Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

乳腺癌微环境中的无机磷酸盐(Pi):生产,运输和信号转导作为抗癌策略的潜在靶点

卷 23, 期 3, 2023

发表于: 20 October, 2022

页: [187 - 198] 页: 12

弟呕挨: 10.2174/1568009622666220928140702

价格: $65

摘要

肿瘤细胞由于其高生长速率和能量需求,对无机磷酸盐(Pi)有很高的需求。癌症患者的血清Pi浓度已被发现比健康个体的基线水平高2至4倍。在小鼠肿瘤微环境中观察到乳腺癌细胞中Pi的2倍积累。在乳腺肿瘤微环境中,外核苷酶和外磷酸酶作为面向细胞外环境的催化位点可能参与Pi的胞外释放,并被Pi转运蛋白内化以满足癌细胞典型的高能量需求。在乳腺癌细胞中发现了两种Pi转运蛋白(Na+依赖和H+依赖),它们与肿瘤过程密切相关,如增殖、迁移、粘附和上皮-间充质转化(EMT)。此外,高细胞外Pi浓度通过Pi转运刺激三阴性乳腺癌细胞产生ROS。一些化合物显示出在乳腺癌细胞中抑制外核苷酶、外磷酸酶、Pi转运蛋白和Pi调制信号通路的强大能力,并调节增殖、迁移、粘附和EMT。本文旨在收集Pi对乳腺癌微环境影响的相关实验记录,并指出可能的外核苷酶、外磷酸酶、Pi转运体和Pi调制信号通路抑制剂作为潜在的化疗药物,或Pi作为三阴性乳腺癌细胞经典化学诱导细胞毒性的有效增强剂。

关键词: 无机磷酸盐,乳腺癌微环境,外核苷酶,外磷酸酶,H+依赖的Pi转运,Na+依赖的Pi转运。

图形摘要
[1]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Monteiro, R.Q.; Rumjanek, F.D.; Meyer-Fernandes, J.R. Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 291-298.
[http://dx.doi.org/10.1016/j.bbcan.2018.05.001] [PMID: 29753110]
[2]
Brown, R.B.; Razzaque, M.S. Phosphate toxicity and tumorigenesis. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 303-309.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.007] [PMID: 29684520]
[3]
Elser, J.J.; Kyle, M.M.; Smith, M.S.; Nagy, J.D. Biological stoichiometry in human cancer. PLoS One, 2007, 2(10), e1028.
[http://dx.doi.org/10.1371/journal.pone.0001028] [PMID: 17925876]
[4]
Papaloucas, C.D.; Papaloucas, M.D.; Kouloulias, V.; Neanidis, K.; Pistevou-Gompaki, K.; Kouvaris, J.; Zygogianni, A.; Mystakidou, K.; Papaloucas, A.C. Measurement of blood phosphorus: A quick and inexpensive method for detection of the existence of cancer in the body. Too good to be true, or forgotten knowledge of the past? Med. Hypotheses, 2014, 82(1), 24-25.
[http://dx.doi.org/10.1016/j.mehy.2013.10.028] [PMID: 24252275]
[5]
Bobko, A.A.; Eubank, T.D.; Driesschaert, B.; Dhimitruka, I.; Evans, J.; Mohammad, R.; Tchekneva, E.E.; Dikov, M.M.; Khramtsov, V.V. Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci. Rep., 2017, 7(1), 41233.
[http://dx.doi.org/10.1038/srep41233] [PMID: 28117423]
[6]
Chen, Y.; Lu, B.; Yang, Q.; Fearns, C.; Yates, J.R., III; Lee, J.D. Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res., 2009, 69(8), 3713-3720.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2515] [PMID: 19351860]
[7]
Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006, 127(3), 635-648.
[http://dx.doi.org/10.1016/j.cell.2006.09.026] [PMID: 17081983]
[8]
Alvarez, C.L.; Troncoso, M.F.; Espelt, M.V. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial– mesenchymal transition, cell migration, and invasion. J. Cell. Physiol., 2022, 237(1), 389-400.
[http://dx.doi.org/10.1002/jcp.30580] [PMID: 34514618]
[9]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Leite Tenório Aguiar, R.; Monteiro, R.Q.; Rumjanek, F.D.; Meyer-Fernandes, J.R. Ectophosphatase activity in the triple‐negative breast cancer cell line MDA‐MB‐231. Cell Biol. Int., 2021, 45(2), 411-421.
[http://dx.doi.org/10.1002/cbin.11497] [PMID: 33140880]
[10]
Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 362(4-5), 299-309.
[http://dx.doi.org/10.1007/s002100000309] [PMID: 11111825]
[11]
Zimmermann, H. Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal., 2009, 5(3), 273-275.
[http://dx.doi.org/10.1007/s11302-009-9157-z] [PMID: 19322680]
[12]
Forster, I.C.; Hernando, N.; Biber, J.; Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med., 2013, 34(2-3), 386-395.
[http://dx.doi.org/10.1016/j.mam.2012.07.007] [PMID: 23506879]
[13]
Wagner, C.A.; Hernando, N.; Forster, I.C.; Biber, J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch., 2014, 466(1), 139-153.
[http://dx.doi.org/10.1007/s00424-013-1418-6] [PMID: 24352629]
[14]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Meyer-Fernandes, J.R. The roles of sodium-independent inorganic phosphate transporters in inorganic phosphate homeostasis and in cancer and other diseases. Int. J. Mol. Sci., 2020, 21(23), 9298.
[http://dx.doi.org/10.3390/ijms21239298] [PMID: 33291240]
[15]
Schetinger, M.R.C.; Morsch, V.M.; Bonan, C.D.; Wyse, A.T.S. NTPDase and 5′-nucleotidase activities in physiological and disease conditions: New perspectives for human health. Biofactors, 2007, 31(2), 77-98.
[http://dx.doi.org/10.1002/biof.5520310205] [PMID: 18806312]
[16]
Meyer- Fernandes. J.R.; Meyer‐Fernandes, J.R. Release of inorganic phosphate into the tumor environment: Possible roles of ectonucleotidases and ecto‐phosphatases. Novel Approach Cancer Study, 2019, 3(4), 289-293.
[http://dx.doi.org/10.31031/NACS.2019.03.000568]
[17]
Stagg, J.; Smyth, M.J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene, 2010, 29(39), 5346-5358.
[http://dx.doi.org/10.1038/onc.2010.292] [PMID: 20661219]
[18]
Iqbal, J. Ectonucleotidases: Potential target in drug discovery and development. Mini Rev. Med. Chem., 2019, 19(11), 866-869.
[http://dx.doi.org/10.2174/138955751911190517102116] [PMID: 31379303]
[19]
Kawai, Y.; Kaidoh, M.; Yokoyama, Y.; Ohhashi, T. Cell surface F 1/F o ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues. Am. J. Physiol. Cell Physiol., 2013, 305(11), C1139-C1150.
[http://dx.doi.org/10.1152/ajpcell.00199.2013] [PMID: 24067918]
[20]
do Carmo Araújo, M.; Batista Teixeira Rocha, J.; Morsch, A.; Zanin, R.; Bauchspiess, R.; Maria Morsch, V.; Rosa Chitolina Schetinger, M. Enzymes that hydrolyze adenine nucleotides in platelets from breast cancer patients. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1740(3), 421-426.
[http://dx.doi.org/10.1016/j.bbadis.2004.11.001] [PMID: 15949710]
[21]
Zhou, J.Z.; Riquelme, M.A.; Gao, X.; Ellies, L.G.; Sun, L.Z.; Jiang, J.X. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene, 2015, 34(14), 1831-1842.
[http://dx.doi.org/10.1038/onc.2014.113] [PMID: 24837364]
[22]
Yang, S.Y.; Lee, J.; Park, C.G.; Kim, S.; Hong, S.; Chung, H.C.; Min, S.K.; Han, J.W.; Lee, H.W.; Lee, H.Y. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin. Exp. Metastasis, 2002, 19(7), 603-608.
[http://dx.doi.org/10.1023/A:1020950420196] [PMID: 12498389]
[23]
Zhi, X.; Chen, S.; Zhou, P.; Shao, Z.; Wang, L.; Ou, Z.; Yin, L. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis, 2007, 24(6), 439-448.
[http://dx.doi.org/10.1007/s10585-007-9081-y] [PMID: 17587186]
[24]
Zhou, P.; Zhi, X.; Zhou, T.; Chen, S.; Li, X.; Wang, L.; Yin, L.; Shao, Z.; Ou, Z. Overexpression of Ecto-5′-Nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol. Ther., 2007, 6(3), 426-431.
[http://dx.doi.org/10.4161/cbt.6.3.3762] [PMID: 17471030]
[25]
Wang, L.; Zhou, X.; Zhou, T.; Ma, D.; Chen, S.; Zhi, X.; Yin, L.; Shao, Z.; Ou, Z.; Zhou, P. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol., 2008, 134(3), 365-372.
[http://dx.doi.org/10.1007/s00432-007-0292-z] [PMID: 17671792]
[26]
Petruk, N.; Tuominen, S.; Åkerfelt, M.; Mattsson, J.; Sandholm, J.; Nees, M.; Yegutkin, G.G.; Jukkola, A.; Tuomela, J.; Selander, K.S. CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci. Rep., 2021, 11(1), 6035.
[http://dx.doi.org/10.1038/s41598-021-85379-z] [PMID: 33727591]
[27]
Yang, X.; Pei, S.; Wang, H.; Jin, Y.; Yu, F.; Zhou, B.; Zhang, H.; Zhang, D.; Lin, D. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73. BMC Cancer, 2017, 17(1), 255.
[http://dx.doi.org/10.1186/s12885-017-3250-4] [PMID: 28399915]
[28]
Loose, J.H.; Damjanov, I.; Harris, H. Identity of the neoplastic alkaline phosphatase as revealed with monoclonal antibodies to the placental form of the enzyme. Am. J. Clin. Pathol., 1984, 82(2), 173-177.
[http://dx.doi.org/10.1093/ajcp/82.2.173] [PMID: 6380267]
[29]
Wada, H.G.; Shindelman, J.E.; Ortmeyer, A.E.; Sussman, H.H. Demonstration of placental alkaline phosphatase in human breast cancer. Int. J. Cancer, 1979, 23(6), 781-787.
[http://dx.doi.org/10.1002/ijc.2910230608] [PMID: 468412]
[30]
Kato, M.; Brijlall, D.; Adler, S.A.; Kato, S.; Herz, F. Effect of hyperosmolality on alkaline phosphatase and stress-response protein 27 of MCF-7 breast cancer cells. Breast Cancer Res. Treat., 1992, 23(3), 241-249.
[http://dx.doi.org/10.1007/BF01833521] [PMID: 1463864]
[31]
Tsai, L.C.; Hung, M.W.; Chen, Y.H.; Su, W.C.; Chang, G.G.; Chang, T.C. Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cells. Eur. J. Biochem., 2000, 267(5), 1330-1339.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01100.x] [PMID: 10691970]
[32]
Vincent, J.B.; Crowder, M.W.; Averill, B.A. Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions. Trends Biochem. Sci., 1992, 17(3), 105-110.
[http://dx.doi.org/10.1016/0968-0004(92)90246-6] [PMID: 1412693]
[33]
Furuya, T.; Zhong, L.; Meyer‐Fernandes, J.R.; Lu, H.; Moreno, S.N.J.; Docampo, R. Ecto‐protein tyrosine phosphatase activity in trypanosoma cruzi infective stages. Mol. Biochem. Parasitol., 1998, 92, 339-348.
[http://dx.doi.org/10.1016/S0166-6851(97)00246-6]
[34]
Moss, D.W.; Raymond, F.D.; Wile, D.B.; Rej, R. Clinical and biological aspects of acid phosphatase. Crit. Rev. Clin. Lab. Sci., 1995, 32(4), 431-467.
[http://dx.doi.org/10.3109/10408369509084690] [PMID: 7576159]
[35]
Muniyan, S.; Chaturvedi, N.; Dwyer, J.; LaGrange, C.; Chaney, W.; Lin, M.F. Human prostatic acid phosphatase: Structure, function and regulation. Int. J. Mol. Sci., 2013, 14(5), 10438-10464.
[http://dx.doi.org/10.3390/ijms140510438] [PMID: 23698773]
[36]
Quintero, I.B.; Araujo, C.L.; Pulkka, A.E.; Wirkkala, R.S.; Herrala, A.M.; Eskelinen, E.L.; Jokitalo, E.; Hellström, P.A.; Tuominen, H.J.; Hirvikoski, P.P.; Vihko, P.T. Prostatic acid phosphatase is not a prostate specific target. Cancer Res., 2007, 67(14), 6549-6554.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1651] [PMID: 17638863]
[37]
Chen, D.R.; Chien, S-Y.; Kuo, S-J.; Teng, Y-H.; Tsai, H-T.; Kuo, J-H.; Chung, J-G. SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res., 2010, 30(10), 4135-4140.
[PMID: 21036732]
[38]
Russo-Abrahão, T.; Lacerda-Abreu, M.A.; Gomes, T. Cosentino- Gomes, D.; Carvalho-de-Araújo, A.D.; Rodrigues, M.F.; Oliveira, A.C.L.; Rumjanek, F.D.; Monteiro, R.Q.; Meyer-Fernandes, J.R. Characterization of inorganic phosphate transport in the triplenegative breast cancer cell line, MDA-MB-231. PLoS One, 2018, 13(2), e0191270.
[http://dx.doi.org/10.1371/journal.pone.0191270] [PMID: 29415049]
[39]
Leslie, T.K.; James, A.D.; Zaccagna, F.; Grist, J.T.; Deen, S.; Kennerley, A.; Riemer, F.; Kaggie, J.D.; Gallagher, F.A.; Gilbert, F.J.; Brackenbury, W.J. Sodium homeostasis in the tumour microenvironment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2), 188304.
[http://dx.doi.org/10.1016/j.bbcan.2019.07.001] [PMID: 31348974]
[40]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Meyer-Fernandes, J.R. Resveratrol is an inhibitor of sodium‐dependent inorganic phosphate transport in triple‐negative MDA‐MB‐231 breast cancer cells. Cell Biol. Int., 2021, 45(8), 1768-1775.
[http://dx.doi.org/10.1002/cbin.11616] [PMID: 33851766]
[41]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; van Breemen, R.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem., 2002, 50(3), 431-435.
[http://dx.doi.org/10.1021/jf010812u] [PMID: 11804508]
[42]
Gomez, L.S.; Zancan, P.; Marcondes, M.C.; Ramos-Santos, L.; Meyer-Fernandes, J.R.; Sola-Penna, M.; Da Silva, D. Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie, 2013, 95(6), 1336-1343.
[http://dx.doi.org/10.1016/j.biochi.2013.02.013] [PMID: 23454376]
[43]
Jung, K-H.; Lee, J.H.; Thien Quach, C.H.; Paik, J-Y.; Oh, H.; Park, J.W.; Lee, E.J.; Moon, S-H.; Lee, K-H. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species mediated hypoxia‐inducible factor‐1 activation. J. Nucl. Med., 2013, 54(12), 2161-2167.
[http://dx.doi.org/10.2967/jnumed.112.115436]
[44]
Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDAMB‐ 231 human breast cancer by reversing TGF‐β1‐induced epithelial‐ mesenchymal transition. Molecules, 2019, 24(6), 1131.
[http://dx.doi.org/10.3390/molecules24061131] [PMID: 30901941]
[45]
Liu, S.; Wicha, M.S. Targeting breast cancer stem cells. J. Clin. Oncol. Off J. Am. Soc. Clin. Oncol., 2010, 28(25), 4006-4012.
[http://dx.doi.org/10.1200/JCO.2009.27.5388]
[46]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100]
[47]
Heddleston, J.M.; Li, Z.; Lathia, J.D.; Bao, S.; Hjelmeland, A.B.; Rich, J.N. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer, 2010, 102(5), 789-795.
[http://dx.doi.org/10.1038/sj.bjc.6605551] [PMID: 20104230]
[48]
Ge, G.; Zhou, C.; Ren, Y.; Tang, X.; Wang, K.; Zhang, W.; Niu, L.; Zhou, Y.; Yan, Y.; He, J. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumour Biol., 2016, 37(4), 5049-5062.
[http://dx.doi.org/10.1007/s13277-015-4226-0] [PMID: 26546432]
[49]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Cosentino-Gomes, D.; Nascimento, M.T.C.; Carvalho-Kelly, L.F.; Gomes, T.; Rodrigues, M.F.; König, S.; Rumjanek, F.D.; Monteiro, R.Q. Meyer- Fernandes, J.R. H+-dependent inorganic phosphate transporter in breast cancer cells: Possible functions in the tumor microenvironment. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2180-2188.
[http://dx.doi.org/10.1016/j.bbadis.2019.04.015] [PMID: 31034992]
[50]
Bowen, J.W.; Levinson, C. Phosphate concentration and transport in Ehrlich ascites tumor cells: Effect of sodium. J. Cell. Physiol., 1982, 110(2), 149-154.
[http://dx.doi.org/10.1002/jcp.1041100207] [PMID: 7068772]
[51]
Loghman-Adham, M. Use of phosphonocarboxylic acids as inhibitors of sodium-phosphate cotransport. Gen. Pharmacol., 1996, 27(2), 305-312.
[http://dx.doi.org/10.1016/0306-3623(95)02017-9] [PMID: 8919647]
[52]
Ito, M.; Matsuka, N.; Izuka, M.; Haito, S.; Sakai, Y.; Nakamura, R.; Segawa, H.; Kuwahata, M.; Yamamoto, H.; Pike, W.J.; Miyamoto, K. Characterization of inorganic phosphate transport in osteoclast- like cells. Am. J. Physiol. Cell Physiol., 2005, 288(4), C921-C931.
[http://dx.doi.org/10.1152/ajpcell.00412.2004] [PMID: 15601753]
[53]
Candeal, E.; Caldas, Y.A.; Guillén, N.; Levi, M.; Sorribas, V. Na + -independent phosphate transport in Caco2BBE cells. Am. J. Physiol. Cell Physiol., 2014, 307(12), C1113-C1122.
[http://dx.doi.org/10.1152/ajpcell.00251.2014] [PMID: 25298422]
[54]
Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell, 2008, 14(6), 818-829.
[http://dx.doi.org/10.1016/j.devcel.2008.05.009] [PMID: 18539112]
[55]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Rocco-Machado, N.; Cosentino-Gomes, D.; Dick, C.F.; Carvalho-Kelly, L.F.; Cunha Nascimento, M.T.; Rocha-Vieira, T.C.; Meyer-Fernandes, J.R. Hydrogen peroxide generation as an underlying response to high extracellular inorganic phosphate (Pi) in breast cancer cells. Int. J. Mol. Sci., 2021, 22(18), 10096.
[http://dx.doi.org/10.3390/ijms221810096] [PMID: 34576256]
[56]
Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells, 2021, 10(10), 2509.
[http://dx.doi.org/10.3390/cells10102509] [PMID: 34685488]
[57]
Ayele, M.T.; Muche, T.Z.; Teklemariam, B.A.; Bogale, A.; Abebe, C.E. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: A systemic review. J. Inflamm. Res., 2022, 15, 1349-1364.
[http://dx.doi.org/10.2147/JIR.S353489] [PMID: 35241923]
[58]
Camalier, C.E.; Young, M.R.; Bobe, G.; Perella, C.M.; Colburn, N.H.; Beck, G.R. Jr Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev. Res., 2010, 3(3), 359-370.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0068] [PMID: 20145188]
[59]
Jin, H.; Xu, C.X.; Lim, H.T.; Park, S.J.; Shin, J.Y.; Chung, Y.S.; Park, S.C.; Chang, S.H.; Youn, H.J.; Lee, K.H.; Lee, Y.S.; Ha, Y.C.; Chae, C.H.; Beck, G.R., Jr; Cho, M.H. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am. J. Respir. Crit. Care Med., 2009, 179(1), 59-68.
[http://dx.doi.org/10.1164/rccm.200802-306OC] [PMID: 18849498]
[60]
Spina, A.; Sapio, L.; Esposito, A.; Di Maiolo, F.; Sorvillo, L.; Naviglio, S. Inorganic phosphate as a novel signaling molecule with antiproliferative action in MDA-MB-231 breast cancer cells. Biores. Open Access, 2013, 2(1), 47-54.
[http://dx.doi.org/10.1089/biores.2012.0266] [PMID: 23515235]
[61]
Sapio, L.; Sorvillo, L.; Illiano, M.; Chiosi, E.; Spina, A.; Naviglio, S. Inorganic phosphate prevents Erk1/2 and Stat3 activation and improves sensitivity to doxorubicin of MDA-MB-231 breast cancer cells. Molecules, 2015, 20(9), 15910-15928.
[http://dx.doi.org/10.3390/molecules200915910] [PMID: 26340617]
[62]
Shanti, A.; Al Adem, K.; Stefanini, C.; Lee, S. Hydrogen phosphate selectively induces MDA MB 231 triple negative breast cancer cell death in vitro. Sci. Rep., 2022, 12(1), 5333.
[http://dx.doi.org/10.1038/s41598-022-09299-2] [PMID: 35351930]
[63]
de Carvalho, C.C.C.R.; Caramujo, M.J. Tumour metastasis as an adaptation of tumour cells to fulfil their phosphorus requirements. Med. Hypotheses, 2012, 78(5), 664-667.
[http://dx.doi.org/10.1016/j.mehy.2012.02.006] [PMID: 22391031]
[64]
Lin, Y.; McKinnon, K.E.; Ha, S.W.; Beck, G.R. Jr Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Mol. Carcinog., 2015, 54(9), 926-934.
[http://dx.doi.org/10.1002/mc.22153] [PMID: 24700685]
[65]
Wang, T.; Zheng, L.; Wang, Q.; Hu, Y.W. Emerging roles and mechanisms of FOXC2 in cancer. Clin. Chim. Acta, 2018, 479, 84-93.
[http://dx.doi.org/10.1016/j.cca.2018.01.019] [PMID: 29341903]
[66]
Chakraborty, G.; Jain, S.; Kundu, G.C. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res., 2008, 68(1), 152-161.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2126] [PMID: 18172307]
[67]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[68]
Kumari, S.; Badana, A.K. G, M.M.; G, S.; Malla, R. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights, 2018, 13, 1177271918755391.
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[69]
Sarmiento-Salinas, F.L.; Delgado-Magallón, A.; Montes-Alvarado, J.B.; Ramírez-Ramírez, D.; Flores-Alonso, J.C.; Cortés-Hernández, P.; Reyes-Leyva, J.; Herrera-Camacho, I.; Anaya-Ruiz, M.; Pelayo, R.; Millán-Pérez-Peña, L.; Maycotte, P. Breast cancer subtypes present a differential production of reactive oxygen species (ROS) and susceptibility to antioxidant treatment. Front. Oncol., 2019, 9, 480.
[http://dx.doi.org/10.3389/fonc.2019.00480] [PMID: 31231612]
[70]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[71]
Cichon, M.A.; Radisky, D.C. ROS-induced epithelialmesenchymal transition in mammary epithelial cells is mediated by NF-κB-dependent activation of Snail. Oncotarget, 2014, 5(9), 2827-2838.
[http://dx.doi.org/10.18632/oncotarget.1940] [PMID: 24811539]
[72]
Lee, S.; Ju, M.; Jeon, H.; Lee, Y.; Kim, C.; Park, H.; Han, S.; Kang, H. Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol. Med. Rep., 2019, 20(3), 2339-2346.
[http://dx.doi.org/10.3892/mmr.2019.10466] [PMID: 31322179]
[73]
Tang, C.; Zhu, G. Classic and novel signaling pathways involved in cancer: Targeting the NF-κB and Syk signaling pathways. Curr. Stem Cell Res. Ther., 2019, 14(3), 219-225.
[http://dx.doi.org/10.2174/1574888X13666180723104340] [PMID: 30033874]
[74]
Huber, M.A.; Azoitei, N.; Baumann, B.; Grünert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.; Wirth, T. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest., 2004, 114(4), 569-581.
[http://dx.doi.org/10.1172/JCI200421358] [PMID: 15314694]
[75]
Cosentino-Gomes, D.; Rocco-Machado, N.; Meyer-Fernandes, J.R. Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci., 2012, 13(9), 10697-10721.
[http://dx.doi.org/10.3390/ijms130910697] [PMID: 23109817]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy