Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

蛋白精氨酸甲基转移酶5 (Protein Arginine Methyltransferases 5, PRMT5)影响自噬的多个阶段并调控自噬相关基因在乳腺癌肿瘤发生中的作用

卷 23, 期 3, 2023

发表于: 27 October, 2022

页: [242 - 250] 页: 9

弟呕挨: 10.2174/1568009622666220922093059

价格: $65

摘要

背景:自噬障碍与人类癌症有关,其机制细节尚不清楚。 目的:探讨PRMT5在乳腺癌细胞自噬中的调控作用。 方法:培养人乳腺腺癌细胞系(MDA-MB-231、MCF7)。将PRMT5过表达和下调的质粒转染MDA-MB-231和MCF7细胞。采用MTT法检测MDA-MB-231和MCF7细胞的增殖情况。western blotting实验用于验证自噬相关分子的表达。免疫荧光法观察GFP-LC3的表达。 结果:PRMT5的表达降低了小鼠对雷帕霉素和营养剥夺的敏感性。PRMT5作为癌基因促进细胞增殖并影响迁移和雄蕊。PRMT5的表达提高了EBSS和雷帕霉素诱导的自噬活性。PRMT5对增强应激诱导的自噬是必要且充分的。PRMT5可改善几种自噬相关基因的表达。Atg5的表达可以通过激活PRMT5和PDCD4分子来调控。PRMT5分子可介导ULK1表达的调控。 结论:PRMT5在控制自噬和肿瘤发生过程中影响自噬的多个阶段。自噬相关的PRMT5可能是癌症治疗干预的一个值得尊敬的靶点。本研究将为治疗和选择乳腺癌靶点提供新的思路。

关键词: PRMT5,自噬,ULK1, Atg5,乳腺癌细胞,肿瘤发生。

« Previous
图形摘要
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Karamat, U.; Ejaz, S. Overexpression of RAD50 is the marker of poor prognosis and drug resistance in breast cancer patients. Curr. Cancer Drug Targets, 2021, 21(2), 163-176.
[http://dx.doi.org/10.2174/1568009620666201009125507] [PMID: 33038913]
[3]
Jin, G.; Wang, K.; Liu, Y.; Liu, X.; Zhang, X.; Zhang, H. Proteomic level changes on treatment in MCF-7/DDP breast cancer drug- resistant cells. Anticancer. Agents Med. Chem., 2020, 20(6), 687-699.
[http://dx.doi.org/10.2174/1871520620666200213102849] [PMID: 32053082]
[4]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[5]
Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer, 2007, 7(12), 961-967.
[http://dx.doi.org/10.1038/nrc2254] [PMID: 17972889]
[6]
Shimizu, S.; Yoshida, T.; Tsujioka, M.; Arakawa, S. Autophagic cell death and cancer. Int. J. Mol. Sci., 2014, 15(2), 3145-3153.
[http://dx.doi.org/10.3390/ijms15023145] [PMID: 24566140]
[7]
Stopa, N.; Krebs, J.E.; Shechter, D. The PRMT5 arginine methyltransferase: Many roles in development, cancer and beyond. Cell. Mol. Life Sci., 2015, 72(11), 2041-2059.
[http://dx.doi.org/10.1007/s00018-015-1847-9] [PMID: 25662273]
[8]
Hu, D.; Gur, M.; Zhou, Z.; Gamper, A.; Hung, M.C.; Fujita, N.; Lan, L.; Bahar, I.; Wan, Y. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat. Commun., 2015, 6(1), 8419.
[http://dx.doi.org/10.1038/ncomms9419] [PMID: 26420673]
[9]
Gu, Z.; Gao, S.; Zhang, F.; Wang, Z.; Ma, W.; Davis, R.E.; Wang, Z. Protein arginine methyltransferase 5 is essential for growth of lung cancer cells. Biochem. J., 2012, 446(2), 235-241.
[http://dx.doi.org/10.1042/BJ20120768] [PMID: 22708516]
[10]
Powers, M.A.; Fay, M.M.; Factor, R.E.; Welm, A.L.; Ullman, K.S. Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res., 2011, 71(16), 5579-5587.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0458] [PMID: 21700716]
[11]
Wang, Z.; Kong, J.; Wu, Y.; Zhang, J.; Wang, T.; Li, N.; Fan, J.; Wang, H.; Zhang, J.; Ling, R. PRMT5 determines the sensitivity to chemotherapeutics by governing stemness in breast cancer. Breast Cancer Res. Treat., 2018, 168(2), 531-542.
[http://dx.doi.org/10.1007/s10549-017-4597-6] [PMID: 29185119]
[12]
Sheng, X.; Wang, Z. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation. BMC Cancer, 2016, 16(1), 567.
[http://dx.doi.org/10.1186/s12885-016-2632-3] [PMID: 27480244]
[13]
Jiang, H.; Zhu, Y.; Zhou, Z.; Xu, J.; Jin, S.; Xu, K.; Zhang, H.; Sun, Q.; Wang, J.; Xu, J. PRMT5 promotes cell proliferation by inhibiting BTG2 expression via the ERK signaling pathway in hepatocellular carcinoma. Cancer Med., 2018, 7(3), 869-882.
[http://dx.doi.org/10.1002/cam4.1360] [PMID: 29441724]
[14]
Chen, H.; Lorton, B.; Gupta, V.; Shechter, D.A. TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene, 2017, 36(3), 373-386.
[http://dx.doi.org/10.1038/onc.2016.205] [PMID: 27270440]
[15]
Wu, Y.; Wang, Z.; Zhang, J.; Ling, R. Elevated expression of protein arginine methyltransferase 5 predicts the poor prognosis of breast cancer. Tumour Biol., 2017, 39(4)
[http://dx.doi.org/10.1177/1010428317695917] [PMID: 28381188]
[16]
Huang, S.; Chi, Y.; Qin, Y.; Wang, Z.; Xiu, B.; Su, Y.; Guo, R.; Guo, L.; Sun, H.; Zeng, C.; Zhou, S.; Hu, X.; Liu, S.; Shao, Z.; Wu, Z.; Jin, W.; Wu, J. CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription. Theranostics, 2018, 8(9), 2549-2564.
[http://dx.doi.org/10.7150/thno.22523] [PMID: 29721098]
[17]
Levine, B. Autophagy and cancer. Nature, 2007, 446(7137), 745-747.
[http://dx.doi.org/10.1038/446745a] [PMID: 17429391]
[18]
Itakura, E.; Kishi, C.; Inoue, K.; Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell, 2008, 19(12), 5360-5372.
[http://dx.doi.org/10.1091/mbc.e08-01-0080] [PMID: 18843052]
[19]
Jeon, S.M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med., 2016, 48(7), e245.
[http://dx.doi.org/10.1038/emm.2016.81] [PMID: 27416781]
[20]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[21]
Song, X.; Zhang, X.; Wang, X.; Zhu, F.; Guo, C.; Wang, Q.; Shi, Y.; Wang, J.; Chen, Y.; Zhang, L. Tumor suppressor gene PDCD4 negatively regulates autophagy by inhibiting the expression of autophagy-related gene ATG5. Autophagy, 2013, 9(5), 743-755.
[http://dx.doi.org/10.4161/auto.24069] [PMID: 23486359]
[22]
Fay, M.M.; Clegg, J.M.; Uchida, K.A.; Powers, M.A.; Ullman, K.S. Enhanced arginine methylation of programmed cell death 4 protein during nutrient deprivation promotes tumor cell viability. J. Biol. Chem., 2014, 289(25), 17541-17552.
[http://dx.doi.org/10.1074/jbc.M113.541300] [PMID: 24764298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy