Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

通过神经网络训练和基于单体的设计识别人抗 MUC1 异细胞肽治疗 HER2 阳性乳腺癌的计算设计

卷 23, 期 3, 2023

发表于: 14 October, 2022

页: [235 - 241] 页: 7

弟呕挨: 10.2174/1568009622666220921110605

价格: $65

摘要

目的:通过神经网络训练和单体设计方法生成人抗muc1肽。计算分析9-mer肽对her2阳性乳腺癌的治疗潜力。 背景:随着癌症基因组图谱计划(TCGA)、癌症依赖性计划(DepMap)和人类蛋白质图谱(HPA)的进展,肿瘤研究产生了大规模的数据集。然而,在开发出重新定义的乳腺癌药物靶点后,成功的乳腺癌治疗还存在一些关键问题,这些问题为新的方法或策略铺平了道路。在这方面,我们的研究数据旨在代表乳腺癌药物开发研究的一个新方面。 目的:从多种数据库中提取人MUC1基因序列。对新肽序列进行神经网络分析。分析生成的异源肽序列作为乳腺癌治疗的合适候选疫苗的潜力。 方法:检索人MUC1蛋白数据库(PDB)文件的输入支架,并以单体为基础的设计选项加载到Evo设计服务器。此外,采用神经网络训练方法,并使用其他计算工具对设计的异源肽的保护性抗原和亚单位疫苗效力进行对齐独立预测。 结果:研究发现9mers的两种人抗muc1异源肽(WAVWTYVSV, FMSFYIMNL)具有最低的能量簇和序列同构、二级结构的归一化相对错误率、溶剂可及性、神经网络的骨架扭转角和进化分析中的RMSD值,以及在线MHCPred IC50相互作用值。VaxiGen v2.0服务器显示,硅内设计的两种异源多肽的亚单位疫苗效价为0.1551 (WAVWTYVSV)和0.3508 (FMSFYIMNL),阈值为0.5,其次是AllerTOP v2.0,因为它们在免疫原性反应中的致敏性。 结论:计算设计的异源肽WAVWTYVSV具有良好的应用前景,可作为诱导肿瘤细胞裂解治疗乳腺癌的药物递送或肿瘤标志物候选。

关键词: 异源肽,抗MUC1,乳腺癌,亚单位疫苗效力,MHC相互作用,神经网络。

图形摘要
[1]
Black, M.; Trent, A.; Tirrell, M.; Olive, C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev. Vaccines, 2010, 9(2), 157-173.
[http://dx.doi.org/10.1586/erv.09.160] [PMID: 20109027]
[2]
Chae, M.H.; Krull, F.; Lorenzen, S.; Knapp, E.W. Predicting protein complex geometries with a neural network. Proteins, 2010, 78(4), 1026-1039.
[http://dx.doi.org/10.1002/prot.22626] [PMID: 19938153]
[3]
Mitra, P.; Shultis, D.; Zhang, Y. EvoDesign: De novo protein design based on structural and evolutionary profiles. Nucleic Acids Res., 2013, 41(Web Server issue), W273-80.
[http://dx.doi.org/10.1093/nar/gkt384] [PMID: 23671331]
[4]
Jojic, N.; Reyes-Gomez, M.; Heckerman, D.; Kadie, C.; Schueler-Furman, O. Learning MHC I--peptide binding. Bioinformatics, 2006, 22(14), e227-e235.
[http://dx.doi.org/10.1093/bioinformatics/btl255] [PMID: 16873476]
[5]
Curry, J.M.; Besmer, D.M.; Erick, T.K.; Steuerwald, N.; Das Roy, L.; Grover, P.; Rao, S.; Nath, S.; Ferrier, J.W.; Reid, R.W.; Mukherjee, P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One, 2019, 14(11), e0224309.
[http://dx.doi.org/10.1371/journal.pone.0224309] [PMID: 31693710]
[6]
Lapinsh, M.; Gutcaits, A.; Prusis, P.; Post, C.; Lundstedt, T.; Wikberg, J.E.S. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci., 2002, 11(4), 795-805.
[http://dx.doi.org/10.1110/ps.2500102] [PMID: 11910023]
[7]
Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2--a server for in silico prediction of allergens. J. Mol. Model., 2014, 20(6), 2278.
[http://dx.doi.org/10.1007/s00894-014-2278-5] [PMID: 24878803]
[8]
Gale, M.; Li, Y.; Cao, J.; Liu, Z.Z.; Holmbeck, M.A.; Zhang, M.; Lang, S.M.; Wu, L.; Do Carmo, M.; Gupta, S.; Aoshima, K.; DiGiovanna, M.P.; Stern, D.F.; Rimm, D.L.; Shadel, G.S.; Chen, X.; Yan, Q. Acquired resistance to HER2-targeted therapies creates vulnerability to ATP synthase inhibition. Cancer Res., 2020, 80(3), 524-535.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3985] [PMID: 31690671]
[9]
Taylor-Papadimitriou, J.; Burchell, J.M.; Graham, R.; Beatson, R. Latest developments in MUC1 immunotherapy. Biochem. Soc. Trans., 2018, 46(3), 659-668.
[http://dx.doi.org/10.1042/BST20170400] [PMID: 29784646]
[10]
Gao, T.; Cen, Q.; Lei, H. A review on development of MUC1-based cancer vaccine. Biomed. Pharmacother., 2020, 132, 110888.
[http://dx.doi.org/10.1016/j.biopha.2020.110888] [PMID: 33113416]
[11]
Kimura, T.; Finn, O.J. MUC1 immunotherapy is here to stay. Expert Opin. Biol. Ther., 2013, 13(1), 35-49.
[http://dx.doi.org/10.1517/14712598.2012.725719] [PMID: 22998452]
[12]
Glaffig, M.; Stergiou, N.; Hartmann, S.; Schmitt, E.; Kunz, H. A synthetic MUC1 anticancer vaccine containing mannose ligands for targeting macrophages and dendritic cells. ChemMedChem, 2018, 13(1), 25-29.
[http://dx.doi.org/10.1002/cmdc.201700646] [PMID: 29193802]
[13]
Kim, M.J.; Choi, J.R.; Tae, N.; Wi, T.M.; Kim, K.M.; Kim, D.H.; Lee, E.S. Novel antibodies targeting MUC1-C showed anti-metastasis and growth inhibitory effects on human breast cancer cells. Int. J. Mol. Sci., 2020, 21(9), 3258.
[http://dx.doi.org/10.3390/ijms21093258] [PMID: 32380650]
[14]
Roulois, D.; Grégoire, M.; Fonteneau, J.F. MUC1-specific cytotoxic T lymphocytes in cancer therapy: Induction and challenge. BioMed Res. Int., 2013, 2013, 871936.
[http://dx.doi.org/10.1155/2013/871936] [PMID: 23509794]
[15]
Pourjafar, M.; Samadi, P.; Saidijam, M. MUC1 antibody-based therapeutics: The promise of cancer immunotherapy. Immunotherapy, 2020, 12(17), 1269-1286.
[http://dx.doi.org/10.2217/imt-2020-0019] [PMID: 33019839]
[16]
Zirlik, K.M.; Zahrieh, D.; Neuberg, D.; Gribben, J.G. Cytotoxic T cells generated against heteroclitic peptides kill primary tumor cells independent of the binding affinity of the native tumor antigen peptide. Blood, 2006, 108(12), 3865-3870.
[http://dx.doi.org/10.1182/blood-2006-04-014415] [PMID: 16902144]
[17]
Walter, S.; Weinschenk, T.; Stenzl, A.; Zdrojowy, R.; Pluzanska, A.; Szczylik, C.; Staehler, M.; Brugger, W.; Dietrich, P.Y.; Mendrzyk, R.; Hilf, N.; Schoor, O.; Fritsche, J.; Mahr, A.; Maurer, D.; Vass, V.; Trautwein, C.; Lewandrowski, P.; Flohr, C.; Pohla, H.; Stanczak, J.J.; Bronte, V.; Mandruzzato, S.; Biedermann, T.; Pawelec, G.; Derhovanessian, E.; Yamagishi, H.; Miki, T.; Hongo, F.; Takaha, N.; Hirakawa, K.; Tanaka, H.; Stevanovic, S.; Frisch, J.; Mayer-Mokler, A.; Kirner, A.; Rammensee, H.G.; Reinhardt, C.; Singh-Jasuja, H. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med., 2012, 18(8), 1254-1261.
[http://dx.doi.org/10.1038/nm.2883] [PMID: 22842478]
[18]
Nemunaitis, B.; Bedell, C.; Klucher, K.; Vo, A.; Whiting, S. Phase 1 dose escalation of ONT-10, a therapeutic MUC1 vaccine in patients with advanced cancer. J. Immunother. Cancer, 2013, 1, 240.
[http://dx.doi.org/10.1186/2051-1426-1-S1-P240]
[19]
Cavalluzzo, B.; Ragone, C.; Mauriello, A.; Petrizzo, A.; Manolio, C.; Caporale, A.; Vitagliano, L.; Ruvo, M.; Buonaguro, L.; Tagliamonte, M. Identification and characterization of heteroclitic peptides in TCR-binding positions with improved HLA-binding efficacy. J. Transl. Med., 2021, 19(1), 89.
[http://dx.doi.org/10.1186/s12967-021-02757-x] [PMID: 33637105]
[20]
Carmon, L.; Avivi, I.; Kovjazin, R.; Zuckerman, T.; Dray, L.; Gatt, M.E.; Or, R.; Shapira, M.Y. Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients. Br. J. Haematol., 2015, 169(1), 44-56.
[http://dx.doi.org/10.1111/bjh.13245] [PMID: 25496030]
[21]
Kondo, H.; Hazama, S.; Kawaoka, T.; Yoshino, S.; Yoshida, S.; Tokuno, K.; Takashima, M.; Ueno, T.; Hinoda, Y.; Oka, M. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res., 2008, 28(1B), 379-387.
[PMID: 18383873]
[22]
Beatty, P.; Ranganathan, S.; Finn, O.J. Prevention of colitis-associated colon cancer using a vaccine to target abnormal expression of the MUC1 tumor antigen. OncoImmunology, 2012, 1(3), 263-270.
[http://dx.doi.org/10.4161/onci.18950] [PMID: 22737601]
[23]
Kohlgraf, K.G.; Gawron, A.J.; Higashi, M.; VanLith, M.L.; Shen, X.; Caffrey, T.C.; Anderson, J.M.; Hollingsworth, M.A. Tumor-specific immunity in MUC1.Tg mice induced by immunization with peptide vaccines from the cytoplasmic tail of CD227 (MUC1). Cancer Immunol. Immunother., 2004, 53(12), 1068-1084.
[http://dx.doi.org/10.1007/s00262-004-0557-1] [PMID: 15696607]
[24]
Picco, G.; Beatson, R.; Taylor-Papadimitriou, J.; Burchell, J.M. Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas. Eur. J. Immunol., 2014, 44(7), 1947-1955.
[http://dx.doi.org/10.1002/eji.201344076] [PMID: 24648154]
[25]
Mukherjee, P.; Pathangey, L.B.; Bradley, J.B.; Tinder, T.L.; Basu, G.D.; Akporiaye, E.T.; Gendler, S.J. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine, 2007, 25(9), 1607-1618.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.007] [PMID: 17166639]
[26]
Van putten, J.P.M; Strijbis, K Transmembrane mucins: Signalling receptors at the intersection of inflammation and cancer. J. Innate Immun., 2017, 9, 281-299.
[http://dx.doi.org/10.1159/000453594] [PMID: 28052300]
[27]
Marczynski, M.; Winkeljaan, B.; Lieleg, O. Advances in mucin biopolymer research: Purification, characterization and applications.Biopolymers for Biomedical and Biotechnological Applications; Wiley: Hookben, NJ, USA, 2021, pp. 181-208.
[http://dx.doi.org/10.1002/9783527818310.ch6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy