Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

帕米膦酸酯和替莫唑胺协同治疗乳腺癌

卷 23, 期 3, 2023

发表于: 13 October, 2022

页: [222 - 234] 页: 13

弟呕挨: 10.2174/1568009622666220921103201

价格: $65

摘要

目的:人类乳腺癌是全球妇女发病率和死亡率较高的主要健康问题之一。各种细胞信号通路与癌变有关。影响下游细胞生长级联的主要途径之一是甲羟戊酸途径(MVA)。MVA的抑制对各种癌症都有治疗作用。帕米膦酸酯(PAM) (MVA抑制剂)是一种含氮双膦酸盐,是fda批准的抗骨吸收药物。我们研究的目的是探索使用PAM和烷基化剂替莫唑胺(TMZ)联合治疗乳腺癌的辅助治疗。 方法:我们检测了联合治疗策略对基因和蛋白表达的影响。基因表达分析RT-qPCR和蛋白质组学研究采用了二维凝胶电泳和质谱技术。结果:联合用药(PAM+TMZ)较单药治疗具有更明显的细胞毒作用。我们的结果表明,MVA通路调节基因(FDFT1, FDPS, KRAS)在联合治疗的乳腺癌细胞中显著下调(p<0.05)。差异蛋白质组学分析显示,协同治疗后,GFAP、PPA1和TRIM68蛋白表达降低,而这些蛋白在多种癌症中表达上调。 结论:本研究揭示了PAM与TMZ联合使用对乳腺癌细胞具有有效的抗癌作用。因此,这种新的治疗方案可能为乳腺癌提供更好的治疗策略。

关键词: 帕米膦酸酯,MVA通路,协同效应,蛋白质组学,乳腺癌,帕米膦酸酯(PAM)。

图形摘要
[1]
Lukong, K.E. Understanding breast cancer – The long and winding road. BBA Clin., 2017, 7, 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[2]
Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Satpathy, M. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol., 2017, 3, 524-548.
[http://dx.doi.org/10.1001/jamaoncol.2016.5688] [PMID: 27918777]
[3]
Bhurgri, Y.; Bhurgri, A.; Nishter, S.; Ahmed, A.; Usman, A.; Pervez, S.; Ahmed, R.; Kayani, N.; Riaz, A.; Bhurgri, H.; Bashir, I.; Hassan, S.H. Pakistan--country profile of cancer and cancer control 1995-2004. J. Pak. Med. Assoc., 2006, 56(3), 124-130.
[PMID: 16696512]
[4]
Khan, N.H.; Duan, S.F.; Wu, D.D.; Ji, X.Y. Better reporting and awareness campaigns needed for breast cancer in Pakistani women. Cancer Manag. Res., 2021, 13, 2125-2129.
[http://dx.doi.org/10.2147/CMAR.S270671] [PMID: 33688255]
[5]
Martin, A.M.; Weber, B.L. Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst., 2000, 92(14), 1126-1135.
[http://dx.doi.org/10.1093/jnci/92.14.1126] [PMID: 10904085]
[6]
Dall, G.V.; Britt, K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol., 2017, 7, 110.
[http://dx.doi.org/10.3389/fonc.2017.00110] [PMID: 28603694]
[7]
Hashemi, S.H.B.; Karimi, S.; Mahboobi, H. Lifestyle changes for prevention of breast cancer. Electron. Physician, 2014, 6, 894-05.
[8]
Mintzer, D.; Glassburn, J.; Mason, B.A.; Sataloff, D. Breast cancer in the very young patient: A multidisciplinary case presentation. Oncologist, 2002, 7(6), 547-554.
[http://dx.doi.org/10.1634/theoncologist.7-6-547] [PMID: 12490742]
[9]
Gulzar, F.; Akhtar, M.S.; Sadiq, R.; Bashir, S.; Jamil, S.; Baig, S.M. Identifying the reasons for delayed presentation of Pakistani breast cancer patients at a tertiary care hospital. Cancer Manag. Res., 2019, 11, 1087-1096.
[http://dx.doi.org/10.2147/CMAR.S180388] [PMID: 30774437]
[10]
Aziz, Z.; Sana, S.; Akram, M.; Saeed, A. Socioeconomic status and breast cancer survival in Pakistani women. J. Pak. Med. Assoc., 2004, 54(9), 448-453.
[PMID: 15518365]
[11]
von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; Jackisch, C.; Kaufmann, M.; Konecny, G.E.; Denkert, C.; Nekljudova, V.; Mehta, K.; Loibl, S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol., 2012, 30(15), 1796-1804.
[http://dx.doi.org/10.1200/JCO.2011.38.8595] [PMID: 22508812]
[12]
Cortazar, P.; Geyer, C.E., Jr Pathological complete response in neoadjuvant treatment of breast cancer. Ann. Surg. Oncol., 2015, 22(5), 1441-1446.
[http://dx.doi.org/10.1245/s10434-015-4404-8] [PMID: 25727556]
[13]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[14]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[15]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature, 1990, 343(6257), 425-430.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[16]
Knight, L.A.; Kurbacher, C.M.; Glaysher, S.; Fernando, A.; Reichelt, R.; Dexel, S.; Reinhold, U.; Cree, I.A. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay. BMC Cancer, 2009, 9(1), 38.
[http://dx.doi.org/10.1186/1471-2407-9-38] [PMID: 19175937]
[17]
Mullen, P.J.; Yu, R.; Longo, J.; Archer, M.C.; Penn, L.Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer, 2016, 16(11), 718-731.
[http://dx.doi.org/10.1038/nrc.2016.76] [PMID: 27562463]
[18]
Iannelli, F.; Lombardi, R.; Milone, M.R.; Pucci, B.; De Rienzo, S.; Budillon, A.; Bruzzese, F. Targeting mevalonate pathway in cancer treatment: Repurposing of statins. Recent Patents Anticancer Drug Discov., 2018, 13(2), 184-200.
[http://dx.doi.org/10.2174/1574892812666171129141211] [PMID: 29189178]
[19]
Milner, R.J.; Farese, J.; Henry, C.J.; Selting, K.; Fan, T.M.; Lorimier, L-P. Bisphosphonates and Cancer. J. Vet. Intern. Med., 2004, 18(5), 597-604.
[http://dx.doi.org/10.1111/j.1939-1676.2004.tb02593.x] [PMID: 15515572]
[20]
Barbosa, J.S.; Almeida Paz, F.A.; Braga, S.S. Bisphosphonates, Old Friends of Bones and New Trends in Clinics. J. Med. Chem., 2021, 64(3), 1260-1282.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01292] [PMID: 33522236]
[21]
Balkhi, B.; Seoane-Vazquez, E.; Rodriguez-Monguio, R. Changes in the utilization of osteoporosis drugs after the 2010 FDA bisphosphonate drug safety communication. Saudi Pharm. J., 2018, 26(2), 238-243.
[http://dx.doi.org/10.1016/j.jsps.2017.12.005] [PMID: 30166922]
[22]
Gnant, M.; Clézardin, P. Direct and indirect anticancer activity of bisphosphonates: A brief review of published literature. Cancer Treat. Rev., 2012, 38(5), 407-415.
[http://dx.doi.org/10.1016/j.ctrv.2011.09.003] [PMID: 21983264]
[23]
Ilyas, A.; Hashim, Z.; Naeem, N.; Haneef, K.; Zarina, S. The effect of alendronate on proteome of hepatocellular carcinoma cell lines. Int. J. Proteomics, 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/532953] [PMID: 24653834]
[24]
Todaro, M.; Orlando, V.; Cicero, G.; Caccamo, N.; Meraviglia, S.; Stassi, G.; Dieli, F. Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T cell-mediated cytotoxicity. PLoS One, 2013, 8(6), e65145.
[http://dx.doi.org/10.1371/journal.pone.0065145] [PMID: 23762301]
[25]
Santini, D.; Stumbo, L.; Spoto, C.; D’Onofrio, L.; Pantano, F.; Iuliani, M. fioramonti, M.; Zoccoli, A.; Ribelli, G.; Virzì, V.; Vincenzi, B.; Tonini, G. Bisphosphonates as anticancer agents in early breast cancer: Preclinical and clinical evidence. Breast Cancer Res., 2015, 17(1), 121.
[http://dx.doi.org/10.1186/s13058-015-0634-8] [PMID: 26328589]
[26]
Virtanen, S.S.; Ishizu, T.; Sandholm, J.A.; Löyttyniemi, E.; Väänänen, H.K.; Tuomela, J.M.; Härkönen, P.L. Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells. Oncotarget, 2018, 9(66), 32593-32608.
[http://dx.doi.org/10.18632/oncotarget.25961] [PMID: 30220968]
[27]
Iguchi, K.; Tatsuda, Y.; Usui, S.; Hirano, K. Pamidronate inhibits antiapoptotic bcl-2 expression through inhibition of the mevalonate pathway in prostate cancer PC-3 cells. Eur. J. Pharmacol., 2010, 641(1), 35-40.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.010] [PMID: 20519142]
[28]
Ponce-Cusi, R.; Calaf, G.M. Antitumor activity of pamidronate in breast cancer cells transformed by low doses of α-particles and estrogen in vitro. Int. J. Oncol., 2015, 46(6), 2663-2669.
[http://dx.doi.org/10.3892/ijo.2015.2955] [PMID: 25873070]
[29]
Zhu, W.; Zhou, L.; Qian, J-Q.; Qiu, T-Z.; Shu, Y-Q.; Liu, P. Temozolomide for treatment of brain metastases: A review of 21 clinical trials. World J. Clin. Oncol., 2013, 5(1), 19-27.
[http://dx.doi.org/10.5306/wjco.v5.i1.19] [PMID: 24527399]
[30]
Shojaei, S.; Alizadeh, J.; Thliveris, J.; Koleini, N.; Kardami, E.; Hatch, G.M.; Xu, F.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Statins: A new approach to combat temozolomide chemoresistance in glioblastoma. J. Investig. Med., 2018, 66(8), 1083-1087.
[http://dx.doi.org/10.1136/jim-2018-000874] [PMID: 30368483]
[31]
Friedman, H.S.; Kerby, T.; Calvert, H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res., 2000, 6(7), 2585-2597.
[PMID: 10914698]
[32]
Zimmer, A.S.; Steinberg, S.M.; Smart, D.D.; Gilbert, M.R.; Armstrong, T.S.; Burton, E.; Houston, N.; Biassou, N.; Gril, B.; Brastianos, P.K.; Carter, S.; Lyden, D.; Lipkowitz, S.; Steeg, P.S. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncol., 2020, 16(14), 899-909.
[http://dx.doi.org/10.2217/fon-2020-0094] [PMID: 32270710]
[33]
Quan, R.; Zhang, H.; Li, Z.; Li, X. Survival analysis of patients with glioblastoma treated by long-term administration of temozolomide. Medicine, 2020, 99(2), e18591.
[http://dx.doi.org/10.1097/MD.0000000000018591] [PMID: 31914038]
[34]
Giorgio, C.G.; Giuffrida, D.; Pappalardo, A.; Russo, A.; Santini, D.; Salice, P.; Blanco, G.; Castorina, S.; Failla, G.; Bordonaro, R. Oral temozolomide in heavily pre-treated brain metastases from non-small cell lung cancer: Phase II study. Lung Cancer, 2005, 50(2), 247-254.
[http://dx.doi.org/10.1016/j.lungcan.2005.05.026] [PMID: 16039010]
[35]
Tatar, Z.; Thivat, E.; Planchat, E.; Gimbergues, P.; Gadea, E.; Abrial, C.; Durando, X. Temozolomide and unusual indications: Review of literature. Cancer Treat. Rev., 2013, 39(2), 125-135.
[http://dx.doi.org/10.1016/j.ctrv.2012.06.002] [PMID: 22818211]
[36]
van Brussel, J.P.; Busstra, M.B.; Lang, M.S.; Catsburg, T.; Schröder, F.H.; Mickisch, G.H. A phase II study of temozolomide in hormone-refractory prostate cancer. Cancer Chemother. Pharmacol., 2000, 45(6), 509-512.
[http://dx.doi.org/10.1007/s002800051027] [PMID: 10854140]
[37]
Trudeau, M.E.; Crump, M.; Charpentier, D.; Yelle, L.; Bordeleau, L.; Matthews, S.; Eisenhauer, E. Temozolomide in metastatic breast cancer (MBC): A phase II trial of the National Cancer Institute of Canada – Clinical Trials Group (NCIC-CTG). Ann. Oncol., 2006, 17(6), 952-956.
[http://dx.doi.org/10.1093/annonc/mdl056] [PMID: 16565212]
[38]
Ochiai, Y.; Sumi, K.; Sano, E.; Yoshimura, S.; Yamamuro, S.; Ogino, A.; Ueda, T.; Suzuki, Y.; Nakayama, T.; Hara, H.; Katayama, Y.; Yoshino, A. Antitumor effects of ribavirin in combination with TMZ and IFN β in malignant glioma cells. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12039] [PMID: 32934745]
[39]
Tamanoi, F.; Azizian, M.; Ashrafi, M.; Bathaie, S. Mevalonate pathway and human cancers. Curr. Mol. Pharmacol., 2017, 10(2), 77-85.
[http://dx.doi.org/10.2174/1874467209666160112123205] [PMID: 26758953]
[40]
Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The mevalonate pathway, a metabolic target in cancer therapy. Front. Oncol., 2021, 11, 626971.
[http://dx.doi.org/10.3389/fonc.2021.626971] [PMID: 33718197]
[41]
Kambach, D.M.; Halim, A.S.; Cauer, A.G.; Sun, Q.; Tristan, C.A.; Celiku, O.; Kesarwala, A.H.; Shankavaram, U.; Batchelor, E.; Stommel, J.M. Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget, 2017, 8(9), 14860-14875.
[http://dx.doi.org/10.18632/oncotarget.14740] [PMID: 28118603]
[42]
Tüzmen, Ş.; Hostetter, G.; Watanabe, A.; Ekmekçi, C.; Carrigan, P.E.; Shechter, I.; Kallioniemi, O.; Miller, L.J.; Mousses, S. Characterization of farnesyl diphosphate farnesyl transferase 1 (FDFT1) expression in cancer. Per. Med., 2019, 16(1), 51-65.
[http://dx.doi.org/10.2217/pme-2016-0058] [PMID: 30468409]
[43]
Chiarella, E.; Codispoti, B.; Aloisio, A.; Cosentino, E.G.; Scicchitano, S.; Montalcini, Y.; Lico, D.; Morrone, G.; Mesuraca, M.; Bond, H.M. Zoledronic acid inhibits the growth of leukemic MLL-AF9 transformed hematopoietic cells. Heliyon, 2020, 6(6), e04020.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04020] [PMID: 32529062]
[44]
Abate, M.; Laezza, C.; Pisanti, S.; Torelli, G.; Seneca, V.; Catapano, G.; Montella, F.; Ranieri, R.; Notarnicola, M.; Gazzerro, P.; Bifulco, M.; Ciaglia, E. Deregulated expression and activity of Farnesyl Diphosphate Synthase (FDPS) in Glioblastoma. Sci. Rep., 2017, 7(1), 14123.
[http://dx.doi.org/10.1038/s41598-017-14495-6] [PMID: 29075041]
[45]
André, F.; Zielinski, C.C. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann. Oncol., 2012, 23(Suppl. 6), vi46-vi51.
[http://dx.doi.org/10.1093/annonc/mds195] [PMID: 23012302]
[46]
Parson, C.; Smith, V.; Krauss, C.; Banerjee, H.N.; Reilly, C.; Krause, J.A.; Wachira, J.M.; Giri, D.; Winstead, A.; Mandal, S.K. Anticancer properties of novel rhenium pentylcarbanato compounds against MDA-MB-468 (HTB-132) triple node negative human breast cancer cell lines. Br. J. Pharm. Res., 2014, 4(3), 362-367.
[http://dx.doi.org/10.9734/BJPR/2014/4697] [PMID: 25419517]
[47]
Ilyas, A.; Hashim, Z.; Zarina, S. Effects of 5′-azacytidine and alendronate on a hepatocellular carcinoma cell line: A proteomics perspective. Mol. Cell. Biochem., 2015, 405(1-2), 53-61.
[http://dx.doi.org/10.1007/s11010-015-2395-1] [PMID: 25854900]
[48]
Ilyas, A.; Hashim, Z.; Channa, I.S.; Zarina, S. Alendronate and FTI-277 combination as a possible therapeutic approach for hepatocellular carcinoma: An in vitro study. Hepatobiliary Pancreat. Dis. Int., 2018, 17(3), 241-250.
[http://dx.doi.org/10.1016/j.hbpd.2018.03.013] [PMID: 29627155]
[49]
Ferraiuolo, M.; Di Agostino, S.; Blandino, G.; Strano, S. Oncogenic intra-p53 family member interactions in human cancers. Front. Oncol., 2016, 6, 77.
[http://dx.doi.org/10.3389/fonc.2016.00077] [PMID: 27066457]
[50]
Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ., 2019, 26(2), 199-212.
[http://dx.doi.org/10.1038/s41418-018-0246-9] [PMID: 30538286]
[51]
Etichetti, B.C.M.; Zalazar, A.E.; Cocordano, N.; Girardini, J. Beyond the mevalonate pathway: Control of post-prenylation processing by Mutant p53. Front. Oncol., 2020, 10, 595034.
[http://dx.doi.org/10.3389/fonc.2020.595034] [PMID: 33224889]
[52]
Tan, B.S.; Tiong, K.H.; Choo, H.L.; Fei-Lei Chung, F.; Hii, L-W.; Tan, S.H.; Yap, K.; Pani, S.; Khor, N.T.; Wong, S.F.; Rosli, R.; Cheong, S-K.; Leong, C-O. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis., 2015, 6(7), e1826.
[http://dx.doi.org/10.1038/cddis.2015.191] [PMID: 26181206]
[53]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[54]
Xing, F.; Kobayashi, A.; Okuda, H.; Watabe, M.; Pai, S.K.; Pandey, P.R.; Hirota, S.; Wilber, A.; Mo, Y.Y.; Moore, B.E.; Liu, W.; Fukuda, K.; Iiizumi, M.; Sharma, S.; Liu, Y.; Wu, K.; Peralta, E.; Watabe, K. Reactive astrocytes promote the metastatic growth of breast cancer stem‐like cells by activating Notch signalling in brain. EMBO Mol. Med., 2013, 5(3), 384-396.
[http://dx.doi.org/10.1002/emmm.201201623] [PMID: 23495140]
[55]
Zayoud, M.; Marcu-Malina, V.; Vax, E.; Jacob-Hirsch, J.; Elad-Sfadia, G.; Barshack, I.; Kloog, Y.; Goldstein, I. Ras signaling inhibitors attenuate disease in adjuvant-induced arthritis via targeting pathogenic antigen-specific Th17-type cells. Front. Immunol., 2017, 8, 799.
[http://dx.doi.org/10.3389/fimmu.2017.00799] [PMID: 28736556]
[56]
Murakami, M.; Fukuyama, K.; Hubbard, S.; Matsuzawa, K.; Dirks, P.B.; Rutka, J.T. Inducible expression of glial fibrillary acidic protein in HT-1080 human fibrosarcoma cells. Cell Growth Differ., 1996, 7(12), 1697-1703.
[PMID: 8959338]
[57]
Matias, I.; Morgado, J.; Gomes, F.C.A. Astrocyte heterogeneity: Impact to brain aging and disease. Front. Aging Neurosci., 2019, 11, 59.
[http://dx.doi.org/10.3389/fnagi.2019.00059] [PMID: 30941031]
[58]
Hol, E.M.; Pekny, M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr. Opin. Cell Biol., 2015, 32, 121-130.
[http://dx.doi.org/10.1016/j.ceb.2015.02.004] [PMID: 25726916]
[59]
Varma, A.V.; Gupta, G.; Gupta, J.; Gupta, S. GFAP expression in neuroglial tumours--immunohistochemical confirmation for diagnosis and grading. J. Med. Dent. Sci., 2018, 7, 5834-5839.
[60]
Bailleux, C.; Eberst, L.; Bachelot, T. Treatment strategies for breast cancer brain metastases. Br. J. Cancer, 2021, 124(1), 142-155.
[http://dx.doi.org/10.1038/s41416-020-01175-y] [PMID: 33250512]
[61]
Sperduto, P.W.; Kased, N.; Roberge, D.; Chao, S.T.; Shanley, R.; Luo, X.; Sneed, P.K.; Suh, J.; Weil, R.J.; Jensen, A.W.; Brown, P.D.; Shih, H.A.; Kirkpatrick, J.; Gaspar, L.E.; Fiveash, J.B.; Chiang, V.; Knisely, J.P.S.; Sperduto, C.M.; Lin, N.; Mehta, M. The effect of tumor subtype on the time from primary diagnosis to development of brain metastases and survival in patients with breast cancer. J. Neurooncol., 2013, 112(3), 467-472.
[http://dx.doi.org/10.1007/s11060-013-1083-9] [PMID: 23462853]
[62]
Komorowski, A.S.; Warner, E.; MacKay, H.J.; Sahgal, A.; Pritchard, K.I.; Jerzak, K.J. Incidence of brain metastases in nonmetastatic and metastatic breast cancer: Is there a role for screening? Clin. Breast Cancer, 2020, 20(1), e54-e64.
[http://dx.doi.org/10.1016/j.clbc.2019.06.007] [PMID: 31447286]
[63]
Boire, A.; Brastianos, P.K.; Garzia, L.; Valiente, M. Brain metastasis. Nat. Rev. Cancer, 2020, 20(1), 4-11.
[http://dx.doi.org/10.1038/s41568-019-0220-y] [PMID: 31780784]
[64]
Wasilewski, D.; Priego, N.; Fustero-Torre, C.; Valiente, M. Reactive astrocytes in brain metastasis. Front. Oncol., 2017, 7, 298.
[http://dx.doi.org/10.3389/fonc.2017.00298] [PMID: 29312881]
[65]
Sartorius, C.A.; Hanna, C.T.; Gril, B.; Cruz, H.; Serkova, N.J.; Huber, K.M.; Kabos, P.; Schedin, T.B.; Borges, V.F.; Steeg, P.S.; Cittelly, D.M. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene, 2016, 35(22), 2881-2892.
[http://dx.doi.org/10.1038/onc.2015.353] [PMID: 26411365]
[66]
Tezuka, Y.; Okada, M.; Tada, Y.; Yamauchi, J.; Nishigori, H.; Sanbe, A. Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK dephosphorylation. PLoS One, 2013, 8(4), e61649.
[http://dx.doi.org/10.1371/journal.pone.0061649] [PMID: 23626709]
[67]
Peng, H.; Yan, Z.; Zeng, X.; Zhang, S.; Jiang, H.; Huang, H.; Zhuo, H. Serum and tissue proteomic signatures of patients with hepatocellular carcinoma using 2 D gel electrophoresis. Mol. Med. Rep., 2019, 20(2), 1025-1038.
[http://dx.doi.org/10.3892/mmr.2019.10311] [PMID: 31173207]
[68]
Luo, D.; Liu, D.; Shi, W.; Jiang, H.; Liu, W.; Zhang, X.; Bao, Y.; Yang, W.; Wang, X.; Zhang, C.; Wang, H. PPA1 promotes NSCLC progression via a JNK-and TP53-dependent manner. Oncogenesis, 2019, 8, 1-13.
[69]
Li, H.; Xiao, N.; Li, Z.; Wang, Q. Expression of inorganic pyrophosphatase (PPA1) correlates with poor prognosis of epithelial ovarian cancer. Tohoku J. Exp. Med., 2017, 241(2), 165-173.
[http://dx.doi.org/10.1620/tjem.241.165] [PMID: 28202851]
[70]
Mishra, D.R.; Chaudhary, S.; Krishna, B.M.; Mishra, S.K. Identification of critical elements for regulation of inorganic pyrophosphatase (PPA1) in MCF7 breast cancer cells. PLoS One, 2015, 10(4), e0124864.
[http://dx.doi.org/10.1371/journal.pone.0124864] [PMID: 25923237]
[71]
Jeong, S.H.; Ko, G.H.; Cho, Y.H.; Lee, Y.J.; Cho, B.I.; Ha, W.S.; Choi, S.K.; Kim, J.W.; Lee, C.W.; Heo, Y.S.; Shin, S.H.; Yoo, J.; Hong, S.C. Pyrophosphatase overexpression is associated with cell migration, invasion, and poor prognosis in gastric cancer. Tumour Biol., 2012, 33(6), 1889-1898.
[http://dx.doi.org/10.1007/s13277-012-0449-5] [PMID: 22797819]
[72]
Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Dyson, G.; Sarkar, F.H. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics, 2012, 7(8), 940-949.
[http://dx.doi.org/10.4161/epi.21236] [PMID: 22805767]
[73]
Jiang, J.; Liu, D.; Xu, G.; Liang, T.; Yu, C.; Liao, S.; Chen, L.; Huang, S.; Sun, X.; Yi, M.; Zhang, Z.; Lu, Z.; Wang, Z.; Chen, J.; Chen, T.; Li, H.; Yao, Y.; Chen, W.; Guo, H.; Liu, C.; Zhan, X. TRIM68, PIKFYVE, and DYNLL2: The novel autophagy-and immunity-associated gene biomarkers for osteosarcoma prognosis. Front. Oncol., 2021, 11, 643104.
[http://dx.doi.org/10.3389/fonc.2021.643104] [PMID: 33968741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy