.1155/2020/6163904]
[19]
Hoffman, A.S.; Lai, J.J. Three significant highlights of controlled drug delivery over the past 55 years: PEGylation, ADCs, and EPR. Adv. Drug Deliv. Rev., 2020, 158, 2-3.
[http://dx.doi.org/10.1016/j.addr.2020.05.013] [PMID: 32512028]
[20]
Peters, B.G.; Goeckner, B.J.; Ponzillo, J.J.; Velasquez, W.S.; Wilson, A.L. Pegaspargase versus asparaginase in adult ALL: a pharmacoeconomic assessment. Formulary, 1995, 30(7), 388-393.
[PMID: 10151730]
[21]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[22]
Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54(4), 459-476.
[http://dx.doi.org/10.1016/S0169-409X(02)00022-4] [PMID: 12052709]
[23]
Ramírez-García, P.D.; Retamal, J.S.; Shenoy, P.; Imlach, W.; Sykes, M.; Truong, N.; Constandil, L.; Pelissier, T.; Nowell, C.J.; Khor, S.Y.; Layani, L.M.; Lumb, C.; Poole, D.P.; Lieu, T.; Stewart, G.D.; Mai, Q.N.; Jensen, D.D.; Latorre, R.; Scheff, N.N.; Schmidt, B.L.; Quinn, J.F.; Whittaker, M.R.; Veldhuis, N.A.; Davis, T.P.; Bunnett, N.W. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat. Nanotechnol., 2019, 14(12), 1150-1159.
[http://dx.doi.org/10.1038/s41565-019-0568-x] [PMID: 31686009]
[24]
Truong, N.P.; Gu, W.; Prasadam, I.; Jia, Z.; Crawford, R.; Xiao, Y.; Monteiro, M.J. An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun., 2013, 4(1), 1902.
[http://dx.doi.org/10.1038/ncomms2905] [PMID: 23695696]
[25]
Truong, N.P.; Whittaker, M.R.; Anastasaki, A.; Haddleton, D.M.; Quinn, J.F.; Davis, T.P. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polym. Chem., 2016, 7(2), 430-440.
[http://dx.doi.org/10.1039/C5PY01467K]
[26]
Khor, S.Y.; Vu, M.N.; Pilkington, E.H.; Johnston, A.P.R.; Whittaker, M.R.; Quinn, J.F.; Truong, N.P.; Davis, T.P. Elucidating the influences of size, surface chemistry, and dynamic flow on cellular association of nanoparticles made by polymerization-induced self-assembly. Small, 2018, 14(34), 1801702.
[http://dx.doi.org/10.1002/smll.201801702] [PMID: 30043521]
[27]
Ta, H.T.; Truong, N.P.; Whittaker, A.K.; Davis, T.P.; Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opin. Drug Deliv., 2018, 15(1), 33-45.
[http://dx.doi.org/10.1080/17425247.2017.1316262] [PMID: 28388248]
[28]
Khor, S.Y.; Quinn, J.F.; Whittaker, M.R.; Truong, N.P.; Davis, T.P. Controlling nanomaterial size and shape for biomedical applications via polymerization-induced self-assembly. Macromol. Rapid Commun., 2019, 40(2), 1800438.
[http://dx.doi.org/10.1002/marc.201800438] [PMID: 30091816]
[29]
Truong, N.P.; Zhang, C.; Nguyen, T.A.H.; Anastasaki, A.; Schulze, M.W.; Quinn, J.F.; Whittaker, A.K.; Hawker, C.J.; Whittaker, M.R.; Davis, T.P. Overcoming surfactant-induced morphology instability of noncrosslinked diblock copolymer nano-objects obtained by RAFT emulsion polymerization. ACS Macro Lett., 2018, 7(2), 159-165.
[http://dx.doi.org/10.1021/acsmacrolett.7b00978] [PMID: 35610912]
[30]
Jain, A.; Ranjan, S.; Dasgupta, N.; Ramalingam, C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr., 2018, 58(2), 297-317.
[http://dx.doi.org/10.1080/10408398.2016.1160363] [PMID: 27052385]
[31]
Zamboni, W.C.; Torchilin, V.; Patri, A.K.; Hrkach, J.; Stern, S.; Lee, R.; Nel, A.; Panaro, N.J.; Grodzinski, P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res., 2012, 18(12), 3229-3241.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2938] [PMID: 22669131]
[32]
Farooq, M.A.; Aquib, M.; Farooq, A.; Haleem Khan, D.; Joelle Maviah, M.B.; Sied Filli, M.; Kesse, S.; Boakye-Yiadom, K.O.; Mavlyanova, R.; Parveen, A.; Wang, B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1674-1692.
[http://dx.doi.org/10.1080/21691401.2019.1604535] [PMID: 31066300]
[33]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[34]
Laginha, K.M.; Verwoert, S.; Charrois, G.J.R.; Allen, T.M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer Res., 2005, 11(19), 6944-6949.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0343] [PMID: 16203786]
[35]
Torchilin, V.P. Polymer-coated long-circulating microparticulate pharmaceuticals. J. Microencapsul., 1998, 15(1), 1-19.
[http://dx.doi.org/10.3109/02652049809006831] [PMID: 9463803]
[36]
Baker, D.P.; Lin, E.Y.; Lin, K.; Pellegrini, M.; Petter, R.C.; Chen, L.L.; Arduini, R.M.; Brickelmaier, M.; Wen, D.; Hess, D.M.; Chen, L.; Grant, D.; Whitty, A.; Gill, A.; Lindner, D.J.; Pepinsky, R.B. N-terminally PEGylated human interferon-beta-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem., 2006, 17(1), 179-188.
[http://dx.doi.org/10.1021/bc050237q] [PMID: 16417267]
[37]
Zhang, P.; Sun, F.; Liu, S.; Jiang, S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control Release, 2016, 244(Pt B), 184-193.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.040]
[38]
Kaga, S.; Truong, N.P.; Esser, L.; Senyschyn, D.; Sanyal, A.; Sanyal, R.; Quinn, J.F.; Davis, T.P.; Kaminskas, L.M.; Whittaker, M.R. Influence of size and shape on the biodistribution of nanoparticles prepared by polymerization-induced self-assembly. Biomacromolecules, 2017, 18(12), 3963-3970.
[http://dx.doi.org/10.1021/acs.biomac.7b00995] [PMID: 28880542]
[39]
Huckaby, J.T.; Lai, S.K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev., 2018, 124, 125-139.
[http://dx.doi.org/10.1016/j.addr.2017.08.010] [PMID: 28882703]
[40]
Khutoryanskiy, V.V. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv. Drug Deliv. Rev., 2018, 124, 140-149.
[http://dx.doi.org/10.1016/j.addr.2017.07.015] [PMID: 28736302]
[41]
Rattan, R.; Bhattacharjee, S.; Zong, H.; Swain, C.; Siddiqui, M.A.; Visovatti, S.H.; Kanthi, Y.; Desai, S.; Pinsky, D.J.; Goonewardena, S.N. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorg. Med. Chem., 2017, 25(16), 4487-4496.
[http://dx.doi.org/10.1016/j.bmc.2017.06.040] [PMID: 28705434]
[42]
Ramos-de-la-Peña, A.M.; Aguilar, O. Progress and challenges in PEGylated proteins downstream processing: A review of the last 8 years. Int. J. Pept. Res. Ther., 2020, 26(1), 333-348.
[http://dx.doi.org/10.1007/s10989-019-09840-4]
[43]
Swierczewska, M.; Lee, K.C.; Lee, S. What is the future of PEGylated therapies? Expert Opin. Emerg. Drugs, 2015, 20(4), 531-536.
[http://dx.doi.org/10.1517/14728214.2015.1113254] [PMID: 26583759]
[44]
Shi, L.; Zhang, J.; Zhao, M.; Tang, S.; Cheng, X.; Zhang, W.; Li, W.; Liu, X.; Peng, H.; Wang, Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale, 2021, 13(24), 10748-10764.
[http://dx.doi.org/10.1039/D1NR02065J] [PMID: 34132312]
[45]
Freire Haddad, H.; Burke, J.A.; Scott, E.A.; Ameer, G.A. Clinical relevance of pre-existing and treatment-induced Anti-poly(ethylene glycol) antibodies. Regen. Eng. Transl. Med., 2022, 8(1), 32-42.
[http://dx.doi.org/10.1007/s40883-021-00198-y] [PMID: 33786367]
[46]
Raccosta, S.; Librizzi, F.; Jagger, A.M.; Noto, R.; Martorana, V.; Lomas, D.A.; Irving, J.A.; Manno, M. Scaling concepts in serpin polymer physics. Materials (Basel), 2021, 14(10), 2577.
[http://dx.doi.org/10.3390/ma14102577] [PMID: 34063488]
[47]
Alexander, S. Adsorption of chain molecules with a polar head a scaling description. J. Phys. (Paris), 1977, 38(8), 983-987.
[http://dx.doi.org/10.1051/jphys:01977003808098300]
[48]
Mahendra, A.; James, H.P.; Jadhav, S. PEG-grafted phospholipids in vesicles: Effect of PEG chain length and concentration on mechanical properties. Chem. Phys. Lipids, 2019, 218, 47-56.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.12.001] [PMID: 30521788]
[49]
Chu, M.; Li, H.; Wu, Q.; Wo, F.; Shi, D. Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photodynamic therapies. Biomaterials, 2014, 35(29), 8357-8373.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.049] [PMID: 25002262]
[50]
Hossain, M.D.; Reid, J.C.; Lu, D.; Jia, Z.; Searles, D.J.; Monteiro, M.J. Influence of constraints within a cyclic polymer on solution properties. Biomacromolecules, 2018, 19(2), 616-625.
[http://dx.doi.org/10.1021/acs.biomac.7b01690] [PMID: 29283562]
[51]
Maruyama, K.; Yuda, T.; Okamoto, A.; Kojima, S.; Suginaka, A.; Iwatsuru, M. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim. Biophys. Acta Lipids Lipid Metab., 1992, 1128(1), 44-49.
[http://dx.doi.org/10.1016/0005-2760(92)90255-T] [PMID: 1390877]
[52]
Lin, J.; Zhang, H.; Morovati, V.; Dargazany, R. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature. J. Colloid Interface Sci., 2017, 504, 325-333.
[http://dx.doi.org/10.1016/j.jcis.2017.05.046] [PMID: 28554138]
[53]
Quach, Q.H.; Kong, R.L.X.; Kah, J.C.Y. Complement activation by PEGylated gold nanoparticles. Bioconjug. Chem., 2018, 29(4), 976-981.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00793] [PMID: 29431995]
[54]
Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc., 2012, 134(4), 2139-2147.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[55]
Zhou, H.; Fan, Z.; Li, P.Y.; Deng, J.; Arhontoulis, D.C.; Li, C.Y.; Bowne, W.B.; Cheng, H. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano, 2018, 12(10), 10130-10141.
[http://dx.doi.org/10.1021/acsnano.8b04947] [PMID: 30117736]
[56]
Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420.
[http://dx.doi.org/10.1016/j.apsb.2018.09.001] [PMID: 30976492]
[57]
Zhao, M.; Wang, J.; Lei, Z.; Lu, L.; Wang, S.; Zhang, H.; Li, B.; Zhang, F. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew. Chem. Int. Ed., 2021, 60(10), 5091-5095.
[http://dx.doi.org/10.1002/anie.202012021] [PMID: 33300662]
[58]
Hashizaki, K.; Taguchi, H.; Itoh, C.; Sakai, H.; Abe, M.; Saito, Y.; Ogawa, N. Effects of poly(ethylene glycol) (PEG) concentration on the permeability of PEG-grafted liposomes. Chem. Pharm. Bull. (Tokyo), 2005, 53(1), 27-31.
[http://dx.doi.org/10.1248/cpb.53.27] [PMID: 15635224]
[59]
Sriwongsitanont, S.; Ueno, M. Physicochemical properties of PEG-grafted liposomes. Chem. Pharm. Bull. (Tokyo), 2002, 50(9), 1238-1244.
[http://dx.doi.org/10.1248/cpb.50.1238] [PMID: 12237543]
[60]
De Leo, V.; Ruscigno, S.; Trapani, A.; Di Gioia, S.; Milano, F.; Mandracchia, D.; Comparelli, R.; Castellani, S.; Agostiano, A.; Trapani, G.; Catucci, L.; Conese, M. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm., 2018, 545(1-2), 378-388.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.030] [PMID: 29678545]
[61]
De Leo, V.; Milano, F.; Agostiano, A.; Catucci, L. Recent advancements in polymer/liposome assembly for drug delivery: From surface modifications to hybrid vesicles. Polymers (Basel), 2021, 13(7), 1027.
[http://dx.doi.org/10.3390/polym13071027] [PMID: 33810273]
[62]
Lin, T.T.; Gao, D.Y.; Liu, Y.C.; Sung, Y.C.; Wan, D.; Liu, J.Y.; Chiang, T.; Wang, L.; Chen, Y. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J. Control. Release, 2016, 221, 62-70.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.003] [PMID: 26551344]
[63]
Peng, W.; Cheng, S.; Bao, Z.; Wang, Y.; Zhou, W.; Wang, J.; Yang, Q.; Chen, C.; Wang, W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed. Pharmacother., 2021, 137, 111342.
[http://dx.doi.org/10.1016/j.biopha.2021.111342] [PMID: 33581652]
[64]
Richter, M.; Vader, P.; Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv. Drug Deliv. Rev., 2021, 173, 416-426.
[http://dx.doi.org/10.1016/j.addr.2021.03.020] [PMID: 33831479]
[65]
Uster, P.S.; Allen, T.M.; Daniel, B.E.; Mendez, C.J.; Newman, M.S.; Zhu, G.Z. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett., 1996, 386(2-3), 243-246.
[http://dx.doi.org/10.1016/0014-5793(96)00452-8] [PMID: 8647291]
[66]
Pan, Z.; Fang, D.; Song, N.; Song, Y.; Ding, M.; Li, J.; Luo, F.; Tan, H.; Fu, Q. Surface distribution and biophysicochemical properties of polymeric micelles bearing gemini cationic and hydrophilic groups. ACS Appl. Mater. Interfaces, 2017, 9(3), 2138-2149.
[http://dx.doi.org/10.1021/acsami.6b14339] [PMID: 28029776]
[67]
Chandel, A.K.S.; Kumar, C.U.; Jewrajka, S.K. Effect of polyethylene glycol on properties and drug encapsulation–release performance of biodegradable/cytocompatible agarose–polyethylene glycol–polycaprolactone amphiphilic Co-Network gels. ACS Appl. Mater. Interfaces, 2016, 8(5), 3182-3192.
[http://dx.doi.org/10.1021/acsami.5b10675] [PMID: 26760672]
[68]
Miteva, M.; Kirkbride, K.C.; Kilchrist, K.V.; Werfel, T.A.; Li, H.; Nelson, C.E.; Gupta, M.K.; Giorgio, T.D.; Duvall, C.L. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials, 2015, 38, 97-107.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.036] [PMID: 25453977]
[69]
Lechanteur, A.; Furst, T.; Evrard, B.; Delvenne, P.; Hubert, P.; Piel, G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur. J. Pharm. Sci., 2016, 93, 493-503.
[http://dx.doi.org/10.1016/j.ejps.2016.08.058] [PMID: 27593989]
[70]
Zhu, G.; Xu, Z.; Yan, L.T. Entropy at bio-nano interfaces. Nano Lett., 2020, 20(8), 5616-5624.
[http://dx.doi.org/10.1021/acs.nanolett.0c02635] [PMID: 32697100]
[71]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[72]
Bazile, D.; Prud’homme, C.; Bassoullet, M.T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci., 1995, 84(4), 493-498.
[http://dx.doi.org/10.1002/jps.2600840420] [PMID: 7629743]
[73]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[74]
Deen, W.M.; Lazzara, M.J.; Myers, B.D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol., 2001, 281(4), F579-F596.
[http://dx.doi.org/10.1152/ajprenal.2001.281.4.F579] [PMID: 11553505]
[75]
Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem., 1977, 252(11), 3578-3581.
[http://dx.doi.org/10.1016/S0021-9258(17)40291-2] [PMID: 405385]
[76]
Yang, Y.; Tian, F.; Nie, D.; Liu, Y.; Qian, K.; Yu, M.; Wang, A.; Zhang, Y.; Shi, X.; Gan, Y. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci. Adv., 2020, 6(6), eaay9937.
[http://dx.doi.org/10.1126/sciadv.aay9937] [PMID: 32083187]
[77]
Parodi, A.; Buzaeva, P.; Nigovora, D.; Baldin, A.; Kostyushev, D.; Chulanov, V.; Savvateeva, L.V.; Zamyatnin, A.A., Jr. Nanomedicine for increasing the oral bioavailability of cancer treatments. J. Nanobiotechnology, 2021, 19(1), 354.
[http://dx.doi.org/10.1186/s12951-021-01100-2] [PMID: 34717658]
[78]
Zabaleta, V.; Ponchel, G.; Salman, H.; Agüeros, M.; Vauthier, C.; Irache, J.M. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: Permeability and pharmacokinetic study. Eur. J. Pharm. Biopharm., 2012, 81(3), 514-523.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.001] [PMID: 22516136]
[79]
Schrama, D.; Reisfeld, R.A.; Becker, J.C. Antibody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov., 2006, 5(2), 147-159.
[http://dx.doi.org/10.1038/nrd1957] [PMID: 16424916]
[80]
Wang, W.; Yan, X.; Li, Q.; Chen, Z.; Wang, Z.; Hu, H. Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. Nanomedicine, 2020, 29, 102277.
[http://dx.doi.org/10.1016/j.nano.2020.102277] [PMID: 32730981]
[81]
Li, J.; Qiang, H.; Yang, W.; Xu, Y.; Feng, T.; Cai, H.; Wang, S.; Liu, Z.; Zhang, Z.; Zhang, J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J. Control. Release, 2022, 341, 31-43.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.020] [PMID: 34793919]
[82]
Xie, P.; Liu, P. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Carbohydr. Polym., 2022, 275, 118760.
[http://dx.doi.org/10.1016/j.carbpol.2021.118760] [PMID: 34742449]
[83]
Zhang, X.; Wang, H.; Ma, Z.; Wu, B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin. Drug Metab. Toxicol., 2014, 10(12), 1691-1702.
[http://dx.doi.org/10.1517/17425255.2014.967679] [PMID: 25270687]
[84]
Filipczak, N.; Joshi, U.; Attia, S.A.; Berger Fridman, I.; Cohen, S.; Konry, T.; Torchilin, V. Hypoxia-sensitive drug delivery to tumors. J. Control. Release, 2022, 341, 431-442.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.034] [PMID: 34838607]
[85]
Zhang, M.; Jia, C.; Zhuang, J.; Hou, Y.Y.; He, X.W.; Li, W.Y.; Bai, G.; Zhang, Y.K. GSH-responsive drug delivery system for active therapy and reducing the side effects of bleomycin. ACS Appl. Mater. Interfaces, 2022, 14(1), 417-427.
[http://dx.doi.org/10.1021/acsami.1c21828] [PMID: 34978427]
[86]
Hu, S.; Yang, Z.; Wang, S.; Wang, L.; He, Q.; Tang, H.; Ji, P.; Chen, T. Zwitterionic polydopamine modified nanoparticles as an efficient nanoplatform to overcome both the mucus and epithelial barriers. Chem. Eng. J., 2022, 428, 132107.
[http://dx.doi.org/10.1016/j.cej.2021.132107]
[87]
Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev., 2022, 180, 114079.
[http://dx.doi.org/10.1016/j.addr.2021.114079] [PMID: 34902516]
[88]
Xia, X.; Shi, J.; Deng, Q.; Xu, N.; Huang, F.; Xiang, X. Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug delivery and enhanced therapy efficiency. Mater. Today Chem., 2022, 23, 100660.
[http://dx.doi.org/10.1016/j.mtchem.2021.100660]
[89]
Reboredo, C.; González-Navarro, C.J.; Martínez-López, A.L.; Martínez-Ohárriz, C.; Sarmento, B.; Irache, J.M. Zein-based nanoparticles as oral carriers for insulin delivery. Pharmaceutics, 2021, 14(1), 39.
[http://dx.doi.org/10.3390/pharmaceutics14010039] [PMID: 35056935]
[90]
Shah, N.; Hussain, M.; Rehan, T.; Khan, A.; Khan, Z.U. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr. Pharm. Des., 2022, 28(5), 352-367.
[http://dx.doi.org/10.2174/1381612827666210910104333] [PMID: 34514984]
[91]
Fu, Z.; Williams, G.R.; Niu, S.; Wu, J.; Gao, F.; Zhang, X.; Yang, Y.; Li, Y.; Zhu, L.M. Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy. Nanoscale, 2020, 12(27), 14739-14750.
[http://dx.doi.org/10.1039/D0NR02291H] [PMID: 32626854]
[92]
Ye, Y.; Bremner, D.H.; Zhang, H.; Chen, X.; Lou, J.; Zhu, L.M. Functionalized layered double hydroxide nanoparticles as an intelligent nanoplatform for synergistic photothermal therapy and chemotherapy of tumors. Colloids Surf. B Biointerfaces, 2022, 210, 112261.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112261] [PMID: 34902711]
[93]
Mundel, R.; Thakur, T.; Chatterjee, M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech, 2022, 12(2), 41.
[http://dx.doi.org/10.1007/s13205-021-03105-y]
[94]
Dadashpour, M.; Ganjibakhsh, M.; Mousazadeh, H.; Nejati, K. Increased pro-apoptotic and anti-proliferative activities of simvastatin encapsulated PCL-PEG nanoparticles on human breast cancer adenocarcinoma cells. J. Clust. Sci., 2022, 2022, 1-12.
[http://dx.doi.org/10.1007/s10876-021-02217-y]
[95]
Simón-Vázquez, R.; Tsapis, N.; Lorscheider, M.; Rodríguez, A.; Calleja, P.; Mousnier, L.; de Miguel Villegas, E.; González-Fernández, Á.; Fattal, E. Improving dexamethasone drug loading and efficacy in treating arthritis through a lipophilic prodrug entrapped into PLGA-PEG nanoparticles. Drug Deliv. Transl. Res., 2022, 12(5), 1270-1284.
[http://dx.doi.org/10.1007/s13346-021-01112-3] [PMID: 34993924]
[96]
Guido, C.; Baldari, C.; Maiorano, G.; Mastronuzzi, A.; Carai, A.; Quintarelli, C.; De Angelis, B.; Cortese, B.; Gigli, G.; Palamà, I.E. Nanoparticles for diagnosis and target therapy in pediatric brain cancers. Diagnostics (Basel), 2022, 12(1), 173.
[http://dx.doi.org/10.3390/diagnostics12010173] [PMID: 35054340]
[97]
Dardeer, H.M.; Toghan, A.; Zaki, M.E.A.; Elamary, R.B. Design, synthesis and evaluation of novel antimicrobial polymers based on the inclusion of polyethylene Glycol/TiO2 nanocomposites in cyclodextrin as drug carriers for sulfaguanidine. Polymers (Basel), 2022, 14(2), 227.
[http://dx.doi.org/10.3390/polym14020227] [PMID: 35054634]
[98]
Abstiens, K.; Gregoritza, M.; Goepferich, A.M. Ligand density and linker length are critical factors for multivalent nanoparticle–receptor interactions. ACS Appl. Mater. Interfaces, 2019, 11(1), 1311-1320.
[http://dx.doi.org/10.1021/acsami.8b18843] [PMID: 30521749]
[99]
Jia, T.; Ciccione, J.; Jacquet, T.; Maurel, M.; Montheil, T.; Mehdi, A.; Martinez, J.; Eymin, B.; Subra, G.; Coll, J.L. The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. Int. J. Pharm., 2019, 568, 118507.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118507] [PMID: 31299336]
[100]
Wang, S.; Dormidontova, E.E. Nanoparticle design optimization for enhanced targeting: Monte Carlo simulations. Biomacromolecules, 2010, 11(7), 1785-1795.
[http://dx.doi.org/10.1021/bm100248e] [PMID: 20536119]
[101]
Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano, 2013, 7(4), 2935-2947.
[http://dx.doi.org/10.1021/nn305663e] [PMID: 23421406]
[102]
Yong, K.W.; Yuen, D.; Chen, M.Z.; Johnston, A.P.R. Engineering the orientation, density, and flexibility of single-domain antibodies on nanoparticles to improve cell targeting. ACS Appl. Mater. Interfaces, 2020, 12(5), 5593-5600.
[http://dx.doi.org/10.1021/acsami.9b20993] [PMID: 31917547]
[103]
Maslanka Figueroa, S.; Fleischmann, D.; Beck, S.; Goepferich, A. The effect of ligand mobility on the cellular interaction of multivalent nanoparticles. Macromol. Biosci., 2020, 20(4), 1900427.
[http://dx.doi.org/10.1002/mabi.201900427] [PMID: 32077622]
[104]
Petersen, H.; Fechner, P.M.; Fischer, D.; Kissel, T. Synthesis, characterization, and biocompatibility of polyethylenimine- g raft -poly(ethylene glycol) block copolymers. Macromolecules, 2002, 35(18), 6867-6874.
[http://dx.doi.org/10.1021/ma012060a]
[105]
Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab., 2012, 13(1), 105-119.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[106]
Kloos, R.; Sluis, I.M.; Mastrobattista, E.; Hennink, W.; Pieters, R.; Verhoef, J.J. Acute lymphoblastic leukaemia patients treated with PEGasparaginase develop antibodies to PEG and the succinate linker. Br. J. Haematol., 2020, 189(3), 442-451.
[http://dx.doi.org/10.1111/bjh.16254] [PMID: 31883112]
[107]
Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev., 2020, 154-155, 163-175.
[http://dx.doi.org/10.1016/j.addr.2020.07.024] [PMID: 32745496]
[108]
Mima, Y.; Hashimoto, Y.; Shimizu, T.; Kiwada, H.; Ishida, T. Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol. Pharm., 2015, 12(7), 2429-2435.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00144] [PMID: 26070445]
[109]
Verhoef, J.J.F.; Carpenter, J.F.; Anchordoquy, T.J.; Schellekens, H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today, 2014, 19(12), 1945-1952.
[http://dx.doi.org/10.1016/j.drudis.2014.08.015] [PMID: 25205349]
[110]
Garay, R.P.; El-Gewely, R.; Armstrong, J.K.; Garratty, G.; Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv., 2012, 9(11), 1319-1323.
[http://dx.doi.org/10.1517/17425247.2012.720969] [PMID: 22931049]
[111]
Moreno, A.; Pitoc, G.A.; Ganson, N.J.; Layzer, J.M.; Hershfield, M.S.; Tarantal, A.F.; Sullenger, B.A. Anti-PEG antibodies inhibit the anticoagulant activity of PEGylated aptamers. Cell Chem. Biol., 2019, 26(5), 634-644.e3.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.001] [PMID: 30827937]
[112]
Pasut, G.; Veronese, F.M. Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci., 2007, 32(8-9), 933-961.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.008]
[113]
Yang, Q.; Lai, S.K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 655-677.
[http://dx.doi.org/10.1002/wnan.1339] [PMID: 25707913]
[114]
Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer, 2007, 110(1), 103-111.
[http://dx.doi.org/10.1002/cncr.22739] [PMID: 17516438]
[115]
Neun, B.; Barenholz, Y.; Szebeni, J.; Dobrovolskaia, M. Understanding the Role of Anti-PEG Antibodies in the complement activation by Doxil in vitro. Molecules, 2018, 23(7), 1700.
[http://dx.doi.org/10.3390/molecules23071700] [PMID: 30002298]
[116]
Ganson, N.J.; Povsic, T.J.; Sullenger, B.A.; Alexander, J.H.; Zelenkofske, S.L.; Sailstad, J.M.; Rusconi, C.P.; Hershfield, M.S. Pre-existing anti–polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol., 2016, 137(5), 1610-1613.e7.
[http://dx.doi.org/10.1016/j.jaci.2015.10.034] [PMID: 26688515]
[117]
Huckaby, J.T.; Jacobs, T.M.; Li, Z.; Perna, R.J.; Wang, A.; Nicely, N.I.; Lai, S.K. Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers. Commun. Chem., 2020, 3(1), 124.
[http://dx.doi.org/10.1038/s42004-020-00369-y]
[118]
Abu Lila, A.S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Control. Release, 2013, 172(1), 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.026] [PMID: 23933235]
[119]
Wang, F.; Ye, X.; Wu, Y.; Wang, H.; Sheng, C.; Peng, D.; Chen, W. Time interval of two injections and first-dose dependent of accelerated blood clearance phenomenon induced by PEGylated liposomal gambogenic acid: The contribution of PEG-Specific IgM. J. Pharm. Sci., 2019, 108(1), 641-651.
[http://dx.doi.org/10.1016/j.xphs.2018.10.027] [PMID: 30595169]
[120]
Qi, F.; Qi, J.; Hu, C.; Shen, L.; Yu, W.; Hu, T. Conjugation of staphylokinase with the arabinogalactan-PEG conjugate: Study on the immunogenicity, in vitro bioactivity and pharmacokinetics. Int. J. Biol. Macromol., 2019, 131, 896-904.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.046] [PMID: 30914374]
[121]
Hussain, Z.; Khan, S.; Imran, M.; Sohail, M.; Shah, S.W.A.; de Matas, M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res., 2019, 9(3), 721-734.
[http://dx.doi.org/10.1007/s13346-019-00631-4] [PMID: 30895453]
[122]
Hoang Thi, T.T.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel), 2020, 12(2), 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[123]
Zhang, P.; Jain, P.; Tsao, C.; Wu, K.; Jiang, S. Proactively reducing anti-drug antibodies via immunomodulatory bioconjugation. Angew. Chem. Int. Ed., 2019, 58(8), 2433-2436.
[http://dx.doi.org/10.1002/anie.201814275] [PMID: 30632270]
[124]
Joh, D.Y.; Zimmers, Z.; Avlani, M.; Heggestad, J.T.; Aydin, H.B.; Ganson, N.; Kumar, S.; Fontes, C.M.; Achar, R.K.; Hershfield, M.S.; Hucknall, A.M.; Chilkoti, A. Architectural modification of conformal PEG-bottlebrush coatings minimizes anti-PEG antigenicity while preserving stealth properties. Adv. Healthc. Mater., 2019, 8(8), 1801177.
[http://dx.doi.org/10.1002/adhm.201801177] [PMID: 30908902]
[125]
Qi, Y.; Simakova, A.; Ganson, N.J.; Li, X.; Luginbuhl, K.M.; Özer, I.; Liu, W.; Hershfield, M.S.; Matyjaszewski, K.; Chilkoti, A. A brush-polymer conjugate of exendin-4 reduces blood glucose for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng., 2016, (1), 0002.
[http://dx.doi.org/10.1038/s41551-016-0002]
[126]
Li, B.; Yuan, Z.; McMullen, P.; Xie, J.; Jain, P.; Hung, H.C.; Xu, S.; Zhang, P.; Lin, X.; Wu, K.; Jiang, S. A chromatin-mimetic nanomedicine for therapeutic tolerance induction. ACS Nano, 2018, 12(12), 12004-12014.
[http://dx.doi.org/10.1021/acsnano.8b04314] [PMID: 30412375]
[127]
Kontos, S.; Kourtis, I.C.; Dane, K.Y.; Hubbell, J.A. Engineering antigens for in situ erythrocyte binding induces T- cell deletion. Proc. Natl. Acad. Sci. USA, 2013, 110(1), E60-E68.
[http://dx.doi.org/10.1073/pnas.1216353110] [PMID: 23248266]
[128]
McSweeney, M.D.; Shen, L.; DeWalle, A.C.; Joiner, J.B.; Ciociola, E.C.; Raghuwanshi, D.; Macauley, M.S.; Lai, S.K. Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. J. Control. Release, 2021, 329, 774-781.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.011] [PMID: 33038448]
[129]
Dams, E.T.; Laverman, P.; Oyen, W.J.; Storm, G.; Scherphof, G.L.; van Der Meer, J.W.; Corstens, F.H.; Boerman, O.C. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther., 2000, 292(3), 1071-1079.
[PMID: 10688625]
[130]
Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm., 2008, 354(1-2), 56-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.005] [PMID: 18083313]
[131]
Estapé Senti, M.; de Jongh, C.A.; Dijkxhoorn, K.; Verhoef, J.J.F.; Szebeni, J.; Storm, G.; Hack, C.E.; Schiffelers, R.M.; Fens, M.H.; Boross, P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Release, 2022, 341, 475-486.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.042] [PMID: 34890719]
[132]
Romberg, B.; Metselaar, J.; Baranyi, L.; Snel, C.; Bünger, R.; Hennink, W.; Szebeni, J.; Storm, G. Poly(amino acid)s: Promising enzymatically degradable stealth coatings for liposomes. Int. J. Pharm., 2007, 331(2), 186-189.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.018] [PMID: 17145145]
[133]
Porter, R.S.; Casale, A. Recent studies of polymer reactions caused by stress. Polym. Eng. Sci., 1985, 25(3), 129-156.
[http://dx.doi.org/10.1002/pen.760250302]
[134]
Lee, J.S.; Go, D.H.; Bae, J.W.; Lee, S.J.; Park, K.D. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. J. Control. Release, 2007, 117(2), 204-209.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.004] [PMID: 17196698]
[135]
Larsen, N.E.; Balazs, E.A. Drug delivery systems using hyaluronan and its derivatives. Adv. Drug Deliv. Rev., 1991, 7(2), 279-293.
[http://dx.doi.org/10.1016/0169-409X(91)90007-Y]
[136]
Janes, K.A.; Calvo, P.; Alonso, M.J. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev., 2001, 47(1), 83-97.
[http://dx.doi.org/10.1016/S0169-409X(00)00123-X] [PMID: 11251247]
[137]
Yang, W.; Zhang, L.; Wang, S.; White, A.D.; Jiang, S. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials, 2009, 30(29), 5617-5621.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.036] [PMID: 19595457]
[138]
Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater., 2010, 22(9), 920-932.
[http://dx.doi.org/10.1002/adma.200901407] [PMID: 20217815]
[139]
Chiu, C.Y.; Chang, Y.; Liu, T.H.; Chou, Y.N.; Yen, T.J. Convergent charge interval spacing of zwitterionic 4-vinylpyridine carboxybetaine structures for superior blood-inert regulation in amphiphilic phases. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(40), 8437-8450.
[http://dx.doi.org/10.1039/D1TB01374B] [PMID: 34542146]
[140]
Ahmed, S.T.; Leckband, D.E. Forces between mica and end-grafted statistical copolymers of sulfobetaine and oligoethylene glycol in aqueous electrolyte solutions. J. Colloid Interface Sci., 2022, 608(Pt 2), 1857-1867.
[http://dx.doi.org/10.1016/j.jcis.2021.09.175] [PMID: 34752975]
[141]
Song, Y.; Elsabahy, M.; Collins, C.A.; Khan, S.; Li, R.; Hreha, T.N.; Shen, Y.; Lin, Y.N.; Letteri, R.A.; Su, L.; Dong, M.; Zhang, F.; Hunstad, D.A.; Wooley, K.L. Morphologic design of silver-bearing sugar-based polymer nanoparticles for uroepithelial cell binding and antimicrobial delivery. Nano Lett., 2021, 21(12), 4990-4998.
[http://dx.doi.org/10.1021/acs.nanolett.1c00776] [PMID: 34115938]
[142]
Zhao, B.; Yan, Y.; Zhang, J.; Chen, E.; Wang, K.; Zhao, C.; Zhong, Y.; Huang, D.; Cui, Z.; Deng, D.; Gu, C.; Chen, W. Synthesis of zwitterionic chimeric polymersomes for efficient protein loading and intracellular delivery. Polym. Chem., 2021, 12(35), 5085-5092.
[http://dx.doi.org/10.1039/D1PY00815C]
[143]
Oh, J.K. Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter, 2011, 7(11), 5096-5108.
[http://dx.doi.org/10.1039/c0sm01539c]
[144]
Cho, H.; Gao, J.; Kwon, G.S. PEG- b -PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. J. Control. Release, 2016, 240, 191-201.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.015] [PMID: 26699425]
[145]
Smith, A.A.A.; Gale, E.C.; Roth, G.A.; Maikawa, C.L.; Correa, S.; Yu, A.C.; Appel, E.A. Nanoparticles presenting potent TLR7/8 agonists enhance anti-PD-L1 immunotherapy in cancer treatment. Biomacromolecules, 2020, 21(9), 3704-3712.
[http://dx.doi.org/10.1021/acs.biomac.0c00812] [PMID: 32816460]
[146]
Fam, S.Y.; Chee, C.F.; Yong, C.Y.; Ho, K.L.; Mariatulqabtiah, A.R.; Tan, W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials (Basel), 2020, 10(4), 787.
[http://dx.doi.org/10.3390/nano10040787] [PMID: 32325941]
[147]
Conte, C.; Dal Poggetto, G.; J Swartzwelter, B.; Esposito, D.; Ungaro, F.; Laurienzo, P.; Boraschi, D.; Quaglia, F. Surface exposure of PEG and Amines on biodegradable nanoparticles as a strategy to tune their interaction with protein-rich biological media. Nanomaterials (Basel), 2019, 9(10), 1354.
[http://dx.doi.org/10.3390/nano9101354] [PMID: 31547212]
[148]
Allen, T.M.; Hansen, C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta Biomembr., 1991, 1068(2), 133-141.
[http://dx.doi.org/10.1016/0005-2736(91)90201-I] [PMID: 1911826]
[149]
Allen, T.M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta Biomembr., 1991, 1066(1), 29-36.
[http://dx.doi.org/10.1016/0005-2736(91)90246-5] [PMID: 2065067]
[150]
Maruyama, K.; Yuda, T.; Okamoto, A.; Ishikura, C.; Kojima, S.; Iwatsuru, M. Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1620-1622.
[http://dx.doi.org/10.1248/cpb.39.1620] [PMID: 1934187]
[151]
Duncan, R. Polymer conjugates as anticancer nano- medicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[152]
Lee, H. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications. Pharmaceutics, 2020, 12(6), 533.
[http://dx.doi.org/10.3390/pharmaceutics12060533] [PMID: 32531886]
[153]
Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; Cui, H.; Ma, Y.; Cai, L. Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 2016, 10(11), 10049-10057.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy