Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Mini-Review Article

Circular RNA Involvement in Aging and Longevity

Author(s): Ruize Niu and Jia Liu*

Volume 23, Issue 5, 2022

Published on: 14 October, 2022

Page: [318 - 325] Pages: 8

DOI: 10.2174/1389202923666220927110258

Price: $65

Abstract

Background: Circular RNAs (circRNAs) are transcribed by RNA polymerase II and are mostly generated by the back-splicing of exons in the protein-coding gene. Massive circRNAs are reported to be differentially expressed in different species, implicating their prospects as aging biomarkers or regulators in the aging progression.

Methods: The possible role of circRNAs in aging and longevity was reviewed by the query of circRNAs from literature reports related to tissue, organ or cellular senescence, and individual longevity.

Results: A number of circRNAs have been found to positively and negatively modulate aging and longevity through canonical aging pathways in the invertebrates Caenorhabditis elegans and Drosophila. Recent studies have also shown that circRNAs regulate age-related processes and pathologies such various mammalian tissues, as the brain, serum, heart, and muscle. Besides, three identified representative circRNAs (circSfl, circGRIA1, and circNF1-419) were elucidated to correlate with aging and longevity.

Conclusion: This review outlined the current studies of circRNAs in aging and longevity, highlighting the role of circRNAs as a biomarker of aging and as a regulator of longevity.

Keywords: Aging, longevity, circular RNA, biomarkers, microRNAs, age-related diseases.

Graphical Abstract
[1]
Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.L.; Cherry, S.; Wilusz, J.E. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol. Cell, 2017, 68(5), 940-954.e3.
[http://dx.doi.org/10.1016/j.molcel.2017.10.034] [PMID: 29174924]
[2]
Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol., 2015, 12(4), 381-388.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[3]
Baumann, K. CircRNAs in lifespan. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 420.
[http://dx.doi.org/10.1038/s41580-020-0269-1] [PMID: 32616909]
[4]
Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; Wong, C.C.L.; Xiao, X.; Wang, Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res., 2017, 27(5), 626-641.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[5]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[6]
Yang, D.; Yang, K.; Yang, M. Circular RNA in aging and age-related diseases. Adv. Exp. Med. Biol., 2018, 1086, 17-35.
[http://dx.doi.org/10.1007/978-981-13-1117-8_2] [PMID: 30232750]
[7]
Cai, H.; Li, Y.; Niringiyumukiza, J.D.; Su, P.; Xiang, W. Circular RNA involvement in aging: An emerging player with great potential. Mech. Ageing Dev., 2019, 178, 16-24.
[http://dx.doi.org/10.1016/j.mad.2018.11.002] [PMID: 30513309]
[8]
Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[9]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[10]
Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[11]
Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; Shenzis, S.; Samson, M.; Dittmar, G.; Landthaler, M.; Chekulaeva, M.; Rajewsky, N.; Kadener, S. Translation of CircRNAs. Mol. Cell, 2017, 66(1), 9-21.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[12]
Lei, M.; Zheng, G.; Ning, Q.; Zheng, J.; Dong, D. Translation and functional roles of circular RNAs in human cancer. Mol. Cancer, 2020, 19(1), 30.
[http://dx.doi.org/10.1186/s12943-020-1135-7] [PMID: 32059672]
[13]
Zhou, L.Y.; Zhai, M.; Huang, Y.; Xu, S.; An, T.; Wang, Y.H.; Zhang, R.C.; Liu, C.Y.; Dong, Y.H.; Wang, M.; Qian, L.L.; Ponnusamy, M.; Zhang, Y.H.; Zhang, J.; Wang, K. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ., 2019, 26(7), 1299-1315.
[http://dx.doi.org/10.1038/s41418-018-0206-4] [PMID: 30349076]
[14]
Chaichian, S.; Shafabakhsh, R.; Mirhashemi, S.M.; Moazzami, B.; Asemi, Z. Circular RNAs: A novel biomarker for cervical cancer. J. Cell. Physiol., 2020, 235(2), 718-724.
[http://dx.doi.org/10.1002/jcp.29009] [PMID: 31240697]
[15]
Altesha, M.A.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol., 2019, 234(5), 5588-5600.
[http://dx.doi.org/10.1002/jcp.27384] [PMID: 30341894]
[16]
Chen, X.; Yang, T.; Wang, W.; Xi, W.; Zhang, T.; Li, Q.; Yang, A.; Wang, T. Circular RNAs in immune responses and immune diseases. Theranostics, 2019, 9(2), 588-607.
[http://dx.doi.org/10.7150/thno.29678] [PMID: 30809295]
[17]
Xu, K.; Chen, D.; Wang, Z.; Ma, J.; Zhou, J.; Chen, N.; Lv, L.; Zheng, Y.; Hu, X.; Zhang, Y.; Li, J. Annotation and functional clustering of circRNA expression in Rhesus macaque brain during aging. Cell Discov., 2018, 4(1), 48.
[http://dx.doi.org/10.1038/s41421-018-0050-1] [PMID: 30245844]
[18]
Weigelt, C.M.; Sehgal, R.; Tain, L.S.; Cheng, J.; Eßer, J.; Pahl, A.; Dieterich, C.; Grönke, S.; Partridge, L. An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol. Cell, 2020, 79(2), 268-279.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.06.011] [PMID: 32592682]
[19]
Gruner, H.; Cortés-López, M.; Cooper, D.A.; Bauer, M.; Miura, P. CircRNA accumulation in the aging mouse brain. Sci. Rep., 2016, 6(1), 38907.
[http://dx.doi.org/10.1038/srep38907] [PMID: 27958329]
[20]
Mahmoudi, E.; Cairns, M.J. Circular RNAs are temporospatially regulated throughout development and ageing in the rat. Sci. Rep., 2019, 9(1), 2564.
[http://dx.doi.org/10.1038/s41598-019-38860-9] [PMID: 30796328]
[21]
Lu, C.; Sun, X.; Li, N.; Wang, W.; Kuang, D.; Tong, P.; Han, Y.; Dai, J. CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging. Aging, 2018, 10(4), 833-852.
[http://dx.doi.org/10.18632/aging.101437] [PMID: 29723158]
[22]
Guo, M.; Qiu, J.; Shen, F.; Wang, S.; Yu, J.; Zuo, H.; Yao, J.; Xu, S.; Hu, T.; Wang, D.; Zhao, Y.; Hu, Y.; Shen, F.; Ma, X.; Lu, J.; Gu, X.; Xu, L. Comprehensive analysis of circular RNA profiles in skeletal muscles of aging mice and after aerobic exercise intervention. Aging, 2020, 12(6), 5071-5090.
[http://dx.doi.org/10.18632/aging.102932] [PMID: 32182212]
[23]
Abdelmohsen, K.; Panda, A.C.; De, S.; Grammatikakis, I.; Kim, J.; Ding, J.; Noh, J.H.; Kim, K.M.; Mattison, J.A.; de Cabo, R.; Gorospe, M. Circular RNAs in monkey muscle: Age-dependent changes. Aging, 2015, 7(11), 903-910.
[http://dx.doi.org/10.18632/aging.100834] [PMID: 26546448]
[24]
Younis, J.S. Ovarian aging. Curr. Opin. Obstet. Gynecol., 2011, 23(6), 427-434.
[http://dx.doi.org/10.1097/GCO.0b013e32834b92b0] [PMID: 21897233]
[25]
Xi, X.; Zou, Q.; Wei, Y.; Chen, Y.; Wang, X.; Lv, D.; Li, P.; Wen, A.; Zhu, L.; Tang, G.; Ma, J.; Li, M.; Li, X.; Jiang, Y. Dynamic changes of DNA methylation and transcriptome expression in porcine ovaries during aging. BioMed Res. Int., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/8732023] [PMID: 31781648]
[26]
Titus, S.; Li, F.; Stobezki, R.; Akula, K.; Unsal, E.; Jeong, K.; Dickler, M.; Robson, M.; Moy, F.; Goswami, S.; Oktay, K. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med., 2013, 5(172), 172ra21.
[http://dx.doi.org/10.1126/scitranslmed.3004925] [PMID: 23408054]
[27]
Faddy, M.J.; Gosden, R.G.; Gougeon, A.; Richardson, S.J.; Nelson, J.F. Accelerated disappearance of ovarian follicles in mid-life: Implications for forecasting menopause. Hum. Reprod., 1992, 7(10), 1342-1346.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a137570] [PMID: 1291557]
[28]
Cai, H.; Li, Y.; Li, H.; Niringiyumukiza, J.D.; Zhang, M.; Chen, L.; Chen, G.; Xiang, W. Identification and characterization of human ovary-derived circular RNAs and their potential roles in ovarian aging. Aging, 2018, 10(9), 2511-2534.
[http://dx.doi.org/10.18632/aging.101565] [PMID: 30260796]
[29]
Dluzen, D.F.; Noren Hooten, N.; De, S.; Wood, W.H., III; Zhang, Y.; Becker, K.G.; Zonderman, A.B.; Tanaka, T.; Ferrucci, L.; Evans, M.K. Extracellular RNA profiles with human age. Aging Cell, 2018, 17(4), e12785.
[http://dx.doi.org/10.1111/acel.12785] [PMID: 29797538]
[30]
Smith, L.K. He, Y.; Park, J.S.; Bieri, G.; Snethlage, C.E.; Lin, K.; Gontier, G.; Wabl, R.; Plambeck, K.E.; Udeochu, J.; Wheatley, E.G.; Bouchard, J.; Eggel, A.; Narasimha, R.; Grant, J.L.; Luo, J.; Wyss-Coray, T.; Villeda, S.A. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat. Med., 2015, 21(8), 932-937.
[http://dx.doi.org/10.1038/nm.3898] [PMID: 26147761]
[31]
Haque, S.; Ames, R.M.; Moore, K.; Pilling, L.C.; Peters, L.L.; Bandinelli, S.; Ferrucci, L.; Harries, L.W. circRNAs expressed in human peripheral blood are associated with human aging phenotypes, cellular senescence and mouse lifespan. Geroscience, 2020, 42(1), 183-199.
[http://dx.doi.org/10.1007/s11357-019-00120-z] [PMID: 31811527]
[32]
Clancy, D.J.; Gems, D.; Harshman, L.G.; Oldham, S.; Stocker, H.; Hafen, E.; Leevers, S.J.; Partridge, L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 2001, 292(5514), 104-106.
[http://dx.doi.org/10.1126/science.1057991] [PMID: 11292874]
[33]
Xu, K.; Zhang, Y.; Xiong, W.; Zhang, Z.; Wang, Z.; Lv, L.; Liu, C.; Hu, Z.; Zheng, Y.T.; Lu, L.; Hu, X.T.; Li, J. CircGRIA1 shows an age-related increase in male macaque brain and regulates synaptic plasticity and synaptogenesis. Nat. Commun., 2020, 11(1), 3594.
[http://dx.doi.org/10.1038/s41467-020-17435-7] [PMID: 32681011]
[34]
Zhu, F.; Cizeron, M.; Qiu, Z.; Benavides-Piccione, R.; Kopanitsa, M.V.; Skene, N.G.; Koniaris, B.; DeFelipe, J.; Fransén, E.; Komiyama, N.H.; Grant, S.G.N. Architecture of the mouse brain synaptome. Neuron, 2018, 99(4), 781-799.e10.
[http://dx.doi.org/10.1016/j.neuron.2018.07.007] [PMID: 30078578]
[35]
Haley, G.E.; Kohama, S.G.; Urbanski, H.F.; Raber, J. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the Rhesus macaque prefrontal cortex and hippocampus. Age, 2010, 32(3), 283-296.
[http://dx.doi.org/10.1007/s11357-010-9137-9] [PMID: 20640549]
[36]
Wang, M.; Gamo, N.J.; Yang, Y.; Jin, L.E.; Wang, X.J.; Laubach, M.; Mazer, J.A.; Lee, D.; Arnsten, A.F.T. Neuronal basis of age-related working memory decline. Nature, 2011, 476(7359), 210-213.
[http://dx.doi.org/10.1038/nature10243] [PMID: 21796118]
[37]
Pannese, E. Morphological changes in nerve cells during normal aging. Brain Struct. Funct., 2011, 216(2), 85-89.
[http://dx.doi.org/10.1007/s00429-011-0308-y] [PMID: 21431333]
[38]
von Bohlen und Halbach. O.; Zacher, C.; Gass, P.; Unsicker, K. Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J. Neurosci. Res., 2006, 83(4), 525-531.
[http://dx.doi.org/10.1002/jnr.20759] [PMID: 16447268]
[39]
Diling, C.; Yinrui, G.; Longkai, Q.; Xiaocui, T.; Yadi, L.; Xin, Y.; Guoyan, H.; Ou, S.; Tianqiao, Y.; Dongdong, W.; Yizhen, X.; Yang, B.B.; Qingping, W. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging, 2019, 11(24), 12002-12031.
[http://dx.doi.org/10.18632/aging.102529] [PMID: 31860870]
[40]
Nugraha, B.; Buono, M.F.; Emmert, M.Y. Modelling human cardiac diseases with 3D organoid. Eur. Heart J., 2018, 39(48), 4234-4237.
[http://dx.doi.org/10.1093/eurheartj/ehy765] [PMID: 30576473]
[41]
Nugraha, B.; Buono, M.F.; Boehmer, L.; Hoerstrup, S.P.; Emmert, M.Y. Human cardiac organoids for disease modeling. Clin. Pharmacol. Ther., 2019, 105(1), 79-85.
[http://dx.doi.org/10.1002/cpt.1286] [PMID: 30415499]
[42]
Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer, 2018, 18(7), 407-418.
[http://dx.doi.org/10.1038/s41568-018-0007-6] [PMID: 29692415]
[43]
Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet., 2018, 19(11), 671-687.
[http://dx.doi.org/10.1038/s41576-018-0051-9] [PMID: 30228295]
[44]
Sachs, N.; de Ligt, J.; Kopper, O.; Gogola, E.; Bounova, G.; Weeber, F.; Balgobind, A.V.; Wind, K.; Gracanin, A.; Begthel, H.; Korving, J.; van Boxtel, R.; Duarte, A.A.; Lelieveld, D.; van Hoeck, A.; Ernst, R.F.; Blokzijl, F.; Nijman, I.J.; Hoogstraat, M.; van de Ven, M.; Egan, D.A.; Zinzalla, V.; Moll, J.; Boj, S.F.; Voest, E.E.; Wessels, L.; van Diest, P.J.; Rottenberg, S.; Vries, R.G.J.; Cuppen, E.; Clevers, H. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172(1-2), 373-386.e10.
[http://dx.doi.org/10.1016/j.cell.2017.11.010] [PMID: 29224780]
[45]
Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501(7467), 373-379.
[http://dx.doi.org/10.1038/nature12517] [PMID: 23995685]
[46]
Cowan, C.S.; Renner, M.; De Gennaro, M.; Gross-Scherf, B.; Goldblum, D.; Hou, Y.; Munz, M.; Rodrigues, T.M.; Krol, J.; Szikra, T.; Cuttat, R.; Waldt, A.; Papasaikas, P.; Diggelmann, R.; Patino-Alvarez, C.P.; Galliker, P.; Spirig, S.E.; Pavlinic, D.; Gerber-Hollbach, N.; Schuierer, S.; Srdanovic, A.; Balogh, M.; Panero, R.; Kusnyerik, A.; Szabo, A.; Stadler, M.B.; Orgül, S.; Picelli, S.; Hasler, P.W.; Hierlemann, A.; Scholl, H.P.N.; Roma, G.; Nigsch, F.; Roska, B. Cell types of the human retina and its organoids at single-cell resolution. Cell, 2020, 182(6), 1623-1640.e34.
[http://dx.doi.org/10.1016/j.cell.2020.08.013] [PMID: 32946783]
[47]
Hu, H.; Gehart, H.; Artegiani, B. LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; Chuva de Sousa Lopes, S.M.; Begthel, H.; Korving, J.; van den Born, M.; Zou, C.; Quirk, C.; Chiriboga, L.; Rice, C.M.; Ma, S.; Rios, A.; Peters, P.J.; de Jong, Y.P.; Clevers, H. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6), 1591-1606.e19.
[http://dx.doi.org/10.1016/j.cell.2018.11.013] [PMID: 30500538]
[48]
Nikolaev, M.; Mitrofanova, O.; Broguiere, N.; Geraldo, S.; Dutta, D.; Tabata, Y.; Elci, B.; Brandenberg, N.; Kolotuev, I.; Gjorevski, N.; Clevers, H.; Lutolf, M.P. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020, 585(7826), 574-578.
[http://dx.doi.org/10.1038/s41586-020-2724-8] [PMID: 32939089]
[49]
Lee, J.; Rabbani, C.C.; Gao, H.; Steinhart, M.R.; Woodruff, B.M.; Pflum, Z.E.; Kim, A.; Heller, S.; Liu, Y.; Shipchandler, T.Z.; Koehler, K.R. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature, 2020, 582(7812), 399-404.
[http://dx.doi.org/10.1038/s41586-020-2352-3] [PMID: 32494013]
[50]
Segel, M.; Lash, B.; Song, J.; Ladha, A.; Liu, C.C.; Jin, X.; Mekhedov, S.L.; Macrae, R.K.; Koonin, E.V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science, 2021, 373(6557), 882-889.
[http://dx.doi.org/10.1126/science.abg6155] [PMID: 34413232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy