Review Article

纳米制剂-对表征技术的见解

卷 23, 期 14, 2022

发表于: 08 September, 2022

页: [1330 - 1344] 页: 15

弟呕挨: 10.2174/1389450123666220822094248

价格: $65

摘要

背景:负载药物的新型纳米制剂因其与传统药物制剂相比具有多种特性而越来越受到重视。纳米材料除了具有多因素的好处外,在癌症的预防、治疗和诊断方面也有更广泛的用途。在目前的情况下,理解载药纳米制剂在分子和系统水平上诱导其行为的化学性质是至关重要的。载药纳米制剂由其大小、形状、表面化学和释放行为控制。据报道,用于治疗各种癌症(如肺癌、肝癌、乳腺癌、结肠癌等)的主要载药纳米载体包括纳米颗粒、纳米球、纳米分散体、纳米胶囊、纳米微粒、立方体、纳米乳剂、脂质体和纳米微粒。设计抗肿瘤药物纳米制剂的主要目的是管理与药物释放相关的颗粒大小/形态,以实现特定的目标。因此,纳米表征在体外和体内水平都是非常关键的。 目的:这篇综述的主要目的是总结用于药物涂覆纳米制剂的主要表征技术。尽管在文献中有各种纳米制剂的表征技术的信息,但它是分散的。提出的综述将提供对纳米表征技术的全面理解。 结论:综上所述,本文将对不同的纳米表征技术及其最新进展提供见解,如粒径、zeta电位、包封效率、体外释放研究(色谱高效液相色谱、HPTLC和LCMS/MS分析)、EPR分析、x射线衍射分析、热分析、流变学和形态分析等。此外,纳米表征技术遇到的挑战也将被讨论。

关键词: 纳米表征,纳米材料,纳米粒子,EPR光谱,zeta电位,raman光谱。

图形摘要
[1]
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK. Application of nanotechnology in food science: Perception and overview. Front Microbiol 2017; 8: 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[2]
Krishna VD, Wu K, Su D, Cheeran MCJ, Wang J-P, Perez A. Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food Microbiol 2018; 75: 47-54.
[http://dx.doi.org/10.1016/j.fm.2018.01.025] [PMID: 30056962]
[3]
Shrivastava S, Dash D. Applying nanotechnology to human health: Revolution in biomedical sciences. J Nanotechnol 2009; 2009: 184702.
[http://dx.doi.org/10.1155/2009/184702]
[4]
Bayford R, Rademacher T, Roitt I, Wang SX. Emerging applications of nanotechnology for diagnosis and therapy of disease: A review. Physiol Meas 2017; 38(8): R183-203.
[http://dx.doi.org/10.1088/1361-6579/aa7182] [PMID: 28480874]
[5]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[6]
Tjong S-C. Nanocrystalline materials Their synthesis-structure-property relationships and applications. Elsevier 2013.
[7]
Ealias MA, Saravanakumar MPS. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 2017; 263: 032019.
[8]
Shin S-H, Ye M-K, Kim H-S, Kang H-S. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 2007; 7(13): 1813-8.
[http://dx.doi.org/10.1016/j.intimp.2007.08.025] [PMID: 17996693]
[9]
Martinez-Gutierrez F, Olive PL, Banuelos A, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 2010; 6(5): 681-8.
[http://dx.doi.org/10.1016/j.nano.2010.02.001] [PMID: 20215045]
[10]
Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009; 30(31): 6341-50.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008 ] [PMID: 19698986]
[11]
Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B Biointerfaces 2010; 75(1): 175-8.
[http://dx.doi.org/10.1016/j.colsurfb.2009.08.028] [PMID: 19783414]
[12]
Philip D, Unni C. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys E Low-Dimensional Syst Nanostructures 2011; 43(7): 1318-22.
[13]
Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 2011; 377(1): 212-6.
[http://dx.doi.org/10.1016/j.colsurfa.2010.12.047]
[14]
Rajakumar G, Abdul Rahuman A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 2011; 118(3): 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003 ] [PMID: 21419749]
[15]
Liu YC, Lin LH. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 2004; 6(11): 1163-8.
[http://dx.doi.org/10.1016/j.elecom.2004.09.010]
[16]
Dadosh T. Synthesis of uniform silver nanoparticles with a controllable size. Mater Lett 2009; 63(26): 2236-8.
[http://dx.doi.org/10.1016/j.matlet.2009.07.042]
[17]
Sharma A, Tandon A, Tovey JCK, et al. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine 2011; 7(4): 505-13.
[http://dx.doi.org/10.1016/j.nano.2011.01.006] [PMID: 21272669]
[18]
Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomedicine 2011; 7(5): 580-7.
[http://dx.doi.org/10.1016/j.nano.2011.01.011] [PMID: 21333757]
[19]
Mirza AZ, Shamshad H. Preparation and characterization of doxorubicin functionalized gold nanoparticles. Eur J Med Chem 2011; 46(5): 1857-60.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.048] [PMID: 21411194]
[20]
Karthikeyan B, Kalishwaralal K, Sheikpranbabu S, Deepak V, Haribalaganesh R, Gurunathan S. Gold nanoparticles downregulate VEGF-and IL-1β-induced cell proliferation through Src kinase in retinal pigment epithelial cells. Exp Eye Res 2010; 91(5): 769-78.
[http://dx.doi.org/10.1016/j.exer.2010.09.003] [PMID: 20833166]
[21]
Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008; 269(1): 57-66.
[http://dx.doi.org/10.1016/j.canlet.2008.04.026] [PMID: 18541363]
[22]
Huang Y, Yu F, Park Y-S, et al. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 2010; 31(34): 9086-91.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.046 ] [PMID: 20828812]
[23]
Lee Y, Lee SH, Kim JS, Maruyama A, Chen X, Park TG. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release 2011; 155(1): 3-10.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.009] [PMID: 20869409]
[24]
Venkatpurwar V, Shiras A, Pokharkar V. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: In vitro cytotoxicity study. Int J Pharm 2011; 409(1-2): 314-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.054] [PMID: 21376108]
[25]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[26]
Alanazi FK, Radwan AA, Alsarra IA. Biopharmaceutical applications of nanogold. Saudi Pharm J 2010; 18(4): 179-93.
[http://dx.doi.org/10.1016/j.jsps.2010.07.002] [PMID: 24936133]
[27]
Gao Y, Nai J, Yang Z, et al. A novel preparative method for nanoparticle albumin-bound paclitaxel with high drug loading and its evaluation both in vitro and in vivo. PLoS One 2021; 16(4): e0250670.
[http://dx.doi.org/10.1371/journal.pone.0250670] [PMID: 33909691]
[28]
Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (ODDS) for cyclosporine-A. Pharmaceutics 2021; 13(2): 192.
[http://dx.doi.org/10.3390/pharmaceutics13020192 ] [PMID: 33535607]
[29]
Aman RM, Zaghloul RA, El-Dahhan MS. Formulation, optimization and characterization of allantoin-loaded chitosan nanoparticles to alleviate ethanol-induced gastric ulcer: In vitro and in-vivo studies. Sci Rep 2021; 11(1): 2216.
[http://dx.doi.org/10.1038/s41598-021-81183-x] [PMID: 33500454]
[30]
Alghaith AF, Alshehri S, Alhakamy NA, Hosny KM. Development, optimization and characterization of nanoemulsion loaded with clove oil-naftifine antifungal for the management of tinea. Drug Deliv 2021; 28(1): 343-56.
[http://dx.doi.org/10.1080/10717544.2021.1879314 ] [PMID: 33517791]
[31]
Song Y, Wang X, Wang X, et al. Osthole-loaded nanoemulsion enhances brain target in the treatment of alzheimer’s disease via intranasal administration. Oxid Med Cell Longev 2021; 2021: 8844455.
[http://dx.doi.org/10.1155/2021/8844455] [PMID: 33564364]
[32]
Janakiraman K, Krishnaswami V, Sethuraman V, Natesan S, Rajendran V, Kandasamy R. Development of methotrexate and minocycline loaded nanoparticles for the effective treatment of rheumatoid arthritis. AAPS PharmSciTech 2019; 21(2): 34.
[http://dx.doi.org/10.1208/s12249-019-1581-y] [PMID: 31873860]
[33]
Rajalingam K, Krishnaswami V, Alagarsamy S, Kandasamy R. Solubility enhancement of methotrexate by solid nanodispersion approach for the improved treatment of small cell lung carcinoma. Curr Top Med Chem 2021; 21(2): 140-50.
[http://dx.doi.org/10.2174/1568026620999200904120241] [PMID: 32888268]
[34]
Qiu L, Chen T, Öçsoy I, et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett 2015; 15(1): 457-63.
[http://dx.doi.org/10.1021/nl503777s] [PMID: 25479133]
[35]
Zhu G, Zheng J, Song E, et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 2013; 110(20): 7998-8003.
[http://dx.doi.org/10.1073/pnas.1220817110] [PMID: 23630258]
[36]
Ocsoy I, Isiklan N, Cansiz S, Özdemir N, Tan W. ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Advances 2016; 6(36): 30285-92.
[http://dx.doi.org/10.1039/C6RA06798K] [PMID: 27774142]
[37]
Medishetty R, Husain A, Bai Z, et al. Single crystals popping under UV light: A photosalient effect triggered by a [2+2] cycloaddition reaction. Angew Chem Int Ed Engl 2014; 53(23): 5907-11.
[http://dx.doi.org/10.1002/anie.201402040] [PMID: 24664890]
[38]
Chen T, Öçsoy I, Yuan Q, et al. One-step facile surface engineering of hydrophobic nanocrystals with designer molecular recognition. J Am Chem Soc 2012; 134(32): 13164-7.
[http://dx.doi.org/10.1021/ja304115q] [PMID: 22793667]
[39]
Li C, Chen T, Ocsoy I, et al. Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging and therapy. Adv Funct Mater 2014; 24(12): 1772-80.
[http://dx.doi.org/10.1002/adfm.201301659] [PMID: 25530745]
[40]
Wang T, Jiao Y, Chai Q, Yu X. Gold nanoparticles: Synthesis and biological applications. Nano Life 2015; 05(03): 1542007.
[http://dx.doi.org/10.1142/S1793984415420076]
[41]
Kang H, Trondoli AC, Zhu G, et al. Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 2011; 5(6): 5094-9.
[http://dx.doi.org/10.1021/nn201171r] [PMID: 21542633]
[42]
Zhang F, Ni Q, Jacobson O, et al. Polymeric nanoparticles with a glutathione-sensitive heterodimeric multifunctional prodrug for in vivo drug monitoring and synergistic cancer therapy. Angew Chem Int Ed Engl 2018; 57(24): 7066-70.
[http://dx.doi.org/10.1002/anie.201801984] [PMID: 29624828]
[43]
Carissimi G, Montalbán MG, Víllora G, Barth A. Direct quantification of drug loading content in polymeric nanoparticles by infrared spectroscopy. Pharmaceutics 2020; 12(10): E912.
[http://dx.doi.org/10.3390/pharmaceutics12100912 ] [PMID: 32977658]
[44]
Ponnusamy C, Sugumaran A, Krishnaswami V, Kandasamy R, Natesan S. Design and development of artemisinin and dexamethasone loaded topical nanodispersion for the effective treatment of age-related macular degeneration. IET Nanobiotechnology 2019; 13(8): 868-74.
[http://dx.doi.org/10.1049/iet-nbt.2019.0130]
[45]
Ponnusamy C, Sugumaran A, Krishnaswami V, Palanichamy R, Velayutham R, Natesan S. Development and evaluation of polyvinylpyrrolidone K90 and poloxamer 407 self-assembled nanomicelles: Enhanced topical ocular delivery of artemisinin. Polymers 2021; 13(18): 3038.
[http://dx.doi.org/10.3390/polym13183038] [PMID: 34577939]
[46]
Lekshmi DUM, Poovi G, Reddy P. In vitro observation of repaglinide engineered polymeric nanoparticles. Dig J Nanomat Biostructures 2012; 7: 1-18.
[47]
Jeon M, Lin G, Stephen ZR, Frances L, Kato MZ. Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Ther 2019; 2(12): 1900081.
[http://dx.doi.org/10.1002/adtp.201900081]
[48]
Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015; 9(7): 6655-74.
[http://dx.doi.org/10.1021/acsnano.5b01320] [PMID: 26149184]
[49]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 2). Trop J Pharm Res 2013; 12(2): 265-73.
[50]
Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017; 12: 8483-93.
[http://dx.doi.org/10.2147/IJN.S148359] [PMID: 29238188]
[51]
Nunes R, Baião A, Monteiro D. das Neves J, Sarmento B. Zein nanoparticles as low-cost, safe, and effective carriers to improve the oral bioavailability of resveratrol. Drug Deliv Transl Res 2020; 10(3): 826-37.
[http://dx.doi.org/10.1007/s13346-020-00738-z] [PMID: 32207071]
[52]
Sarkar P, Bhattacharya S, Pal TK. Application of statistical design to evaluate critical process parameters and optimize formulation technique of polymeric nanoparticles. R Soc Open Sci 2019; 6(7): 190896.
[http://dx.doi.org/10.1098/rsos.190896] [PMID: 31417765]
[53]
Smith JR, Olusanya TOB, Lamprou DA. Characterization of drug delivery vehicles using atomic force microscopy: Current status. Expert Opin Drug Deliv 2018; 15(12): 1211-21.
[http://dx.doi.org/10.1080/17425247.2018.1546693 ] [PMID: 30417712]
[54]
Lamprou DA, Venkatpurwar V, Kumar MNVR. Atomic force microscopy images label-free, drug encapsulated nanoparticles in vivo and 54 difference in tissue mechanical properties of treat-ed and untreated: A tip for nanotoxicology. PLoS One 2013; 8(5): e64490.
[http://dx.doi.org/10.1371/journal.pone.0064490] [PMID: 23724054]
[55]
Deng X, Xiong F, Li X, et al. Application of atomic force microscopy in cancer research. J Nanobiotechnology 2018; 16(1): 102.
[http://dx.doi.org/10.1186/s12951-018-0428-0] [PMID: 30538002]
[56]
Li M, Liu LQ, Xi N, Wang YC. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacol Sin 2015; 36(7): 769-82.
[http://dx.doi.org/10.1038/aps.2015.28] [PMID: 26027658]
[57]
Mahmood S, Mandal U, Chatterjee B. Advanced characterizations of nanoparticles for drug delivery: Investigating their properties through the techniques used in their evaluations. Nanotechnol Rev 2017; 6: 355-72.
[58]
Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 524-39.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[59]
Petrushevska M, Pavlovska K, Laskova J, Zdravkovski P, Dodov MG. Transmission electron microscopy: Novel application of established technique in characterization of nanoparticles as drug delivery systems. Pril (Makedonska Akad na Nauk i Umet Oddelenie za Med Nauk) 2019; 40(2): 67-72.
[60]
Hammadi NI, Abba Y, Hezmee MNM, et al. Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharm Res 2017; 34(6): 1193-203.
[http://dx.doi.org/10.1007/s11095-017-2135-1] [PMID: 28382563]
[61]
Wei L, Yang Y, Shi K, Wu J, Zhao W, Mo J. Preparation and characterization of loperamide-loaded dynasan 114 solid lipid nanoparticles for increased oral absorption in the treatment of diar-rhea. Front Pharmacol 2016; 7: 332.
[http://dx.doi.org/10.3389/fphar.2016.00332] [PMID: 27708583]
[62]
Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JA, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017; 12: 4991-5011.
[http://dx.doi.org/10.2147/IJN.S133832] [PMID: 28761340]
[63]
Masaeli R. S Jafarzadeh Kashi T, Dinarvand R, Tahriri M, Rakhshan V, Esfandyari-Manesh M. Preparation, characterization and evaluation of drug release properties of simvastatin-loaded PLGA microspheres. Iran J Pharm Res 2016; 15: 205-11.
[PMID: 28228818]
[64]
Salar RK, Kumar N. Synthesis and characterization of vincristine loaded folic acid-chitosan conjugated nanoparticles. Resour Technol 2016; 2(4): 199-214.
[65]
Barbosa RM, Casadei BR, Duarte EL, et al. Electron paramagnetic resonance and small-angle x-ray scattering characterization of solid lipid nanoparticles and nanostructured lipid carriers for dibucaine encapsulation. Langmuir 2018; 34(44): 13296-304.
[http://dx.doi.org/10.1021/acs.langmuir.8b02559] [PMID: 30299102]
[66]
Bumbrah GS, Sharma RM. Raman spectroscopy-basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 2016; 6(3): 209-15.
[http://dx.doi.org/10.1016/j.ejfs.2015.06.001]
[67]
Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, et al. Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries. Polymers 2019; 12(1): 5.
[http://dx.doi.org/10.3390/polym12010005] [PMID: 31861423]
[68]
Saha C, Kaushik A, Das A, Pal S, Majumder D. Anthracycline drugs on modified surface of quercetin-loaded polymer nanoparticles: A dual drug delivery model for cancer treatment. PLoS One 2016; 11(5): e0155710.
[http://dx.doi.org/10.1371/journal.pone.0155710] [PMID: 27196562]
[69]
Jabar A, Madni A, Bashir S, et al. Statistically optimized pentazocine loaded microsphere for the sustained delivery application: Formulation and characterization. PLoS One 2021; 16(4): e0250876.
[http://dx.doi.org/10.1371/journal.pone.0250876] [PMID: 33930049]
[70]
Güncüm E, Işıklan N, Anlaş C, Ünal N, Bulut E, Bakırel T. De-velopment and characterization of polymeric-based nanoparticles for sustained release of amoxicillin-an antimicrobial drug. Artif Cells Nanomed Biotechnol 2018; 46: 964-73.
[71]
Roese E, Bunjes H. Drug release studies from lipid nanoparticles in physiological media by a new DSC method. J Control Release 2017; 256: 92-100.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.032] [PMID: 28450207]
[72]
Ji P, Yu T, Liu Y, et al. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther 2016; 10: 911-25.
[PMID: 27041995]
[73]
Montenegro L, Castelli F, Sarpietro MG. Differential scanning calorimetry analyses of idebenone-loaded solid lipid nanoparticles interactions with a model of bio-membrane: A comparison with in vitro skin permeation data. Pharmaceuticals 2018; 11(4): E138.
[http://dx.doi.org/10.3390/ph11040138] [PMID: 30558360]
[74]
Majid M, Hassan E-D, Davoud A, Saman M. A study on the effect of nano-ZnO on rheological and dynamic mechanical properties of polypropylene: Experiments and models. Compos, Part B Eng 2011; 42(7): 2038-46.
[http://dx.doi.org/10.1016/j.compositesb.2011.04.043]
[75]
Zeisser-Labouèbe M, Delie F, Gurny R, Lange N. Benefits of nanoencapsulation for the hypercin-mediated photodetection of ovarian micrometastases. Eur J Pharm Biopharm 2009; 71(2): 207-13.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.005]
[76]
Zeisser-Labouèbe M, Mattiuzzo M, Lange N, Gurny R, Delie F. Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer. J Drug Target 2009; 17(8): 619-26.
[http://dx.doi.org/10.1080/10611860903118930] [PMID: 19589125]
[77]
da Volta Soares M, Oliveira MR, dos Santos EP, et al. Nanostructured delivery system for zinc phthalocyanine: Preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells. Int J Nanomedicine 2011; 6: 227-38.
[PMID: 21499420]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy