Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Putative Therapeutic Impact of Inflammasome Inhibitors against COVID-19-Induced ARDS

Author(s): Seyed Fazel Nabavi, Adeleh Sahebnasagh, Ahad Shahbazi, Seyed Mohammad Nabavi*, Saeid Azimi, Malihe Khayat Kashani, Solomon Habtemariam, Mojde Rahmani, Mohadese Badiee, Javad Hashemi, Fatemeh Saghafi, Kiumarth Amini, Mina Azimi and Aysa Rezabakhsh*

Volume 30, Issue 12, 2023

Published on: 02 November, 2022

Page: [1406 - 1419] Pages: 14

DOI: 10.2174/0929867329666220906111550

Price: $65

Open Access Journals Promotions 2
Abstract

Given the importance of COVID-19-induced ARDS, recently, researchers have strived to determine underlying mechanisms involved in the inflammatory responses. In this regard, inflammasomes possess a distinct priority for cytokine storm occurrence and, subsequently, ARDS progression in ill patients with SARS-CoV-2 infection. In this minireview, the characteristics of known inflammasome inhibitors and designed research in this field were concretely deciphered.

Keywords: ARDS, COVID-19, inflammasome, inhibitors, NLRP3, SARS-CoV-2.

[1]
Sahebnasagh A, Saghafi F, Safdari M, et al. Neutrophil elas-tase inhibitor (sivelestat), may be a promising therapeutic op-tion for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J Clin Pharm Ther 2020; 45(6): 1515-9.
[2]
Stilhano RS, Costa AJ, Nishino MS, et al. SARS-CoV-2 and the possible connection to ERs, ACE2 and RAGE: Fo-cus on susceptibility factors. FASEB J 2020; 34(11): 14103-19.
[3]
Sahebnasagh A, Mojtahedzadeh M, Najmeddin F, et al. A perspective on erythropoietin as a potential adjuvant therapy for acute lung injury/acute respiratory distress syndrome in patients with COVID-19. Arch Med Res 2020; 51(7): 631-5.
[http://dx.doi.org/10.1016/j.arcmed.2020.08.002] [PMID: 32863034]
[4]
Sahebnasagh A, Avan R, Saghafi F, et al. Pharmacological treatments of COVID-19. Pharmacol Rep 2020; 72(6): 1446-78.
[http://dx.doi.org/10.1007/s43440-020-00152-9] [PMID: 32816200]
[5]
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol 2020; 11: 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[6]
EL‐Arabey AA, Abdalla M. Metformin and COVID‐19: A novel deal of an old drug. J Med Virol 2020; 92(11): 2293-4.
[7]
D’Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the “cytokine storm” for therapeutic benefit. Clin Vaccine Immunol 2013; 20(3): 319-27.
[http://dx.doi.org/10.1128/CVI.00636-12] [PMID: 23283640]
[8]
Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med 2020; 46(6): 1105-8.
[http://dx.doi.org/10.1007/s00134-020-06059-6] [PMID: 32347323]
[9]
Jose RJ, Manuel A. COVID-19 cytokine storm: The inter-play between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[10]
Abdulamir AS, Hafidh RR. The possible immunological pathways for the variable immunopathogenesis of COVID-19 infections among healthy adults, elderly and children. Elect J General Med 2020; 17(4): em202.
[11]
Xu S, Li X, Liu Y, Xia Y, Chang R, Zhang C. Inflam-masome inhibitors: Promising therapeutic approaches against cancer. J Hematol Oncol 2019; 12(1): 64.
[http://dx.doi.org/10.1186/s13045-019-0755-0] [PMID: 31242947]
[12]
Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, et al. SARS-CoV-2 engages inflammasome and pyroptosis in hu-man primary monocytes. Cell Death Discov 2021; 7(1): 1-12.
[PMID: 33414425]
[13]
Rodrigues TS, de Sá KSG, Ishimoto AY, et al. Inflam-masomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 2021; 218(3): e20201707.
[http://dx.doi.org/10.1084/jem.20201707] [PMID: 33231615]
[14]
Rajabi H, Konyalilar N, Erkan S, et al. Emerging role of exosomes in the pathology of chronic obstructive pulmonary diseases; destructive and therapeutic properties. Stem Cell Res Ther 2022; 13(1): 144.
[http://dx.doi.org/10.1186/s13287-022-02820-4] [PMID: 35379335]
[15]
van den Berg DF, te Velde AA. Severe COVID-19: NLRP3 inflammasome dysregulated. Front Immunol 2020; 11: 1580.
[http://dx.doi.org/10.3389/fimmu.2020.01580] [PMID: 32670297]
[16]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophag-es. Nat Rev Immunol 2020; 20(6): 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4]
[17]
Mehta P, McAuley D, Brown M, et al. COVID‐19: Con-sider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033.
[18]
Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the global outbreak of COVID-19 or other viral diseases threaten the stem cell res-ervoir inside the body? Stem Cell Rev Rep 2021; 17(1): 214-30.
[http://dx.doi.org/10.1007/s12015-020-10108-4] [PMID: 33403490]
[19]
Rezabakhsh A, Mahdipour M, Nourazarian A, et al. Appli-cation of exosomes for the alleviation of COVID-19-related pathologies. Cell Biochem Funct 2022; 40(5): 430-8.
[http://dx.doi.org/10.1002/cbf.3720]
[20]
Rivero VJC, Dietrich WD, Keane RW, et al. The inflam-masome in times of COVID-19. Front Immunol 2020; 11: 112474.
[21]
Chen J, Wang S, Fu R, et al. RIP3 dependent NLRP3 in-flammasome activation is implicated in acute lung injury in mice. J Transl Med 2018; 16(1): 233.
[http://dx.doi.org/10.1186/s12967-018-1606-4] [PMID: 30126430]
[22]
Patton LM, Saggart BS, Ahmed NK, Leff JA, Repine JE. Interleukin-1-induced neutrophil recruitment and acute lung injury in hamsters. Inflammation 1995; 19(1): 23-9.
[http://dx.doi.org/10.1007/BF01534377] [PMID: 7705884]
[23]
Thomas PG, Dash P, Aldridge JR Jr, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 2009; 30(4): 566-75.
[http://dx.doi.org/10.1016/j.immuni.2009.02.006] [PMID: 19362023]
[24]
Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the inflammasome as thera-peutic targets in cardiovascular disease. Circ Res 2020; 126(9): 1260-80.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315937] [PMID: 32324502]
[25]
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflam-masome: An overview of mechanisms of activation and regu-lation. Int J Mol Sci 2019; 20(13): 3328.
[http://dx.doi.org/10.3390/ijms20133328] [PMID: 31284572]
[26]
He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: Relation to the acute lung in-jury and pathogenesis of SARS. J Pathol Soc Great Britain and Ireland 2006; 210(3): 288-97.
[27]
Toldo S, Bussani R, Nuzzi V, et al. Inflammasome formation in the lungs of patients with fatal COVID-19. Inflamm Res 2021; 70(1): 7-10.
[28]
Ulke-Lemée A, Lau A, Nelson MC, James MT, Muruve DA, MacDonald JA. Quantification of inflammasome adap-tor protein ASC in biological samples by multiple-reaction monitoring mass spectrometry. Inflammation 2018; 41(4): 1396-408.
[http://dx.doi.org/10.1007/s10753-018-0787-6] [PMID: 29948504]
[29]
Kumar M, Roe K, Orillo B, et al. Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and sur-vival in west Nile virus encephalitis. J Virol 2013; 87(7): 3655-67.
[http://dx.doi.org/10.1128/JVI.02667-12] [PMID: 23302887]
[30]
Nieva JL, Madan V, Carrasco L. Viroporins: Structure and biological functions. Nat Rev Microbiol 2012; 10(8): 563-74.
[http://dx.doi.org/10.1038/nrmicro2820]
[31]
Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, et al. Role of severe acute respiratory syndrome coronavirus vi-roporins E, 3a, and 8a in replication and pathogenesis. MBio 2018; 9(3): e02325-17.
[http://dx.doi.org/10.1128/mBio.02325-17] [PMID: 29789363]
[32]
Nieto-Torres J, Verdiá-Báguena C, Castaño-Rodriguez C, Aguilella V, Enjuanes L. Relevance of viroporin ion channel activity on viral replication and pathogenesis. Viruses 2015; 7(7): 3552-73.
[http://dx.doi.org/10.3390/v7072786] [PMID: 26151305]
[33]
Boucher D, Monteleone M, Coll RC, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflam-masome activity. J Exp Med 2018; 215(3): 827-40.
[http://dx.doi.org/10.1084/jem.20172222] [PMID: 29432122]
[34]
Lieberman J, Wu H, Kagan JC. Gasdermin D activity in inflammation and host defense. Sci Immunol 2019; 4(39): eaav1447.
[http://dx.doi.org/10.1126/sciimmunol.aav1447] [PMID: 31492708]
[35]
Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430(6996): 213-8.
[http://dx.doi.org/10.1038/nature02664]
[36]
Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyrop-totic cell death. Immunol Rev 2011; 243(1): 206-14.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01044.x] [PMID: 21884178]
[37]
Tsuchiya K, Nakajima S, Hosojima S, et al. Caspase-1 initi-ates apoptosis in the absence of gasdermin D. Nat Commun 2019; 10(1): 2091.
[http://dx.doi.org/10.1038/s41467-019-09753-2] [PMID: 31064994]
[38]
Lee S, Channappanavar R, Kanneganti T-D. Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol 2020; 41(12): 1083-99.
[39]
Mandal AK, Mercado A, Foster A, Zandi-Nejad K, Mount DB. Uricosuric targets of tranilast. Pharmacol Res Perspect 2017; 5(2): e00291-1.
[http://dx.doi.org/10.1002/prp2.291] [PMID: 28357121]
[40]
Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP 3 to treat inflammasome‐driven diseases. EMBO Mol Med 2018; 10(4): e8689.
[http://dx.doi.org/10.15252/emmm.201708689] [PMID: 29531021]
[41]
Zhuang T, Li S, Yi X, et al. Tranilast directly targets NLRP3 to protect melanocytes from keratinocyte-derived IL-1β under oxidative stress. Front Cell Dev Biol 2020; 8: 588.
[http://dx.doi.org/10.3389/fcell.2020.00588] [PMID: 32754591]
[42]
Darakhshan S, Pour AB. Tranilast: A review of its therapeu-tic applications. Pharmacol Res 2015; 91: 15-28.
[http://dx.doi.org/10.1016/j.phrs.2014.10.009] [PMID: 25447595]
[43]
Tsuji G, Hashimoto-Hachiya A, Yen VH, et al. Metformin inhibits IL-1β secretion via impairment of NLRP3 inflam-masome in keratinocytes: Implications for preventing the de-velopment of psoriasis. Cell Death Discov 2020; 6(1): 11.
[http://dx.doi.org/10.1038/s41420-020-0245-8] [PMID: 32194991]
[44]
Yang F, Qin Y, Wang Y, et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci 2019; 15(5): 1010-9.
[http://dx.doi.org/10.7150/ijbs.29680] [PMID: 31182921]
[45]
Tang G, Duan F, Li W, et al. Metformin inhibited Nod-like receptor protein 3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE−/− mice. Biomed Pharmacother 2019; 119: 109410.
[http://dx.doi.org/10.1016/j.biopha.2019.109410] [PMID: 31518877]
[46]
Zhou X, Wang Q, Nie L, et al. Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis. Arch Oral Biol 2020; 116: 104763.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104763] [PMID: 32480011]
[47]
Malik F, Mehdi SF, Ali H, et al. Is metformin poised for a second career as an antimicrobial? Diabetes Metab Res Rev 2018; 34(4): e2975.
[http://dx.doi.org/10.1002/dmrr.2975] [PMID: 29271563]
[48]
Ismail Hassan F, Didari T, Khan F, Niaz K, Mojtahedzadeh M, Abdollahi M. A review on the protective effects of met-formin in sepsis-induced organ failure. Cell J 2020; 21(4): 363-70.
[PMID: 31376317]
[49]
Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013; 496(7446): 528-32.
[http://dx.doi.org/10.1038/nature12051] [PMID: 23575629]
[50]
Cohen MS. Hydroxychloroquine for the prevention of COVID-19-searching for evidence. Mass Medical Soc. 2020; 383: pp. 585-6.
[http://dx.doi.org/10.1056/NEJMe2020388]
[51]
Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquino-lines against coronavirus disease 2019 (COVID-19): Chlo-roquine or hydroxychloroquine. Int J Antimicrob Agents 2020; 55(4): 105945.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105945] [PMID: 32194152]
[52]
Bai L, Li J, Li H, et al. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochem Pharmacol 2019; 169: 113619.
[http://dx.doi.org/10.1016/j.bcp.2019.08.021] [PMID: 31465776]
[53]
Tang TT, Lv LL, Pan MM, et al. Hydroxychloroquine atten-uates renal ischemia/reperfusion injury by inhibiting cathep-sin mediated NLRP3 inflammasome activation. Cell Death Dis 2018; 9(3): 351.
[http://dx.doi.org/10.1038/s41419-018-0378-3] [PMID: 29500339]
[54]
Schroeder ME, Russo S, Costa C, et al. Pro-inflammatory Ca++-activated K+ channels are inhibited by hydroxychloro-quine. Sci Rep 2017; 7(1): 1-7.
[PMID: 28127051]
[55]
Boulware DR, Pullen MF, Bangdiwala AS, et al. A Ran-domized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N Engl J Med 2020; 383(6): 517-25.
[http://dx.doi.org/10.1056/NEJMoa2016638] [PMID: 32492293]
[56]
Horby P, Mafham M, Linsell L, et al. Effect of hydroxychlo-roquine in hospitalized patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. Medrxiv 2020; 2020.07.15.20151852.
[http://dx.doi.org/10.1101/2020.07.15.20151852]
[57]
Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloro-quine in nonhospitalized adults with early COVID-19: A randomized trial. Ann Intern Med 2020; 173(8): 623-31.
[http://dx.doi.org/10.7326/M20-4207] [PMID: 32673060]
[58]
Kaptein SJ, Jacobs S, Langendries L, et al. Antiviral treat-ment of SARS-CoV-2-infected hamsters reveals a weak ef-fect of favipiravir and a complete lack of effect for hy-droxychloroquine. BioRxiv 2020; 2020.06.19.159053.
[http://dx.doi.org/10.1101/2020.06.19.159053]
[59]
Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloro-quine in the treatment and prophylaxis of SARS-CoV-2 in-fection in non-human primates. Research Square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-27223/v1]
[60]
Chen X, Wang N, Zhu Y, et al. The antimalarial chloroquine suppresses LPS-induced NLRP3 inflammasome activation and confers protection against murine endotoxic shock. Mediators of Inflam 2017; 2017
[61]
Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[62]
Ayele Mega T, Feyissa TM, Dessalegn Bosho D, et al. The outcome of hydroxychloroquine in patients treated for COVID-19: Systematic review and meta-analysis. Can Respir J 2020; 2020
[63]
Koh K. Effects of statins on vascular wall: Vasomotor func-tion, inflammation, and plaque stability. Cardiovasc Res 2000; 47(4): 648-57.
[http://dx.doi.org/10.1016/S0008-6363(00)00146-2] [PMID: 10974215]
[64]
Forrester JS, Libby P. The inflammation hypothesis and its potential relevance to statin therapy. Am J Cardiol 2007; 99(5): 732-8.
[http://dx.doi.org/10.1016/j.amjcard.2006.09.125]
[65]
Guo C, Chi Z, Jiang D, et al. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 2018; 49(5): 842-56. e7.
[66]
Satoh M, Tabuchi T, Itoh T, Nakamura M. NLRP3 inflam-masome activation in coronary artery disease: Results from prospective and randomized study of treatment with atorvas-tatin or rosuvastatin. Clin Sci (Lond) 2014; 126(3): 233-41.
[http://dx.doi.org/10.1042/CS20130043] [PMID: 23944632]
[67]
Altaf A, Qu P, Zhao Y, Wang H, Lou D, Niu N. NLRP3 inflammasome in peripheral blood monocytes of acute coro-nary syndrome patients and its relationship with statins. Coron Artery Dis 2015; 26(5): 409-21.
[http://dx.doi.org/10.1097/MCA.0000000000000255] [PMID: 25946654]
[68]
Rogers AJ, Guan J, Trtchounian A, et al. Association of elevated plasma interleukin 18 level with increased mortality in a clinical trial of statin treatment for ards. Crit Care Med 2019; 47(8): 1089.
[http://dx.doi.org/10.1097/CCM.0000000000003816] [PMID: 31206358]
[69]
Rodrigues-Diez RR, Tejera-Muñoz A, Marquez-Exposito L, et al. Statins: Could an old friend help in the fight against COVID‐19? Br J Pharmacol 2020; 177(21): 4873-86.
[http://dx.doi.org/10.1111/bph.15166] [PMID: 32562276]
[70]
Tleyjeh IM, Kashour T, Hakim FA, et al. Statins for the prevention and treatment of infections: A systematic review and meta-analysis. Arch Intern Med 2009; 169(18): 1658-67.
[http://dx.doi.org/10.1001/archinternmed.2009.286] [PMID: 19822822]
[71]
Kopitar-Jerala N. The role of interferons in inflammation and inflammasome activation. Front Immunol 2017; 8: 873.
[http://dx.doi.org/10.3389/fimmu.2017.00873] [PMID: 28791024]
[72]
Mishra BB, Rathinam VAK, Martens GW, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL-1β. Nat Immunol 2013; 14(1): 52-60.
[http://dx.doi.org/10.1038/ni.2474] [PMID: 23160153]
[73]
Gallin JI, Farber JM, Holland SM, Nutman TB. Interferon-γ in the management of infectious diseases. Ann Intern Med 1995; 123(3): 216-24.
[http://dx.doi.org/10.7326/0003-4819-123-3-199508010-00009] [PMID: 7598304]
[74]
Payen D, Faivre V, Miatello J, et al. Multicentric experience with interferon gamma therapy in sepsis induced immuno-suppression. A case series. BMC Infect Dis 2019; 19(1): 931.
[http://dx.doi.org/10.1186/s12879-019-4526-x] [PMID: 31690258]
[75]
Marovich M, Mascola JR, Cohen MS. Monoclonal antibod-ies for prevention and treatment of COVID-19. JAMA 2020; 324(2): 131-2.
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[76]
Naik RR, Shakya AK, Aladwan SM, El-Tanani M. Kinase inhibitors as potential therapeutic agents in the treatment of COVID-19. Front Pharmacol 2022; 13: 806568.
[http://dx.doi.org/10.3389/fphar.2022.806568] [PMID: 35444538]
[77]
Purvis GSD, Collino M, Aranda-Tavio H, et al. Inhibition of Bruton’s TK regulates macrophage NF‐κB and NLRP3 inflammasome activation in metabolic inflammation. Br J Pharmacol 2020; 177(19): bph.15182.
[http://dx.doi.org/10.1111/bph.15182] [PMID: 32608058]
[78]
Furuya MY, Asano T, Sumichika Y, et al. Tofacitinib inhib-its granulocyte–macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutro-phils. Arthritis Res Ther 2018; 20(1): 196.
[http://dx.doi.org/10.1186/s13075-018-1685-x] [PMID: 30157949]
[79]
Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev 2005; 9(1): 25-39.
[http://dx.doi.org/10.1016/j.smrv.2004.05.002]
[80]
Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 2005; 9(1): 11-24.
[http://dx.doi.org/10.1016/j.smrv.2004.08.001]
[81]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[82]
Andersen LPH, Gögenur I, Rosenberg J, et al. The safety of melatonin in humans. Clin Drug Investig 2016; 36(3): 169-75.
[http://dx.doi.org/10.1007/s40261-015-0368-5]
[83]
Khaksar M, Oryan A, Sayyari M, Rezabakhsh A, Rahbar-ghazi R. Protective effects of melatonin on long-term admin-istration of fluoxetine in rats. Exp Toxicol Pathol 2017; 69(8): 564-74.
[http://dx.doi.org/10.1016/j.etp.2017.05.002] [PMID: 28552630]
[84]
Rahbarghazi A, Siahkouhian M, Rahbarghazi R, et al. Role of melatonin in the angiogenesis potential; highlights on the cardiovascular disease. J Inflamm 2021; 18(1): 4.
[http://dx.doi.org/10.1186/s12950-021-00269-5] [PMID: 33531055]
[85]
Hansen MV, Andersen LT, Madsen MT, et al. Effect of melatonin on depressive symptoms and anxiety in patients undergoing breast cancer surgery: A randomized, double-blind, placebo-controlled trial. Breast Cancer Res Treat 2014; 145(3): 683-95.
[http://dx.doi.org/10.1007/s10549-014-2962-2] [PMID: 24756186]
[86]
de Matos Cavalcante AG, de Bruin PFC, de Bruin VMS, et al. Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: A randomized, dou-ble-blind, placebo-controlled study. J Pineal Res 2012; 53(3): 238-44.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00992.x] [PMID: 22507631]
[87]
Favero G, Franceschetti L, Bonomini F, et al. Melatonin as an anti-inflammatory agent modulating inflammasome activa-tion. Int J Endocrinol 2017; 2017: 1835195.
[http://dx.doi.org/10.1155/2017/1835195]
[88]
Zhang Y, Li X, Grailer JJ, et al. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 2016; 60(4): 405-14.
[http://dx.doi.org/10.1111/jpi.12322] [PMID: 26888116]
[89]
Liu Z, Gan L, Xu Y, et al. Melatonin alleviates inflam-masome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res 2017; 63(1): e12414.
[http://dx.doi.org/10.1111/jpi.12414] [PMID: 28398673]
[90]
Chen F, Jiang G, Liu H, et al. Melatonin alleviates interver-tebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res 2020; 8(1): 10.
[91]
Hardeland R, Tan DX. Protection by melatonin in respiratory diseases: Valuable information for the treatment of COVID-19. Melatonin Research 2020; 3(3): 264-75.
[http://dx.doi.org/10.32794/mr11250061]
[92]
Ziaei A, Davoodian P, Dadvand H, et al. Evaluation of the efficacy and safety of melatonin in moderately ill patients with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21(1): 882.
[http://dx.doi.org/10.1186/s13063-020-04737-w] [PMID: 33106171]
[93]
Rodríguez-Rubio M, Figueira JC, Acuña-Castroviejo D, Borobia AM, Escames G, de la Oliva P. A phase II, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in patients with COVID-19 admitted to the intensive care unit (MelCOVID study): A structured summary of a study proto-col for a randomized controlled trial. Trials 2020; 21(1): 699.
[http://dx.doi.org/10.1186/s13063-020-04632-4] [PMID: 32758298]
[94]
García IG, Rodriguez-Rubio M, Mariblanca AR, et al. A randomized multicenter clinical trial to evaluate the efficacy of melatonin in the prophylaxis of SARS-CoV-2 infection in high-risk contacts (MeCOVID Trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 466.
[http://dx.doi.org/10.1186/s13063-020-04436-6] [PMID: 32493475]
[95]
Srinivasan V, Pandi-Perumal SR, Spence DW, et al. Melatonin in septic shock: Some recent concepts. J Critic Care 2010; 25(4): 656-e1-656. e6.
[http://dx.doi.org/10.1016/j.jcrc.2010.03.006]
[96]
Sahebnasagh A, Saghafi F, Avan R, et al. The prophylaxis and treatment potential of supplements for COVID-19. Eur J Pharmacol 2020; 887: 173530.
[http://dx.doi.org/10.1016/j.ejphar.2020.173530] [PMID: 32882216]
[97]
Ma Y, Tang K, Zhang C, et al. Advances in the role of mela-tonin in infectious diseases: A review. Chinese J Cell Mol Immunol 2019; 35(6): 563-8.
[98]
Besag FMC, Vasey MJ, Lao KSJ, Wong ICK. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: A systematic review. CNS Drugs 2019; 33(12): 1167-86.
[http://dx.doi.org/10.1007/s40263-019-00680-w] [PMID: 31722088]
[99]
Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Up-date on colchicine, 2017. Rheumatology 2018; 57 (Suppl. 1): i4-i11.
[http://dx.doi.org/10.1093/rheumatology/kex453] [PMID: 29272515]
[100]
Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med 2020; 383(19): 1838-47.
[http://dx.doi.org/10.1056/NEJMoa2021372] [PMID: 32865380]
[101]
Opstal TSJ, Hoogeveen RM, Fiolet ATL, et al. Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease. Circulation 2020; 142(20): 1996-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050560]
[102]
Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflam-masome and the emerging role of colchicine to inhibit athero-sclerosis-associated inflammation. Atherosclerosis 2018; 269: 262-71.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.12.027] [PMID: 29352570]
[103]
Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its in-teraction with tubulin. Med Res Rev 2008; 28(1): 155-83.
[http://dx.doi.org/10.1002/med.20097] [PMID: 17464966]
[104]
Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualita-tive display of selectins on endothelial cells and neutrophils. J Clin Invest 1995; 96(2): 994-1002.
[http://dx.doi.org/10.1172/JCI118147] [PMID: 7543498]
[105]
Poddighe D, Romano M, Garcia-Bournissen F, Demirkaya E. Conventional and novel therapeutic options in children with familial Mediterranean fever: A rare autoinflammatory disease. Br J Clin Pharmacol 2022; 88(6): 2484-99.
[http://dx.doi.org/10.1111/bcp.15149] [PMID: 34799863]
[106]
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 in-flammasome. Nature 2006; 440(7081): 237-41.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[107]
Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflam-masome activation and RhoA signaling in the autoinflamma-tory diseases FMF and HIDS. Nat Immunol 2016; 17(8): 914-21.
[http://dx.doi.org/10.1038/ni.3457] [PMID: 27270401]
[108]
Nidorf SM, Eikelboom JW, Thompson PL. Targeting cho-lesterol crystal-induced inflammation for the secondary pre-vention of cardiovascular disease. J Cardiovasc Pharmacol Ther 2014; 19(1): 45-52.
[http://dx.doi.org/10.1177/1074248413499972] [PMID: 24038016]
[109]
Otani K, Watanabe T, Shimada S, et al. Colchicine prevents NSAID-induced small intestinal injury by inhibiting activa-tion of the NLRP3 inflammasome. Sci Rep 2016; 6(1): 32587.
[http://dx.doi.org/10.1038/srep32587] [PMID: 27585971]
[110]
Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZP. Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: Implications for its therapeutic action. Br J Pharmacol 2011; 163(5): 912-26.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01254.x] [PMID: 21306580]
[111]
Chiu L, Lo CH, Shen M, et al. Colchicine use in patients with COVID-19: A systematic review and meta-analysis. PLoS One 2021; 16(12): e0261358.
[http://dx.doi.org/10.1371/journal.pone.0261358] [PMID: 34962939]
[112]
Pourdowlat G, Saghafi F, Mozafari A, et al. Efficacy and safety of colchicine treatment in patients with COVID ‐19: A prospective, multicenter, randomized clinical trial. Phytother Res 2022; 36(2): 891-8.
[http://dx.doi.org/10.1002/ptr.7319] [PMID: 35107188]
[113]
Lopes MI, Bonjorno LP, Giannini MC, et al. Beneficial ef-fects of colchicine for moderate to severe COVID-19: A ran-domised, double-blinded, placebo-controlled clinical trial. RMD Open 2021; 7(1): e001455.
[http://dx.doi.org/10.1136/rmdopen-2020-001455] [PMID: 33542047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy