Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

BZW2、CDT1和IVD作为预测肝细胞癌的生物标志物

卷 23, 期 3, 2023

发表于: 17 October, 2022

页: [211 - 221] 页: 11

弟呕挨: 10.2174/1568009622666220901121641

价格: $65

摘要

背景:肝细胞癌(HCC)是全球癌症相关死亡的主要原因。本研究旨在提供一项全面的调查,以筛选和识别预测HCC的生物标志物。 方法:首先应用生物信息学技术筛选潜在的hcc相关基因,评估BZW2、CDT1、IVD表达与生存率与临床病理因素的关系。随后,采用qRT-PCR、western blot、免疫组化等方法验证BZW2、CDT1、IVD在临床切除肿瘤标本中的表达。此外,通过体外实验、细胞周期、凋亡、菌落形成和划痕实验检测si-BZW2、si-CDT1和oe-IVD对HCC细胞的影响。在体内实验中,通过测量肿瘤体积和重量来评估si-BZW2、si-CDT1和o - ivd对hcc荷瘤小鼠的抗肿瘤作用。 结果:生物信息学分析显示,BZW2、CDT1高表达、IVD低表达的HCC患者预后较差,临床病理因素不利。同样,临床样本分析显示,HCC组织中BZW2、CDT1表达升高,IVD表达降低。同时,体外实验发现si- bzw2、si- CDT1和oe-IVD促进细胞凋亡,抑制HCC细胞集落形成和迁移。正如预期的那样,体内实验表明siBZW2、si-CDT1和oe-IVD可以抑制肿瘤生长。 结论:BZW2、CDT1水平升高,IVD水平降低可作为预测HCC的生物标志物。此外,靶向BZW2、CDT1和IVD可能提供一种治疗HCC的新方法。

关键词: 生物标志物,肝细胞癌,BZW2, CDT1, IVD,肝移植。

图形摘要
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Gnoni, A.; Santini, D.; Scartozzi, M.; Russo, A.; Licchetta, A.; Palmieri, V.; Lupo, L.; Faloppi, L.; Palasciano, G.; Memeo, V.; Angarano, G.; Brunetti, O.; Guarini, A.; Pisconti, S.; Lorusso, V.; Silvestris, N. Hepatocellular carcinoma treatment over sorafenib: Epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin. Ther. Targets, 2015, 19(12), 1623-1635.
[http://dx.doi.org/10.1517/14728222.2015.1071354] [PMID: 26212068]
[3]
Zhao, Z.; Xiong, S.; Wang, R.; Li, Y.; Wang, X.; Wang, Y.; Bai, S.; Chen, W.; Zhao, Y.; Cheng, B. Peri-tumor fibroblasts promote tumorigenesis and metastasis of hepatocellular carcinoma via Interleukin6/STAT3 signaling pathway. Cancer Manag. Res., 2019, 11, 2889-2901.
[http://dx.doi.org/10.2147/CMAR.S192263] [PMID: 31118769]
[4]
Lleo, A.; Aglitti, A.; Aghemo, A.; Maisonneuve, P.; Bruno, S.; Persico, M.; Rendina, M.; Ciancio, A.; Lampertico, P.; Brunetto, M.R.; Di Marco, V.; Zuin, M.; Andreone, P.; Villa, E.; Troshina, G.; Degasperi, E.; Coco, B.; Calvaruso, V.; Giorgini, A.M.; Conti, F.; Di Leo, A.; Marzi, L.; Boccaccio, V.; Bollani, S.; Colombo, M. Predictors of hepatocellular carcinoma in HCV cirrhotic patients treated with direct acting antivirals. Dig. Liver Dis., 2019, 51(2), 310-317.
[http://dx.doi.org/10.1016/j.dld.2018.10.014] [PMID: 30473220]
[5]
Agapito, G.; Guzzi, P.; Cannataro, M. A parallel software pipeline for DMET microarray genotyping data analysis. High Throughput, 2018, 7(2), 17.
[http://dx.doi.org/10.3390/ht7020017] [PMID: 29904017]
[6]
Zhang, Z.; Xue, Y.; Zhao, F. Bioinformatics commons: The cornerstone of life and health sciences. Genomics Proteomics Bioinformatics, 2018, 16(4), 223-225.
[http://dx.doi.org/10.1016/j.gpb.2018.09.001] [PMID: 30268933]
[7]
Azofeifa, J.G.; Allen, M.A.; Lladser, M.E.; Dowell, R.D. An annotation agnostic algorithm for detecting nascent RNA transcripts in GRO-Seq. IEEE/ACM Trans. Comput. Biol. Bioinform, 2017, 14(5), 1070-1081.
[8]
Li, Y.; Zhu, Y.; Dai, G.; Wu, D.; Gao, Z.; Zhang, L.; Fan, Y. Screening and validating the core biomarkers in patients with pancreatic ductal adenocarcinoma. Math. Biosci. Eng., 2020, 17(1), 910-927.
[http://dx.doi.org/10.3934/mbe.2020048] [PMID: 31731384]
[9]
Lee, S.W.; Lee, H.Y.; Bang, H.J.; Song, H.J.; Kong, S.W.; Kim, Y.M. An improved prediction model for ovarian cancer using urinary biomarkers and a novel validation strategy. Int. J. Mol. Sci., 2019, 20(19), 4938.
[http://dx.doi.org/10.3390/ijms20194938] [PMID: 31590408]
[10]
Wang, B.; Lan, T.; Xiao, H.; Chen, Z.H.; Wei, C.; Chen, L.F.; Guan, J.F.; Yuan, R.F.; Yu, X.; Hu, Z.G.; Wu, H.J.; Dai, Z.; Wang, K. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int., 2021, 21(1), 286.
[http://dx.doi.org/10.1186/s12935-021-01987-9] [PMID: 34059060]
[11]
Zhou, Z.; Zhou, X.; Jiang, Y.; Qiu, M.; Liang, X.; Lin, Q.; Guo, Q.; Nong, C.; Huo, R.; Chen, Q.; Liu, H.; Liu, Y.; Zhu, S.; Wang, M.; Yu, H. Clinical significance of miR-1180-3p in hepatocellular carcinoma: A study based on bioinformatics analysis and RT-qPCR validation. Sci. Rep., 2020, 10(1), 11573.
[http://dx.doi.org/10.1038/s41598-020-68450-z] [PMID: 32665670]
[12]
Stefanska, B.; Huang, J.; Bhattacharyya, B.; Suderman, M.; Hallett, M.; Han, Z.G.; Szyf, M. Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res., 2011, 71(17), 5891-5903.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3823] [PMID: 21747116]
[13]
Zhang, H.; Ye, J.; Weng, X.; Liu, F.; He, L.; Zhou, D.; Liu, Y. Comparative transcriptome analysis reveals that the extracellular matrix receptor interaction contributes to the venous metastases of hepatocellular carcinoma. Cancer Genet., 2015, 208(10), 482-491.
[http://dx.doi.org/10.1016/j.cancergen.2015.06.002] [PMID: 26271415]
[14]
Itoh, S.; Maeda, T.; Shimada, M.; Aishima, S.; Shirabe, K.; Tanaka, S.; Maehara, Y. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin. Cancer Res., 2004, 10(8), 2812-2817.
[http://dx.doi.org/10.1158/1078-0432.CCR-1046-03] [PMID: 15102689]
[15]
Itoh, S.; Taketomi, A.; Tanaka, S.; Harimoto, N.; Yamashita, Y.; Aishima, S.; Maeda, T.; Shirabe, K.; Shimada, M.; Maehara, Y. Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol. Cancer Res., 2007, 5(7), 667-673.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0282] [PMID: 17634422]
[16]
Li, J. En, M.; Xing, H.; Zhang, Q.; Ma Zh, L.I.R.; Shen, C.; Tao, Y.; Wang, Z. Ncv index is a potential predictor of MVI in patients with HCC who undergoing liver transplantation. Transplantation, 2020, 104(Suppl. 3), S522.
[http://dx.doi.org/10.1097/01.tp.0000701320.47667.3b]
[17]
Heiat, M.; Negahdary, M. Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchem. J., 2019, 148, 456-466.
[http://dx.doi.org/10.1016/j.microc.2019.05.004]
[18]
Song, W.S.; Park, H.G.; Ann, D.H.; Jeong, Y.Y.; Koo, M-Y.; Kim, Y-G. Quantitative analysis of core-fucosylated N-glycome according to serum AFP level for the diagnosis of hepatocellular carcinoma. Korean Soc. Biotechnol. Bioeng. J., 2017, 32(4), 279-285.
[http://dx.doi.org/10.7841/ksbbj.2017.32.4.279]
[19]
Semaan, A.; Dietrich, D.; Bergheim, D.; Dietrich, J.; Kalff, J.C.; Branchi, V.; Matthaei, H.; Kristiansen, G.; Fischer, H.P.; Goltz, D. CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Arch., 2017, 470(2), 185-196.
[http://dx.doi.org/10.1007/s00428-016-2051-5] [PMID: 27913861]
[20]
Nachmias, B.; Khan, D.H.; Voisin, V.; Mer, A.S.; Thomas, G.E.; Segev, N.; St-Germain, J.; Hurren, R.; Gronda, M.; Botham, A.; Wang, X.; Maclean, N.; Seneviratne, A.K.; Duong, N.; Xu, C.; Arruda, A.; Orouji, E.; Algouneh, A.; Hakem, R.; Shlush, L.; Minden, M.D.; Raught, B.; Bader, G.D.; Schimmer, A.D. IPO11 regulates the nuclear import of BZW1/2 and is necessary for AML cells and stem cells. Leukemia, 2022, 36(5), 1283-1295.
[http://dx.doi.org/10.1038/s41375-022-01513-4] [PMID: 35152270]
[21]
Cheng, D.D.; Li, S.J.; Zhu, B.; Yuan, T.; Yang, Q.C.; Fan, C.Y. Downregulation of BZW2 inhibits osteosarcoma cell growth by inactivating the Akt/mTOR signaling pathway. Oncol. Rep., 2017, 38(4), 2116-2122.
[http://dx.doi.org/10.3892/or.2017.5890] [PMID: 28791373]
[22]
Gao, H.; Yu, G.; Zhang, X.; Yu, S.; Sun, Y.; Li, Y. BZW2 gene knockdown induces cell growth inhibition, G1 arrest and apoptosis in muscle‐invasive bladder cancers: A microarray pathway analysis. J. Cell. Mol. Med., 2019, 23(6), 3905-3915.
[http://dx.doi.org/10.1111/jcmm.14266] [PMID: 30932331]
[23]
Liu, L.; Zhao, J.; Peng, Y.; Yang, M.; Zhang, L.; Jin, X. miR-let-7a-5p inhibits invasion and migration of hepatoma cells by regulating BZW2 expression. OncoTargets Ther., 2020, 13, 12269-12279.
[http://dx.doi.org/10.2147/OTT.S278954] [PMID: 33273832]
[24]
Jin, X.; Liao, M.; Zhang, L.; Yang, M.; Zhao, J. Role of the novel gene BZW2 in the development of hepatocellular carcinoma. J. Cell. Physiol., 2019, 234(9), 16592-16600.
[http://dx.doi.org/10.1002/jcp.28331] [PMID: 30805927]
[25]
Cheung, P.F.Y.; Yip, C.W.; Ng, L.W.C.; Lo, K.W.; Wong, N.; Choy, K.W.; Chow, C.; Chan, K.F.; Cheung, T.T.; Poon, R.T.P.; Fan, S.T.; Cheung, S.T. Establishment and characterization of a novel primary hepatocellular carcinoma cell line with metastatic ability in vivo. Cancer Cell Int., 2014, 14(1), 103.
[http://dx.doi.org/10.1186/s12935-014-0103-y] [PMID: 25349534]
[26]
Karavias, D.; Maroulis, I.; Papadaki, H.; Gogos, C.; Kakkos, S.; Karavias, D.; Bravou, V. Overexpression of CDT1 is a predictor of poor survival in patients with hepatocellular carcinoma. J. Gastrointest. Surg., 2016, 20(3), 568-579.
[http://dx.doi.org/10.1007/s11605-015-2960-7] [PMID: 26408331]
[27]
Cai, C.; Zhang, Y.; Hu, X.; Hu, W.; Yang, S.; Qiu, H.; Chu, T. CDT1 is a novel prognostic and predictive biomarkers for hepatocellular carcinoma. Front. Oncol., 2021, 11, 721644.
[http://dx.doi.org/10.3389/fonc.2021.721644] [PMID: 34631549]
[28]
Sakamoto, O.; Arai-Ichinoi, N.; Mitsubuchi, H.; Chinen, Y.; Haruna, H.; Maruyama, H.; Sugawara, H.; Kure, S. Phenotypic variability and newly identified mutations of the <i>IVD </i>gene in Japanese patients with isovaleric acidemia. Tohoku J. Exp. Med., 2015, 236(2), 103-106.
[http://dx.doi.org/10.1620/tjem.236.103] [PMID: 26018748]
[29]
Peljto, A.L.; Selman, M.; Kim, D.S.; Murphy, E.; Tucker, L.; Pardo, A.; Lee, J.S.; Ji, W.; Schwarz, M.I.; Yang, I.V.; Schwartz, D.A.; Fingerlin, T.E. The MUC5B promoter polymorphism is associated with idiopathic pulmonary fibrosis in a Mexican cohort but is rare among Asian ancestries. Chest, 2015, 147(2), 460-464.
[http://dx.doi.org/10.1378/chest.14-0867] [PMID: 25275363]
[30]
Lu, B.; Yin, L.; Xu, L.; Peng, J. Application of proteomic and bioinformatic techniques for studying the hepatoprotective effect of dioscin against CCl₄-induced liver damage in mice. Planta Med., 2011, 77(5), 407-415.
[http://dx.doi.org/10.1055/s-0030-1250461] [PMID: 20979020]
[31]
Vockley, J.; Rogan, P.K.; Anderson, B.D.; Willard, J.; Seelan, R.S.; Smith, D.I.; Liu, W. Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. Am. J. Hum. Genet., 2000, 66(2), 356-367.
[http://dx.doi.org/10.1086/302751] [PMID: 10677295]
[32]
Lin, Y.; Chen, D.; Peng, W.; Wang, K.; Lin, W.; Zhuang, J.; Zheng, Z.; Li, M.; Fu, Q. Newborn screening for isovaleric acidemia in Quanzhou, China. Clin. Chim. Acta, 2020, 509, 25-29.
[http://dx.doi.org/10.1016/j.cca.2020.06.010] [PMID: 32505769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy