Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Genetics of Dravet Syndrome and its Targeted Therapy by Nanomedicine: A Roadmap for Future Treatment of Drug Resistant Seizures

Author(s): Muhammad Ikram* and Sufian Rasheed

Volume 16, Issue 4, 2023

Published on: 03 November, 2022

Article ID: e190822207736 Pages: 19

DOI: 10.2174/1874467215666220819143105

Price: $65

Abstract

According to the World Health Organization (WHO), epilepsy is the 4th most prevalent neurological disorder after migraine, stroke, and Alzheimer’s disease. There are numerous types of epileptic syndrome that are reported in children; one of them is Dravet syndrome. It is a neurological disorder of infants’ outset during the first year of life. Dravet syndrome is a genetically determined syndrome and the most studied form of genetic epilepsy. Nearly 70-80% of its cases are due to genetic alterations in the SCN1A gene, and almost 16% of cases are due to variations in the PCDH19 gene. Besides that, mutations in SCN1B, SCN2A, and GABRG2, including some novel genes, STXBP1, HCN1, and CDH2 have been observed in DS patients. It is a drug-resistant epileptic syndrome and its complete removal is still challenging. So, novel therapeutic techniques are being used to treat drug-resistant seizures. Recently, new strategies have been made to improve the neuron-specific targeting of AEDs encapsulated by nanocarriers. The nanocarriers will have a major contribution to nano-neuro medicines such as drug delivery, neuroimaging, neuroprotection, neurosurgery, and neuroregeneration. The nanotechnology-mediated techniques also have a fantastic success rate in gene therapy, as reported in recent years. The anti- epileptic drug delivery with the help of nanoparticles, at the targeted position, makes them applicable for the possible treatment of drug-resistant seizures and gives new hope to patients affected with it.

Keywords: Epilepsy, Dravet syndrome (DS), genetics, drug-resistant, treatment, nanoparticles.

Graphical Abstract
[1]
Newton, C.R.; Garcia, H.H. Epilepsy in poor regions of the world. Lancet, 2012, 380(9848), 1193-1201.
[http://dx.doi.org/10.1016/S0140-6736(12)61381-6] [PMID: 23021288]
[2]
Alame, S. Dravet syndrome in Lebanon: First report on cases with SCN1A mutations. Case Rep. Med., 2019, 5270503.
[http://dx.doi.org/10.1155/2019/5270503]
[3]
Adhikari, S. Demographics, clinical profile, cause and outcome of epilepsy in neurosurgical unit in Manipal teaching hospital in western Nepal. Eastern Green Neurosurgery, 2020, 2(2), 30-34.
[http://dx.doi.org/10.3126/egn.v2i2.29244]
[4]
Mei, D.; Cetica, V.; Marini, C.; Guerrini, R. Dravet syndrome as part of the clinical and genetic spectrum of sodium channel epilepsies and encephalopathies. Epilepsia, 2019, 60(Suppl. 3), S2-S7.
[http://dx.doi.org/10.1111/epi.16054] [PMID: 31904125]
[5]
Dhiman, V. Molecular genetics of epilepsy: A clinician’s perspective. Ann. Indian Acad. Neurol., 2017, 20(2), 96-102.
[http://dx.doi.org/10.4103/aian.AIAN_447_16] [PMID: 28615892]
[6]
Nolan, D.; Fink, J. Genetics of epilepsy. Handbook of clinical neurology; Elsevier, 2018, pp. 467-491.
[7]
Sánchez-Carpintero Abad, R.; Sanmartí Vilaplana, F.X.; Serratosa Fernández, J.M. Genetic causes of epilepsy. Neurologist, 2007, 13(6)(Suppl. 1), S47-S51.
[http://dx.doi.org/10.1097/NRL.0b013e31815bb07d] [PMID: 18090951]
[8]
Jackson, D.C.; Jones, J.E.; Hsu, D.A.; Stafstrom, C.E.; Lin, J.J.; Almane, D.; Koehn, M.A.; Seidenberg, M.; Hermann, B.P. Language function in childhood idiopathic epilepsy syndromes. Brain Lang., 2019, 193, 4-9.
[http://dx.doi.org/10.1016/j.bandl.2017.12.005] [PMID: 29610055]
[9]
Shorvon, S.D. The etiologic classification of epilepsy. Epilepsia, 2011, 52(6), 1052-1057.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03041.x] [PMID: 21449936]
[10]
Dravet, C. Severe myoclonic epilepsy in infancy (Dravet syndrome). Epilep. Syndrom. Infancy. Childhood Adol., 2005, 4, 89-113.
[11]
Dravet, C.; Daquin, G.; Battaglia, D. Severe myoclonic epilepsy of infancy (Dravet syndrome). Topics in epilepsy. Long term evolution of epileptic encephalopathies; John Libbey Eurotext: Montrouge, 2009, pp. 29-38.
[12]
Chen, C.; Westenbroek, R.E.; Xu, X.; Edwards, C.A.; Sorenson, D.R.; Chen, Y.; McEwen, D.P.; O’Malley, H.A.; Bharucha, V.; Meadows, L.S.; Knudsen, G.A.; Vilaythong, A.; Noebels, J.L.; Saunders, T.L.; Scheuer, T.; Shrager, P.; Catterall, W.A.; Isom, L.L. Mice lacking sodium channel β1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J. Neurosci., 2004, 24(16), 4030-4042.
[http://dx.doi.org/10.1523/JNEUROSCI.4139-03.2004] [PMID: 15102918]
[13]
Yu, F.H.; Mantegazza, M.; Westenbroek, R.E.; Robbins, C.A.; Kalume, F.; Burton, K.A.; Spain, W.J.; McKnight, G.S.; Scheuer, T.; Catterall, W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci., 2006, 9(9), 1142-1149.
[http://dx.doi.org/10.1038/nn1754] [PMID: 16921370]
[14]
Yuan, Y.; O’Malley, H.A.; Smaldino, M.A.; Bouza, A.A.; Hull, J.M.; Isom, L.L. Delayed maturation of GABAergic signaling in the Scn1a and Scn1b mouse models of Dravet Syndrome. Sci. Rep., 2019, 9(1), 6210.
[http://dx.doi.org/10.1038/s41598-019-42191-0] [PMID: 30996233]
[15]
Kalume, F.; Westenbroek, R.E.; Cheah, C.S.; Yu, F.H.; Oakley, J.C.; Scheuer, T.; Catterall, W.A. Sudden unexpected death in a mouse model of Dravet syndrome. J. Clin. Invest., 2013, 123(4), 1798-1808.
[http://dx.doi.org/10.1172/JCI66220] [PMID: 23524966]
[16]
Dravet, C. The core Dravet syndrome phenotype. Epilepsia, 2011, 52(Suppl. 2), 3-9.
[http://dx.doi.org/10.1111/j.1528-1167.2011.02994.x] [PMID: 21463272]
[17]
Suls, A.; Jaehn, J.A.; Kecskés, A.; Weber, Y.; Weckhuysen, S.; Craiu, D.C.; Siekierska, A.; Djémié, T.; Afrikanova, T.; Gormley, P.; von Spiczak, S.; Kluger, G.; Iliescu, C.M.; Talvik, T.; Talvik, I.; Meral, C.; Caglayan, H.S.; Giraldez, B.G.; Serratosa, J.; Lemke, J.R.; Hoffman-Zacharska, D.; Szczepanik, E.; Barisic, N.; Komarek, V.; Hjalgrim, H.; Møller, R.S.; Linnankivi, T.; Dimova, P.; Striano, P.; Zara, F.; Marini, C.; Guerrini, R.; Depienne, C.; Baulac, S.; Kuhlenbäumer, G.; Crawford, A.D.; Lehesjoki, A.E.; de Witte, P.A.; Palotie, A.; Lerche, H.; Esguerra, C.V.; De Jonghe, P.; Helbig, I. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am. J. Hum. Genet., 2013, 93(5), 967-975.
[http://dx.doi.org/10.1016/j.ajhg.2013.09.017] [PMID: 24207121]
[18]
Depienne, C.; Trouillard, O.; Gourfinkel-An, I.; Saint-Martin, C.; Bouteiller, D.; Graber, D.; Barthez-Carpentier, M.A.; Gautier, A.; Villeneuve, N.; Dravet, C.; Livet, M.O.; Rivier-Ringenbach, C.; Adam, C.; Dupont, S.; Baulac, S.; Héron, D.; Nabbout, R.; Leguern, E. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J. Med. Genet., 2010, 47(6), 404-410.
[http://dx.doi.org/10.1136/jmg.2009.074328] [PMID: 20522430]
[19]
Anwar, A.; Saleem, S.; Patel, U.K.; Arumaithurai, K.; Malik, P. Dravet syndrome: An overview. Cureus, 2019, 11(6), e5006.
[PMID: 31497436]
[20]
Scheffer, I.E.; Berkovic, S.F. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain, 1997, 120(Pt 3), 479-490.
[http://dx.doi.org/10.1093/brain/120.3.479] [PMID: 9126059]
[21]
Steel, D.; Symonds, J.D.; Zuberi, S.M.; Brunklaus, A. Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia, 2017, 58(11), 1807-1816.
[http://dx.doi.org/10.1111/epi.13889] [PMID: 28880996]
[22]
Stern, W.M.; Sander, J.W.; Rothwell, J.C.; Sisodiya, S.M. Impaired intracortical inhibition demonstrated in vivo in people with Dravet syndrome. Neurology, 2017, 88(17), 1659-1665.
[http://dx.doi.org/10.1212/WNL.0000000000003868] [PMID: 28356460]
[23]
Anderson, L.L.; Hawkins, N.A.; Thompson, C.H.; Kearney, J.A.; George, A.L. Jr Unexpected efficacy of a novel sodium channel modulator in Dravet syndrome. Sci. Rep., 2017, 7(1), 1682.
[http://dx.doi.org/10.1038/s41598-017-01851-9] [PMID: 28490751]
[24]
Stessman, H.A.; Turner, T.N.; Eichler, E.E. Molecular subtyping and improved treatment of neurodevelopmental disease. Genome Med., 2016, 8(1), 22.
[http://dx.doi.org/10.1186/s13073-016-0278-z] [PMID: 26917491]
[25]
Catterall, W.A.; Dib-Hajj, S.; Meisler, M.H.; Pietrobon, D. Inherited neuronal ion channelopathies: New windows on complex neurological diseases. J. Neurosci., 2008, 28(46), 11768-11777.
[http://dx.doi.org/10.1523/JNEUROSCI.3901-08.2008] [PMID: 19005038]
[26]
Vezzani, A.; Bartfai, T. Febrile response and seizures. Stress: Physiology, Biochemistry, and Pathology; Elsevier, 2019, pp. 403-411.
[http://dx.doi.org/10.1016/B978-0-12-813146-6.00029-1]
[27]
Wolff, M.; Cassé-Perrot, C.; Dravet, C. Severe myoclonic epilepsy of infants (Dravet syndrome): Natural history and neuropsychological findings. Epilepsia, 2006, 47(s2)(Suppl. 2), 45-48.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00688.x] [PMID: 17105460]
[28]
Myers, K.A.; Scheffer, I.E. Myoclonic absence seizures in Dravet syndrome. Pediatr. Neurol., 2017, 70, 67-69.
[http://dx.doi.org/10.1016/j.pediatrneurol.2017.01.004] [PMID: 28233668]
[29]
Marini, C.; Mei, D.; Temudo, T.; Ferrari, A.R.; Buti, D.; Dravet, C.; Dias, A.I.; Moreira, A.; Calado, E.; Seri, S.; Neville, B.; Narbona, J.; Reid, E.; Michelucci, R.; Sicca, F.; Cross, H.J.; Guerrini, R. Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia, 2007, 48(9), 1678-1685.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01122.x] [PMID: 17561957]
[30]
Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med., 2017, 376(21), 2011-2020.
[http://dx.doi.org/10.1056/NEJMoa1611618] [PMID: 28538134]
[31]
Losito, E.; Kuchenbuch, M.; Chemaly, N.; Laschet, J.; Chiron, C.; Kaminska, A.; Nabbout, R. Age-related “Sleep/nocturnal” tonic and tonic clonic seizure clusters are underdiagnosed in patients with Dravet Syndrome. Epilepsy Behav., 2017, 74, 33-40.
[http://dx.doi.org/10.1016/j.yebeh.2017.05.037] [PMID: 28683344]
[32]
Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front. Neurol., 2017, 8, 301.
[http://dx.doi.org/10.3389/fneur.2017.00301] [PMID: 28729850]
[33]
Briggs, D.E.; French, J.A. What makes epilepsy drug refractory? Expert Rev. Neurother., 2003, 3(1), 127-131.
[http://dx.doi.org/10.1586/14737175.3.1.127] [PMID: 19810855]
[34]
Beleza, P. Refractory epilepsy: A clinically oriented review. Eur. Neurol., 2009, 62(2), 65-71.
[http://dx.doi.org/10.1159/000222775] [PMID: 19521080]
[35]
Heinemann, U.; Kaufer, D.; Friedman, A. Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia, 2012, 60(8), 1251-1257.
[http://dx.doi.org/10.1002/glia.22311] [PMID: 22378298]
[36]
Han, H.; Mann, A.; Ekstein, D.; Eyal, S. Breaking bad: The structure and function of the blood-brain barrier in epilepsy. AAPS J., 2017, 19(4), 973-988.
[http://dx.doi.org/10.1208/s12248-017-0096-2] [PMID: 28550637]
[37]
Löscher, W.; Potschka, H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther., 2002, 301(1), 7-14.
[http://dx.doi.org/10.1124/jpet.301.1.7] [PMID: 11907151]
[38]
Sisodiya, S. Etiology and management of refractory epilepsies. Nat. Clin. Pract. Neurol., 2007, 3(6), 320-330.
[http://dx.doi.org/10.1038/ncpneuro0521] [PMID: 17549058]
[39]
Bresnahan, R.; Panebianco, M.; Marson, A.G. Brivaracetam add‐on therapy for drug‐resistant epilepsy. Cochrane Database Syst. Rev., 2019, 3(3), CD011501.
[http://dx.doi.org/10.1002/14651858.CD011501.pub2]
[40]
Cuello Oderiz, C.; von Ellenrieder, N.; Dubeau, F.; Eisenberg, A.; Gotman, J.; Hall, J.; Hincapié, A.S.; Hoffmann, D.; Job, A.S.; Khoo, H.M.; Minotti, L.; Olivier, A.; Kahane, P.; Frauscher, B. Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy. JAMA Neurol., 2019, 76(9), 1070-1078.
[http://dx.doi.org/10.1001/jamaneurol.2019.1464] [PMID: 31180505]
[41]
Mehdizadeh, A.; Barzegar, M.; Negargar, S.; Yahyavi, A.; Raeisi, S. The current and emerging therapeutic approaches in drug-resistant epilepsy management. Acta Neurol. Belg., 2019, 119(2), 155-162.
[http://dx.doi.org/10.1007/s13760-019-01120-8] [PMID: 30868468]
[42]
la Torre, A.R.; Rocha, L.; Salgado-Ceballos, H.; García Casillas, P.E.; Luna-Barcenas, G. Nanotechnology as potential strategy for the treatment of pharmacoresistant epilepsy and comorbid psychiatric disorders. Mini Rev. Med. Chem., 2017, 17(3), 237-246.
[http://dx.doi.org/10.2174/1389557516666161013105000] [PMID: 27739360]
[43]
Musumeci, T.; Bonaccorso, A.; Puglisi, G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview. Pharmaceutics, 2019, 11(3), 118.
[http://dx.doi.org/10.3390/pharmaceutics11030118] [PMID: 30871237]
[44]
Carvill, G.L.; Engel, K.L.; Ramamurthy, A.; Cochran, J.N.; Roovers, J.; Stamberger, H.; Lim, N.; Schneider, A.L.; Hollingsworth, G.; Holder, D.H.; Regan, B.M.; Lawlor, J.; Lagae, L.; Ceulemans, B.; Bebin, E.M.; Nguyen, J.; Barsh, G.S.; Weckhuysen, S.; Meisler, M.; Berkovic, S.F.; De Jonghe, P.; Scheffer, I.E.; Myers, R.M.; Cooper, G.M.; Mefford, H.C. Aberrant inclusion of a poison exon causes dravet syndrome and related SCN1A-associated genetic epilepsies. Am. J. Hum. Genet., 2018, 103(6), 1022-1029.
[http://dx.doi.org/10.1016/j.ajhg.2018.10.023] [PMID: 30526861]
[45]
Poryo, M.; Clasen, O.; Oehl-Jaschkowitz, B.; Christmann, A.; Gortner, L.; Meyer, S. Dravet syndrome: A new causative SCN1A mutation? Clin. Case Rep., 2017, 5(5), 613-615.
[http://dx.doi.org/10.1002/ccr3.787] [PMID: 28469861]
[46]
Claes, L.; Ceulemans, B.; Audenaert, D.; Smets, K.; Löfgren, A.; Del-Favero, J.; Ala-Mello, S.; Basel-Vanagaite, L.; Plecko, B.; Raskin, S.; Thiry, P.; Wolf, N.I.; Van Broeckhoven, C.; De Jonghe, P. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum. Mutat., 2003, 21(6), 615-621.
[http://dx.doi.org/10.1002/humu.10217] [PMID: 12754708]
[47]
Marini, C.; Scheffer, I.E.; Nabbout, R.; Suls, A.; De Jonghe, P.; Zara, F.; Guerrini, R. The genetics of Dravet syndrome. Epilepsia, 2011, 52(s2)(Suppl. 2), 24-29.
[http://dx.doi.org/10.1111/j.1528-1167.2011.02997.x] [PMID: 21463275]
[48]
Gontika, M.P. Novel SCN1A and GABRA1 Gene Mutations With Diverse Phenotypic Features and the Question on the Existence of a Broader Spectrum of Dravet Syndrome. Child. Neurol. Open, 2017, 4, 2329048X17706794.
[http://dx.doi.org/10.1177/2329048X17706794]
[49]
Ishii, A. Clinical implications of SCN1A missense and truncation variants in a large Japanese cohort with Dravet syndrome. Epilepsia, 2017, 58(2), 282-290.
[PMID: 28012175]
[50]
Jiang, P.; Shen, J.; Yu, Y.; Jiang, L.; Xu, J.; Xu, L.; Yu, H.; Gao, F. Dravet syndrome with favourable cognitive and behavioral development due to a novel SCN1A frameshift mutation. Clin. Neurol. Neurosurg., 2016, 146, 144-146.
[http://dx.doi.org/10.1016/j.clineuro.2016.05.008] [PMID: 27209029]
[51]
Fry, A.E.; Rees, E.; Thompson, R.; Mantripragada, K.; Blake, P.; Jones, G.; Morgan, S.; Jose, S.; Mugalaasi, H.; Archer, H.; McCann, E.; Clarke, A.; Taylor, C.; Davies, S.; Gibbon, F.; Te Water Naude, J.; Hartley, L.; Thomas, G.; White, C.; Natarajan, J.; Thomas, R.H.; Drew, C.; Chung, S.K.; Rees, M.I.; Holmans, P.; Owen, M.J.; Kirov, G.; Pilz, D.T.; Kerr, M.P. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Med. Genet., 2016, 17(1), 34.
[http://dx.doi.org/10.1186/s12881-016-0294-2] [PMID: 27113213]
[52]
Carvill, G.L.; Weckhuysen, S.; McMahon, J.M.; Hartmann, C.; Møller, R.S.; Hjalgrim, H.; Cook, J.; Geraghty, E.; O’Roak, B.J.; Petrou, S.; Clarke, A.; Gill, D.; Sadleir, L.G.; Muhle, H.; von Spiczak, S.; Nikanorova, M.; Hodgson, B.L.; Gazina, E.V.; Suls, A.; Shendure, J.; Dibbens, L.M.; De Jonghe, P.; Helbig, I.; Berkovic, S.F.; Scheffer, I.E.; Mefford, H.C. GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome. Neurology, 2014, 82(14), 1245-1253.
[http://dx.doi.org/10.1212/WNL.0000000000000291] [PMID: 24623842]
[53]
Saitsu, H.; Kato, M.; Mizuguchi, T.; Hamada, K.; Osaka, H.; Tohyama, J.; Uruno, K.; Kumada, S.; Nishiyama, K.; Nishimura, A.; Okada, I.; Yoshimura, Y.; Hirai, S.; Kumada, T.; Hayasaka, K.; Fukuda, A.; Ogata, K.; Matsumoto, N. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat. Genet., 2008, 40(6), 782-788.
[http://dx.doi.org/10.1038/ng.150] [PMID: 18469812]
[54]
Stamberger, H.; Nikanorova, M.; Willemsen, M.H.; Accorsi, P.; Angriman, M.; Baier, H.; Benkel-Herrenbrueck, I.; Benoit, V.; Budetta, M.; Caliebe, A.; Cantalupo, G.; Capovilla, G.; Casara, G.; Courage, C.; Deprez, M.; Destrée, A.; Dilena, R.; Erasmus, C.E.; Fannemel, M.; Fjær, R.; Giordano, L.; Helbig, K.L.; Heyne, H.O.; Klepper, J.; Kluger, G.J.; Lederer, D.; Lodi, M.; Maier, O.; Merkenschlager, A.; Michelberger, N.; Minetti, C.; Muhle, H.; Phalin, J.; Ramsey, K.; Romeo, A.; Schallner, J.; Schanze, I.; Shinawi, M.; Sleegers, K.; Sterbova, K.; Syrbe, S.; Traverso, M.; Tzschach, A.; Uldall, P.; Van Coster, R.; Verhelst, H.; Viri, M.; Winter, S.; Wolff, M.; Zenker, M.; Zoccante, L.; De Jonghe, P.; Helbig, I.; Striano, P.; Lemke, J.R.; Møller, R.S.; Weckhuysen, S. STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology, 2016, 86(10), 954-962.
[http://dx.doi.org/10.1212/WNL.0000000000002457] [PMID: 26865513]
[55]
Santoro, B.; Liu, D.T.; Yao, H.; Bartsch, D.; Kandel, E.R.; Siegelbaum, S.A.; Tibbs, G.R. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell, 1998, 93(5), 717-729.
[http://dx.doi.org/10.1016/S0092-8674(00)81434-8] [PMID: 9630217]
[56]
Nava, C.; Dalle, C.; Rastetter, A.; Striano, P.; de Kovel, C.G.; Nabbout, R.; Cancès, C.; Ville, D.; Brilstra, E.H.; Gobbi, G.; Raffo, E.; Bouteiller, D.; Marie, Y.; Trouillard, O.; Robbiano, A.; Keren, B.; Agher, D.; Roze, E.; Lesage, S.; Nicolas, A.; Brice, A.; Baulac, M.; Vogt, C.; El Hajj, N.; Schneider, E.; Suls, A.; Weckhuysen, S.; Gormley, P.; Lehesjoki, A.E.; De Jonghe, P.; Helbig, I.; Baulac, S.; Zara, F.; Koeleman, B.P.; Haaf, T.; LeGuern, E.; Depienne, C. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat. Genet., 2014, 46(6), 640-645.
[http://dx.doi.org/10.1038/ng.2952] [PMID: 24747641]
[57]
Carvill, G.L.; Heavin, S.B.; Yendle, S.C.; McMahon, J.M.; O’Roak, B.J.; Cook, J.; Khan, A.; Dorschner, M.O.; Weaver, M.; Calvert, S.; Malone, S.; Wallace, G.; Stanley, T.; Bye, A.M.; Bleasel, A.; Howell, K.B.; Kivity, S.; Mackay, M.T.; Rodriguez-Casero, V.; Webster, R.; Korczyn, A.; Afawi, Z.; Zelnick, N.; Lerman-Sagie, T.; Lev, D.; Møller, R.S.; Gill, D.; Andrade, D.M.; Freeman, J.L.; Sadleir, L.G.; Shendure, J.; Berkovic, S.F.; Scheffer, I.E.; Mefford, H.C. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat. Genet., 2013, 45(7), 825-830.
[http://dx.doi.org/10.1038/ng.2646] [PMID: 23708187]
[58]
Wang, J.; Wen, Y.; Zhang, Q.; Yu, S.; Chen, Y.; Wu, X.; Zhang, Y.; Bao, X. Gene mutational analysis in a cohort of Chinese children with unexplained epilepsy: Identification of a new KCND3 phenotype and novel genes causing Dravet syndrome. Seizure, 2019, 66, 26-30.
[http://dx.doi.org/10.1016/j.seizure.2019.01.025] [PMID: 30776697]
[59]
Depienne, C.; Bouteiller, D.; Keren, B.; Cheuret, E.; Poirier, K.; Trouillard, O.; Benyahia, B.; Quelin, C.; Carpentier, W.; Julia, S.; Afenjar, A.; Gautier, A.; Rivier, F.; Meyer, S.; Berquin, P.; Hélias, M.; Py, I.; Rivera, S.; Bahi-Buisson, N.; Gourfinkel-An, I.; Cazeneuve, C.; Ruberg, M.; Brice, A.; Nabbout, R.; Leguern, E. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet., 2009, 5(2), e1000381.
[http://dx.doi.org/10.1371/journal.pgen.1000381] [PMID: 19214208]
[60]
Kang, J-Q.; Macdonald, R.L. Molecular pathogenic basis for GABRG2 mutations associated with a spectrum of epilepsy syndromes, from generalized absence epilepsy to Dravet syndrome. JAMA Neurol., 2016, 73(8), 1009-1016.
[http://dx.doi.org/10.1001/jamaneurol.2016.0449] [PMID: 27367160]
[61]
Patino, G.A.; Claes, L.R.; Lopez-Santiago, L.F.; Slat, E.A.; Dondeti, R.S.; Chen, C.; O’Malley, H.A.; Gray, C.B.; Miyazaki, H.; Nukina, N.; Oyama, F.; De Jonghe, P.; Isom, L.L. A functional null mutation of SCN1B in a patient with Dravet syndrome. J. Neurosci., 2009, 29(34), 10764-10778.
[http://dx.doi.org/10.1523/JNEUROSCI.2475-09.2009] [PMID: 19710327]
[62]
Shi, X.; Yasumoto, S.; Nakagawa, E.; Fukasawa, T.; Uchiya, S.; Hirose, S. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev., 2009, 31(10), 758-762.
[http://dx.doi.org/10.1016/j.braindev.2009.08.009] [PMID: 19783390]
[63]
Mulley, J.C.; Hodgson, B.; McMahon, J.M.; Iona, X.; Bellows, S.; Mullen, S.A.; Farrell, K.; Mackay, M.; Sadleir, L.; Bleasel, A.; Gill, D.; Webster, R.; Wirrell, E.C.; Harbord, M.; Sisodiya, S.; Andermann, E.; Kivity, S.; Berkovic, S.F.; Scheffer, I.E.; Dibbens, L.M. Role of the sodium channel SCN9A in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia, 2013, 54(9), e122-e126.
[http://dx.doi.org/10.1111/epi.12323] [PMID: 23895530]
[64]
Ohmori, I.; Ouchida, M.; Miki, T.; Mimaki, N.; Kiyonaka, S.; Nishiki, T.; Tomizawa, K.; Mori, Y.; Matsui, H.A. CACNB4 mutation shows that altered Ca(v)2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol. Dis., 2008, 32(3), 349-354.
[http://dx.doi.org/10.1016/j.nbd.2008.07.017] [PMID: 18755274]
[65]
Gong, J-E.; Liao, H.M.; Long, H.Y.; Li, X.M.; Long, L.L.; Zhou, L.; Gu, W.P.; Lu, S.H.; Qu, Q.; Yang, L.M.; Xiao, B.; Qu, J. SCN1B and SCN2B gene variants analysis in dravet syndrome patients: Analysis of 22 cases. Medicine (Baltimore), 2019, 98(13), e14974.
[http://dx.doi.org/10.1097/MD.0000000000014974] [PMID: 30921204]
[66]
Larsen, J.; Carvill, G.L.; Gardella, E.; Kluger, G.; Schmiedel, G.; Barisic, N.; Depienne, C.; Brilstra, E.; Mang, Y.; Nielsen, J.E.; Kirkpatrick, M.; Goudie, D.; Goldman, R.; Jähn, J.A.; Jepsen, B.; Gill, D.; Döcker, M.; Biskup, S.; McMahon, J.M.; Koeleman, B.; Harris, M.; Braun, K.; de Kovel, C.G.; Marini, C.; Specchio, N.; Djémié, T.; Weckhuysen, S.; Tommerup, N.; Troncoso, M.; Troncoso, L.; Bevot, A.; Wolff, M.; Hjalgrim, H.; Guerrini, R.; Scheffer, I.E.; Mefford, H.C.; Møller, R.S. The phenotypic spectrum of SCN8A encephalopathy. Neurology, 2015, 84(5), 480-489.
[http://dx.doi.org/10.1212/WNL.0000000000001211] [PMID: 25568300]
[67]
Abramov, D.; Guiberson, N.G.L.; Burré, J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J. Neurochem., 2021, 157(2), 165-178.
[http://dx.doi.org/10.1111/jnc.15120] [PMID: 32643187]
[68]
Trivisano, M.; Striano, P.; Sartorelli, J.; Giordano, L.; Traverso, M.; Accorsi, P.; Cappelletti, S.; Claps, D.J.; Vigevano, F.; Zara, F.; Specchio, N. CHD2 mutations are a rare cause of generalized epilepsy with myoclonic-atonic seizures. Epilepsy Behav., 2015, 51, 53-56.
[http://dx.doi.org/10.1016/j.yebeh.2015.06.029] [PMID: 26262932]
[69]
Hundallah, K. Severe early-onset epileptic encephalopathy due to mutations in the KCNA2 gene: Expansion of the genotypic and phenotypic spectrum. Eur. J. Paediatr. Neurol., 2016, 20(4), 657-660.
[70]
Holmes, G.L.; Noebels, J.L. The epilepsy spectrum: Targeting future research challenges. Cold Spring Harb. Perspect. Med., 2016, 6(7), a028043.
[http://dx.doi.org/10.1101/cshperspect.a028043] [PMID: 27371672]
[71]
Jacobs, M.P.; Leblanc, G.G.; Brooks-Kayal, A.; Jensen, F.E.; Lowenstein, D.H.; Noebels, J.L.; Spencer, D.D.; Swann, J.W. Curing epilepsy: Progress and future directions. Epilepsy Behav., 2009, 14(3), 438-445.
[http://dx.doi.org/10.1016/j.yebeh.2009.02.036] [PMID: 19341977]
[72]
Milikovsky, D.Z.; Kaufer, D.; Friedman, A. Blood–brain barrier disruption. Models of Seizures and Epilepsy; Elsevier, 2017, pp. 951-959.
[http://dx.doi.org/10.1016/B978-0-12-804066-9.00066-3]
[73]
Ghosh, C.; Hossain, M.; Solanki, J.; Dadas, A.; Marchi, N.; Janigro, D. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov. Today, 2016, 21(10), 1609-1619.
[http://dx.doi.org/10.1016/j.drudis.2016.06.004] [PMID: 27312874]
[74]
Liu, J.; He, Y.; Zhang, J.; Li, J.; Yu, X.; Cao, Z.; Meng, F.; Zhao, Y.; Wu, X.; Shen, T.; Hong, Z. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials, 2016, 74, 64-76.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.041] [PMID: 26447556]
[75]
Potschka, H. Transporter hypothesis of drug-resistant epilepsy: Challenges for pharmacogenetic approaches. Pharmacogenomics, 2010, 11(10), 1427-1438.
[http://dx.doi.org/10.2217/pgs.10.126] [PMID: 21047204]
[76]
Pérez-Pérez, D.; Frías-Soria, C.L.; Rocha, L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav., 2021, 121(Pt B), 106430.
[http://dx.doi.org/10.1016/j.yebeh.2019.07.031] [PMID: 31378558]
[77]
Leandro, K.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. ABC transporters in drug-resistant epilepsy: Mechanisms of upregulation and therapeutic approaches. Pharmacol. Res., 2019, 144, 357-376.
[http://dx.doi.org/10.1016/j.phrs.2019.04.031] [PMID: 31051235]
[78]
Ugur Yilmaz, C.; Emik, S.; Orhan, N.; Temizyurek, A.; Atis, M.; Akcan, U.; Khodadust, R.; Arican, N.; Kucuk, M.; Gurses, C.; Ahishali, B.; Kaya, M. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci., 2020, 257, 118081.
[http://dx.doi.org/10.1016/j.lfs.2020.118081] [PMID: 32663576]
[79]
Wang, Y.; Chen, Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol. Ther., 2019, 201, 77-93.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.010] [PMID: 31128154]
[80]
Scott, R.C. Network science for the identification of novel therapeutic targets in epilepsy. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.8214.1] [PMID: 27239287]
[81]
Scott, D.F. The discovery of anti-epileptic drugs. J. Hist. Neurosci., 1992, 1(2), 111-118.
[http://dx.doi.org/10.1080/09647049209525522] [PMID: 11618419]
[82]
Schwartz-Porsche, D.; Löscher, W.; Frey, H.H. Therapeutic efficacy of phenobarbital and primidone in canine epilepsy: A comparison. J. Vet. Pharmacol. Ther., 1985, 8(2), 113-119.
[http://dx.doi.org/10.1111/j.1365-2885.1985.tb00934.x] [PMID: 4020942]
[83]
Lundström, A.; Eeg-Olofsson, O.; Hamp, S.E. Effects of anti-epileptic drug treatment with carbamazepine or phenytoin on the oral state of children and adolescents. J. Clin. Periodontol., 1982, 9(6), 482-488.
[http://dx.doi.org/10.1111/j.1600-051X.1982.tb02109.x] [PMID: 6816838]
[84]
Gordon, N. Fetal drug syndromes. Postgrad. Med. J., 1978, 54(638), 796-798.
[http://dx.doi.org/10.1136/pgmj.54.638.796]
[85]
Reynolds, E. Longitudinal Studies of Serum Anti-Epileptic Drug Levels Preliminary Observations: Interaction of Phenytoin and Primidone. Clinical Pharmacology of anti-epileptic drugs; Springer, 1975, pp. 79-86.
[http://dx.doi.org/10.1007/978-3-642-85921-2_7]
[86]
Appleton, R.; Sweeney, A.; Choonara, I.; Robson, J.; Molyneux, E. Lorazepam versus diazepam in the acute treatment of epileptic seizures and status epilepticus. Dev. Med. Child Neurol., 1995, 37(8), 682-688.
[http://dx.doi.org/10.1111/j.1469-8749.1995.tb15014.x] [PMID: 7672465]
[87]
Hassan, M.N.; Laljee, H.C.; Parsonage, M.J. Sodium valproate in the treatment of resistant epilepsy. Acta Neurol. Scand., 1976, 54(3), 209-218.
[http://dx.doi.org/10.1111/j.1600-0404.1976.tb04797.x] [PMID: 822682]
[88]
Roussounis, S.H.; de Rudolf, N. Clonazepam in the treatment of children with intractable seizures. Dev. Med. Child Neurol., 1977, 19(3), 326-334.
[http://dx.doi.org/10.1111/j.1469-8749.1977.tb08368.x] [PMID: 407118]
[89]
Schmidt, D.; Utech, K. Progabide for refractory partial epilepsy: A controlled add-on trial. Neurology, 1986, 36(2), 217-221.
[http://dx.doi.org/10.1212/WNL.36.2.217] [PMID: 3511402]
[90]
Sander, J.W.; Trevisol-Bittencourt, P.C.; Hart, Y.M.; Shorvon, S.D. Evaluation of vigabatrin as an add-on drug in the management of severe epilepsy. J. Neurol. Neurosurg. Psychiatry, 1990, 53(11), 1008-1010.
[http://dx.doi.org/10.1136/jnnp.53.11.1008] [PMID: 2283513]
[91]
Buoni, S.; Grosso, S.; Fois, A. Lamotrigine in typical absence epilepsy. Brain Dev., 1999, 21(5), 303-306.
[http://dx.doi.org/10.1016/S0387-7604(99)00023-6] [PMID: 10413016]
[92]
Keränen, T.; Jolkkonen, J.; Klosterskov-Jensen, P.; Menge, G.P. Oxcarbazepine does not interact with cimetidine in healthy volunteers. Acta Neurol. Scand., 1992, 85(4), 239-242.
[http://dx.doi.org/10.1111/j.1600-0404.1992.tb04038.x] [PMID: 1585795]
[93]
Bourgeois, B.F. Felbamate. In: Seminars. Pediatr. Neurol., 1998, 5(1), 76.
[94]
Dougherty, J.A.; Rhoney, D.H. Gabapentin: A unique anti-epileptic agent. Neurol. Res., 2001, 23(8), 821-829.
[http://dx.doi.org/10.1179/016164101101199414] [PMID: 11760873]
[95]
Schneiderman, J.H. Topiramate: Pharmacokinetics and pharmacodynamics. Can. J. Neurol. Sci., 1998, 25(3), S3-S5.
[http://dx.doi.org/10.1017/S031716710003482X] [PMID: 9706732]
[96]
Kälviäinen, R.; Aikiä, M.; Mervaala, E.; Saukkonen, A.M.; Pitkänen, A.; Riekkinen, P.J. Sr Long-term cognitive and EEG effects of tiagabine in drug-resistant partial epilepsy. Epilepsy Res., 1996, 25(3), 291-297.
[http://dx.doi.org/10.1016/S0920-1211(96)00084-8] [PMID: 8956929]
[97]
Jain, K.K. An assessment of levetiracetam as an anti-epileptic drug. Expert Opin. Investig. Drugs, 2000, 9(7), 1611-1624.
[http://dx.doi.org/10.1517/13543784.9.7.1611] [PMID: 11060765]
[98]
Jain, K.K. An assessment of zonisamide as an anti-epileptic drug. Expert Opin. Pharmacother., 2000, 1(6), 1245-1260.
[http://dx.doi.org/10.1517/14656566.1.6.1245] [PMID: 11249491]
[99]
Frampton, J.E. Stiripentol: A review in Dravet syndrome. Drugs, 2019, 79(16), 1785-1796.
[http://dx.doi.org/10.1007/s40265-019-01204-y] [PMID: 31617141]
[100]
Valentin, A.; Moran, N.; Hadden, R.; Oakes, A.; Elwes, R.; Delamont, R.; Mullatti, N.; Nashef, L. Pregabalin as adjunctive therapy for partial epilepsy: An audit study in 96 patients from the South East of England. Seizure, 2009, 18(6), 450-452.
[http://dx.doi.org/10.1016/j.seizure.2009.01.001] [PMID: 19213577]
[101]
Hakimian, S.; Cheng-Hakimian, A.; Anderson, G.D.; Miller, J.W. Rufinamide: A new anti-epileptic medication. Expert Opin. Pharmacother., 2007, 8(12), 1931-1940.
[http://dx.doi.org/10.1517/14656566.8.12.1931] [PMID: 17696794]
[102]
Stöhr, T.; Kupferberg, H.J.; Stables, J.P.; Choi, D.; Harris, R.H.; Kohn, H.; Walton, N.; White, H.S. Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodent models for epilepsy. Epilepsy Res., 2007, 74(2-3), 147-154.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.03.004] [PMID: 17433624]
[103]
Mestre, T.; Ferreira, J. Eslicarbazepine acetate: A new option for the treatment of focal epilepsy. Expert Opin. Investig. Drugs, 2009, 18(2), 221-229.
[http://dx.doi.org/10.1517/13543780802635107] [PMID: 19236268]
[104]
Stafstrom, C.E.; Grippon, S.; Kirkpatrick, P. Ezogabine (retigabine). Nat. Rev. Drug Discov., 2011, 10(10), 729-730.
[http://dx.doi.org/10.1038/nrd3561] [PMID: 21959281]
[105]
Ceolin, L.; Bortolotto, Z.A.; Bannister, N.; Collingridge, G.L.; Lodge, D.; Volianskis, A. A novel anti-epileptic agent, perampanel, selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus. Neurochem. Int., 2012, 61(4), 517-522.
[http://dx.doi.org/10.1016/j.neuint.2012.02.035] [PMID: 22433907]
[106]
Rundfeldt, C.; Löscher, W. The pharmacology of imepitoin: The first partial benzodiazepine receptor agonist developed for the treatment of epilepsy. CNS Drugs, 2014, 28(1), 29-43.
[http://dx.doi.org/10.1007/s40263-013-0129-z] [PMID: 24357084]
[107]
Samueli, S.; Abraham, K.; Dressler, A.; Gröppel, G.; Mühlebner-Fahrngruber, A.; Scholl, T.; Kasprian, G.; Laccone, F.; Feucht, M. Efficacy and safety of everolimus in children with TSC - associated epilepsy - pilot data from an open single-center prospective study. Orphanet J. Rare Dis., 2016, 11(1), 145.
[http://dx.doi.org/10.1186/s13023-016-0530-z] [PMID: 27809914]
[108]
Theochari, E.; Cock, H.; Lozsadi, D.; Galtrey, C.; Arevalo, J.; Mula, M. Brivaracetam in adults with drug-resistant epilepsy and psychiatric comorbidities. Epilepsy Behav., 2019, 90, 129-131.
[http://dx.doi.org/10.1016/j.yebeh.2018.11.032] [PMID: 30530134]
[109]
Chen, K.A.; Farrar, M.; Cardamone, M.; Gill, D.; Smith, R.; Cowell, C.T.; Truong, L.; Lawson, J.A. Cannabidiol for treating drug-resistant epilepsy in children: The new South wales experience. Med. J. Aust., 2018, 209(5), 217-221.
[http://dx.doi.org/10.5694/mja18.00023] [PMID: 30092753]
[110]
Liao, H-K. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 2017, 171(7), 1495-1507.
[111]
Hilton, I.B.; D’Ippolito, A.M.; Vockley, C.M.; Thakore, P.I.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol., 2015, 33(5), 510-517.
[http://dx.doi.org/10.1038/nbt.3199] [PMID: 25849900]
[112]
Zhou, H.; Liu, J.; Zhou, C.; Gao, N.; Rao, Z.; Li, H.; Hu, X.; Li, C.; Yao, X.; Shen, X.; Sun, Y.; Wei, Y.; Liu, F.; Ying, W.; Zhang, J.; Tang, C.; Zhang, X.; Xu, H.; Shi, L.; Cheng, L.; Huang, P.; Yang, H. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci., 2018, 21(3), 440-446.
[http://dx.doi.org/10.1038/s41593-017-0060-6] [PMID: 29335603]
[113]
Yamagata, T.; Raveau, M.; Kobayashi, K.; Miyamoto, H.; Tatsukawa, T.; Ogiwara, I.; Itohara, S.; Hensch, T.K.; Yamakawa, K. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol. Dis., 2020, 141, 104954.
[http://dx.doi.org/10.1016/j.nbd.2020.104954] [PMID: 32445790]
[114]
Colasante, G.; Lignani, G.; Brusco, S.; Di Berardino, C.; Carpenter, J.; Giannelli, S.; Valassina, N.; Bido, S.; Ricci, R.; Castoldi, V.; Marenna, S.; Church, T.; Massimino, L.; Morabito, G.; Benfenati, F.; Schorge, S.; Leocani, L.; Kullmann, D.M.; Broccoli, V. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol. Ther., 2020, 28(1), 235-253.
[http://dx.doi.org/10.1016/j.ymthe.2019.08.018] [PMID: 31607539]
[115]
Grubb, M.S.; Burrone, J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature, 2010, 465(7301), 1070-1074.
[http://dx.doi.org/10.1038/nature09160] [PMID: 20543823]
[116]
Niibori, Y.; Lee, S.J.; Minassian, B.A.; Hampson, D.R. Sexually divergent mortality and partial phenotypic rescue after gene therapy in a mouse model of dravet syndrome. Hum. Gene Ther., 2020, 31(5-6), 339-351.
[http://dx.doi.org/10.1089/hum.2019.225] [PMID: 31830809]
[117]
Hordeaux, J.; Hinderer, C.; Buza, E.L.; Louboutin, J.P.; Jahan, T.; Bell, P.; Chichester, J.A.; Tarantal, A.F.; Wilson, J.M. Safe and sustained expression of human iduronidase after intrathecal administration of adeno-associated virus serotype 9 in infant rhesus monkeys. Hum. Gene Ther., 2019, 30(8), 957-966.
[http://dx.doi.org/10.1089/hum.2019.012] [PMID: 31017018]
[118]
Li, T.; Tian, C.; Scalmani, P.; Frassoni, C.; Mantegazza, M.; Wang, Y.; Yang, M.; Wu, S.; Shu, Y. Action potential initiation in neocortical inhibitory interneurons. PLoS Biol., 2014, 12(9), e1001944.
[http://dx.doi.org/10.1371/journal.pbio.1001944] [PMID: 25203314]
[119]
Fyfe, I. Antisense oligonucleotide hope for childhood epilepsies. Nat. Rev. Neurol., 2020, 16(3), 128-128.
[PMID: 32001838]
[120]
Han, Z.; Chen, C.; Christiansen, A.; Ji, S.; Lin, Q.; Anumonwo, C.; Liu, C.; Leiser, S.C.; Meena; Aznarez, I.; Liau, G.; Isom, L.L Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci. Transl. Med., 2020, 12(558), eaaz6100.
[http://dx.doi.org/10.1126/scitranslmed.aaz6100] [PMID: 32848094]
[121]
Lenk, G.M.; Jafar-Nejad, P.; Hill, S.F.; Huffman, L.D.; Smolen, C.E.; Wagnon, J.L.; Petit, H.; Yu, W.; Ziobro, J.; Bhatia, K.; Parent, J.; Giger, R.J.; Rigo, F.; Meisler, M.H. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann. Neurol., 2020, 87(3), 339-346.
[http://dx.doi.org/10.1002/ana.25676] [PMID: 31943325]
[122]
Wu, Z.; Yang, H.; Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther., 2010, 18(1), 80-86.
[http://dx.doi.org/10.1038/mt.2009.255] [PMID: 19904234]
[123]
Kumar, M.; Keller, B.; Makalou, N.; Sutton, R.E. Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther., 2001, 12(15), 1893-1905.
[http://dx.doi.org/10.1089/104303401753153947] [PMID: 11589831]
[124]
Tay, L.S.; Palmer, N.; Panwala, R.; Chew, W.L.; Mali, P. Translating CRISPR-Cas therapeutics: Approaches and challenges. CRISPR J., 2020, 3(4), 253-275.
[http://dx.doi.org/10.1089/crispr.2020.0025] [PMID: 32833535]
[125]
Wienert, B.; Wyman, S.K.; Richardson, C.D.; Yeh, C.D.; Akcakaya, P.; Porritt, M.J.; Morlock, M.; Vu, J.T.; Kazane, K.R.; Watry, H.L.; Judge, L.M.; Conklin, B.R.; Maresca, M.; Corn, J.E. Unbiased detection of CRISPR off-targets in vivo using discover-seq. Science, 2019, 364(6437), 286-289.
[http://dx.doi.org/10.1126/science.aav9023] [PMID: 31000663]
[126]
Kim, D.; Bae, S.; Park, J.; Kim, E.; Kim, S.; Yu, H.R.; Hwang, J.; Kim, J.I.; Kim, J.S. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods, 2015, 12(3), 237-243, 1, 243.
[http://dx.doi.org/10.1038/nmeth.3284] [PMID: 25664545]
[127]
Tsai, S.Q.; Nguyen, N.T.; Malagon-Lopez, J.; Topkar, V.V.; Aryee, M.J.; Joung, J.K. CIRCLE-seq: A highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods, 2017, 14(6), 607-614.
[http://dx.doi.org/10.1038/nmeth.4278] [PMID: 28459458]
[128]
Kuijper, E.C.; Bergsma, A.J.; Pijnappel, W.W.M.P.; Aartsma-Rus, A. Opportunities and challenges for antisense oligonucleotide therapies. J. Inherit. Metab. Dis., 2021, 44(1), 72-87.
[http://dx.doi.org/10.1002/jimd.12251] [PMID: 32391605]
[129]
Zylberberg, C.; Gaskill, K.; Pasley, S.; Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther., 2017, 24(8), 441-452.
[http://dx.doi.org/10.1038/gt.2017.41] [PMID: 28504657]
[130]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[131]
Nelson, C.E.; Wu, Y.; Gemberling, M.P.; Oliver, M.L.; Waller, M.A.; Bohning, J.D.; Robinson-Hamm, J.N.; Bulaklak, K.; Castellanos Rivera, R.M.; Collier, J.H.; Asokan, A.; Gersbach, C.A. Long-term evaluation of AAV-CRISPR genome editing for duchenne muscular dystrophy. Nat. Med., 2019, 25(3), 427-432.
[http://dx.doi.org/10.1038/s41591-019-0344-3] [PMID: 30778238]
[132]
Chen, Z.; Liu, F.; Chen, Y.; Liu, J.; Wang, X.; Chen, A.T.; Deng, G.; Zhang, H.; Liu, J.; Hong, Z.; Zhou, J. Targeted delivery of CRISPR/Cas9‐mediated cancer gene therapy via liposome‐templated hydrogel nanoparticles. Adv. Funct. Mater., 2017, 27(46), 1703036.
[http://dx.doi.org/10.1002/adfm.201703036] [PMID: 29755309]
[133]
Wang, H-X.; Li, M.; Lee, C.M.; Chakraborty, S.; Kim, H.W.; Bao, G.; Leong, K.W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev., 2017, 117(15), 9874-9906.
[http://dx.doi.org/10.1021/acs.chemrev.6b00799] [PMID: 28640612]
[134]
Lin, G. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord. Chem. Rev., 2018, 374, 133-152.
[http://dx.doi.org/10.1016/j.ccr.2018.07.001]
[135]
Yang, Q.Q.; Shao, Y.X.; Zhang, L.Z.; Zhou, Y.L. Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids Surf. B Biointerfaces, 2018, 164, 165-176.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.031] [PMID: 29413593]
[136]
Kulkarni, J.A.; Cullis, P.R.; van der Meel, R. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Ther., 2018, 28(3), 146-157.
[http://dx.doi.org/10.1089/nat.2018.0721] [PMID: 29683383]
[137]
Lerche, H. Drug-resistant epilepsy - time to target mechanisms. Nat. Rev. Neurol., 2020, 16(11), 595-596.
[http://dx.doi.org/10.1038/s41582-020-00419-y] [PMID: 33024326]
[138]
Anderson, G.D. Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology, 2004, 63(10)(Suppl. 4), S3-S8.
[http://dx.doi.org/10.1212/WNL.63.10_suppl_4.S3] [PMID: 15557548]
[139]
Chen, Y-C.; Hsieh, W.Y.; Lee, W.F.; Zeng, D.T. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier. J. Biomater. Appl., 2013, 27(7), 909-922.
[http://dx.doi.org/10.1177/0885328211429495] [PMID: 22207601]
[140]
Garcia-Chica, J.D.; Paraiso, W.K.; Tanabe, S.; Serra, D.; Herrero, L.; Casals, N.; Garcia, J.; Ariza, X.; Quader, S.; Rodriguez-Rodriguez, R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond.), 2020, 15(16), 1617-1636.
[http://dx.doi.org/10.2217/nnm-2020-0088] [PMID: 32618490]
[141]
Bennewitz, M.F.; Saltzman, W.M. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics, 2009, 6(2), 323-336.
[http://dx.doi.org/10.1016/j.nurt.2009.01.018] [PMID: 19332327]
[142]
Liu, S.; Yang, S.; Ho, P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci., 2018, 13(1), 72-81.
[143]
Dilnawaz, F.; Sahoo, S.K. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov. Today, 2015, 20(10), 1256-1264.
[http://dx.doi.org/10.1016/j.drudis.2015.06.008] [PMID: 26103617]
[144]
Loureiro, J.A.; Gomes, B.; Coelho, M.A.; do Carmo Pereira, M.; Rocha, S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine (Lond.), 2014, 9(5), 709-722.
[http://dx.doi.org/10.2217/nnm.14.27] [PMID: 24827845]
[145]
Biddlestone-Thorpe, L.; Marchi, N.; Guo, K.; Ghosh, C.; Janigro, D.; Valerie, K.; Yang, H. Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv. Drug Deliv. Rev., 2012, 64(7), 605-613.
[http://dx.doi.org/10.1016/j.addr.2011.11.014] [PMID: 22178615]
[146]
Kaur, S. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chem. Eng. J., 2018, 346, 630-639.
[http://dx.doi.org/10.1016/j.cej.2018.03.176]
[147]
Zybina, A.; Anshakova, A.; Malinovskaya, J.; Melnikov, P.; Baklaushev, V.; Chekhonin, V.; Maksimenko, O.; Titov, S.; Balabanyan, V.; Kreuter, J.; Gelperina, S.; Abbasova, K. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy. Int. J. Pharm., 2018, 547(1-2), 10-23.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.023] [PMID: 29751140]
[148]
Rosillo-de la Torre, A.; Zurita-Olvera, L.; Orozco-Suárez, S.; Garcia Casillas, P.E.; Salgado-Ceballos, H.; Luna-Bárcenas, G.; Rocha, L. Phenytoin carried by silica core iron oxide nanoparticles reduces the expression of pharmacoresistant seizures in rats. Nanomedicine (Lond.), 2015, 10(24), 3563-3577.
[http://dx.doi.org/10.2217/nnm.15.173] [PMID: 26649451]
[149]
Anissian, D.; Ghasemi-Kasman, M.; Khalili-Fomeshi, M.; Akbari, A.; Hashemian, M.; Kazemi, S.; Moghadamnia, A.A. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int. J. Biol. Macromol., 2018, 107(Pt A), 973-983.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.073] [PMID: 28939512]
[150]
Patel, M.M.; Patel, B.M. Crossing the blood–brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[151]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[152]
Fu, T. Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast., 2016, 2016, 2412958.
[http://dx.doi.org/10.1155/2016/2412958]
[153]
de Jesus, P.C.C.; Pellosi, D.S.; Tedesco, A.C. Magnetic nanoparticles: Applications in biomedical processes as synergic drug-delivery systems. Materials for Biomedical Engineering; Elsevier, 2019, pp. 365-390.
[http://dx.doi.org/10.1016/B978-0-12-816913-1.00012-X]
[154]
Portnoy, E.; Polyak, B.; Inbar, D.; Kenan, G.; Rai, A.; Wehrli, S.L.; Roberts, T.P.; Bishara, A.; Mann, A.; Shmuel, M.; Rozovsky, K.; Itzhak, G.; Ben-Hur, T.; Magdassi, S.; Ekstein, D.; Eyal, S. Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine, 2016, 12(5), 1335-1345.
[http://dx.doi.org/10.1016/j.nano.2016.01.018] [PMID: 26964483]
[155]
Narayanan, A. Approaches for encephalic drug delivery using nanomaterials: The current status. Brain Res. Bull., 2019, 155, 184-190.
[PMID: 31790722]
[156]
Azad, T.D.; Pan, J.; Connolly, I.D.; Remington, A.; Wilson, C.M.; Grant, G.A. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg. Focus, 2015, 38(3), E9.
[http://dx.doi.org/10.3171/2014.12.FOCUS14758] [PMID: 25727231]
[157]
Siew, A.; Le, H.; Thiovolet, M.; Gellert, P.; Schatzlein, A.; Uchegbu, I. Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol. Pharm., 2012, 9(1), 14-28.
[http://dx.doi.org/10.1021/mp200469a] [PMID: 22047066]
[158]
Scioli Montoto, S.; Sbaraglini, M.L.; Talevi, A.; Couyoupetrou, M.; Di Ianni, M.; Pesce, G.O.; Alvarez, V.A.; Bruno-Blanch, L.E.; Castro, G.R.; Ruiz, M.E.; Islan, G.A. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 167, 73-81.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.052] [PMID: 29627680]
[159]
Nair, A.B. 6 Delivery of biomolecules to the central nervous system using a polysaccharide nanocomposite. Polysaccharide based NanoBiocarrier in Drug Delivery, 2018, 105-128.
[160]
Jabir, N.R.; Tabrez, S.; Firoz, C.K.; Zaidi, S.K.; Baeesa, S.S.; Gan, S.H.; Shakil, S.; Kamal, M.A. A synopsis of nano-technological approaches toward anti-epilepsy therapy: Present and future research implications. Curr. Drug Metab., 2015, 16(5), 336-345.
[http://dx.doi.org/10.2174/1389200215666141125142605] [PMID: 25429676]
[161]
Song, Y. Molecular pathways leading to development of epilepsy after brain injury and advanced optical methods for epilepsy study., 2016. Theses and Dissertations. 2820
[162]
Sura, P.; Sura, R.; Enayetallah, A.E.; Grant, D.F. Distribution and expression of soluble epoxide hydrolase in human brain. J. Histochem. Cytochem., 2008, 56(6), 551-559.
[http://dx.doi.org/10.1369/jhc.2008.950659] [PMID: 18319271]
[163]
Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013, 8(2), 137-143.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[164]
Wang, H.; Su, W.; Wang, S.; Wang, X.; Liao, Z.; Kang, C.; Han, L.; Chang, J.; Wang, G.; Pu, P. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale, 2012, 4(20), 6501-6508.
[http://dx.doi.org/10.1039/c2nr31263h] [PMID: 22961067]
[165]
Thanh, N.T.; Green, L.A. Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, 5(3), 213-230.
[http://dx.doi.org/10.1016/j.nantod.2010.05.003]
[166]
Lee, C.Y. Strategies of temozolomide in future glioblastoma treatment. OncoTargets Ther., 2017, 10, 265-270.
[http://dx.doi.org/10.2147/OTT.S120662] [PMID: 28123308]
[167]
Rossi, M.A. Targeting anti-epileptic drug therapy without collateral damage: Nanocarrier-based drug delivery. Epilepsy Curr., 2012, 12(5), 199-200.
[http://dx.doi.org/10.5698/1535-7511-12.5.199] [PMID: 23118608]
[168]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J.; Rashed, H.M.; Ibrahim, A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: In vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv., 2016, 23(9), 3681-3695.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[169]
Cano, A.; Ettcheto, M.; Espina, M.; Auladell, C.; Calpena, A.C.; Folch, J.; Barenys, M.; Sánchez-López, E.; Camins, A.; García, M.L. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine, 2018, 14(4), 1073-1085.
[http://dx.doi.org/10.1016/j.nano.2018.01.019] [PMID: 29454994]
[170]
Qu, Z.; Jia, L.; Xie, T.; Zhen, J.; Si, P.; Cui, Z.; Xue, Y.; Sun, C.; Wang, W. (-)-Epigallocatechin-3-gallate protects against lithium-pilocarpine-induced epilepsy by inhibiting the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway. Med. Sci. Monit., 2019, 25, 1749-1758.
[http://dx.doi.org/10.12659/MSM.915025] [PMID: 30843525]
[171]
Nakano, Y.; Tajima, M.; Sugiyama, E.; Sato, V.H.; Sato, H. Development of a novel nanoemulsion formulation to improve intestinal absorption of cannabidiol. Med. Cannabis Cannabinoids, 2019, 2(1), 35-42.
[http://dx.doi.org/10.1159/000497361] [PMID: 34676332]
[172]
Millar, S.A.; Maguire, R.F.; Yates, A.S.; O’Sullivan, S.E. Towards better delivery of cannabidiol (CBD). Pharmaceuticals (Basel), 2020, 13(9), 219.
[http://dx.doi.org/10.3390/ph13090219] [PMID: 32872355]
[173]
Dai, Y.; Song, Y.; Xie, J.; Xiao, G.; Li, X.; Li, Z.; Gao, F.; Zhang, Y.; He, E.; Xu, S.; Wang, Y.; Zheng, W.; Jiang, X.; Qi, Z.; Meng, D.; Fan, Z.; Cai, X. CB1-antibody modified liposomes for targeted modulation of epileptiform activities synchronously detected by microelectrode arrays. ACS Appl. Mater. Interfaces, 2020, 12(37), 41148-41156.
[http://dx.doi.org/10.1021/acsami.0c13372] [PMID: 32809788]
[174]
Gangurde, P.K. Analytical method development using central composite design for estimation of lamotrigine in lipid nanoformulation. Tablet, 2020, 8, 4.
[http://dx.doi.org/10.37358/MP.20.1.5331]
[175]
Gieszinger, P.; Stefania Csaba, N.; Garcia-Fuentes, M.; Prasanna, M.; Gáspár, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Janáky, T.; Kecskeméti, G.; Katona, G.; Szabó-Révész, P.; Ambrus, R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur. J. Pharm. Biopharm., 2020, 153, 177-186.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.003] [PMID: 32531424]
[176]
Abdelmonem, R.; Azer, M.S.; Makky, A.; Zaghloul, A.; El-Nabarawi, M.; Nada, A. Development, characterization, and in-vivo pharmacokinetic study of lamotrigine solid self-nanoemulsifying drug delivery system. Drug Des. Devel. Ther., 2020, 14, 4343-4362.
[http://dx.doi.org/10.2147/DDDT.S263898] [PMID: 33116420]
[177]
Deshkar, S.S.; Jadhav, M.S.; Shirolkar, S.V. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery. Adv. Pharm. Bull., 2021, 11(1), 150-162.
[http://dx.doi.org/10.34172/apb.2021.016] [PMID: 33747862]
[178]
Ying, X.; Wang, Y.; Liang, J.; Yue, J.; Xu, C.; Lu, L.; Xu, Z.; Gao, J.; Du, Y.; Chen, Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: Therapeutic potential for epilepsy. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12436-12440.
[PMID: 25044856]
[179]
Veronesi, M.C.; Aldouby, Y.; Domb, A.J.; Kubek, M.J. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res., 2009, 1303, 151-160.
[http://dx.doi.org/10.1016/j.brainres.2009.09.039] [PMID: 19766611]
[180]
Shringarpure, M. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin. Drug Deliv., 2020, 1-17.
[PMID: 32921169]
[181]
Srivastava, S.; Gupta, S. Nose to brain drug delivery for the treatment of epilepsy. Nanoformulations in Human Health; Springer, 2020, pp. 169-185.
[182]
Sanka, K.; Suda, D.; Bakshi, V. Optimization of solid-self nanoemulsifying drug delivery system for solubility and release profile of clonazepam using simplex lattice design. J. Drug Deliv. Sci. Technol., 2016, 33, 114-124.
[http://dx.doi.org/10.1016/j.jddst.2016.04.003]
[183]
Kaur, S.; Bhararia, A.; Sharma, K.; Mittal, S.; Jain, R.; Wangoo, N.; Sharma, R.K. Thyrotropin-releasing hormone loaded and chitosan engineered polymeric nanoparticles: Towards effective delivery of neuropeptides. J. Nanosci. Nanotechnol., 2016, 16(5), 5324-5332.
[http://dx.doi.org/10.1166/jnn.2016.12431] [PMID: 27483926]
[184]
Sharma, D. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: In vitro and in vivo evaluation. BioMed Res. Int., 2014, 2014, 156010.
[185]
Sharma, D.; Sharma, R.K.; Sharma, N.; Gabrani, R.; Sharma, S.K.; Ali, J.; Dang, S. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech, 2015, 16(5), 1108-1121.
[http://dx.doi.org/10.1208/s12249-015-0294-0] [PMID: 25698083]
[186]
Iqubal, A. Intranasal delivery of solid-lipid nanoparticles of pitavastatin for assesment of antiepileptic properties in mice. Int. Res. J. Pharm., 2015, 6(12), 820-824.
[187]
Ammar, H.O.; Ghorab, M.M.; Mahmoud, A.A.; Higazy, I.M. Lamotrigine loaded poly-ɛ-(d,l-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur. J. Pharm. Sci., 2018, 115, 77-87.
[http://dx.doi.org/10.1016/j.ejps.2018.01.028] [PMID: 29341900]
[188]
Musumeci, T.; Serapide, M.F.; Pellitteri, R.; Dalpiaz, A.; Ferraro, L.; Dal Magro, R.; Bonaccorso, A.; Carbone, C.; Veiga, F.; Sancini, G.; Puglisi, G. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur. J. Pharm. Biopharm., 2018, 133, 309-320.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.002] [PMID: 30399400]
[189]
Sakthivel, M. Formulation and evaluation of oxcabazepine niosomes for improved anti convulsant activity. Int. J. Pharmacol. Biol. Sci., 2014, 8(3), 7.
[190]
Lopalco, A.; Ali, H.; Denora, N.; Rytting, E. Oxcarbazepine-loaded polymeric nanoparticles: Development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int. J. Nanomedicine, 2015, 10, 1985-1996.
[PMID: 25792832]
[191]
Gangurde, P.K.; Kumar, L. Lamotrigine lipid nanoparticles for effective treatment of epilepsy: A focus on brain targeting via nasal route. J. Pharm. Innov., 2019, 14(2), 91-111.
[http://dx.doi.org/10.1007/s12247-018-9343-z]
[192]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H., II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[193]
Khatak, S.; Dureja, H. Structural composition of solid lipid nanoparticles for invasive and non-invasive drug delivery. Curr. Nanomater., 2017, 2(3), 129-153.
[http://dx.doi.org/10.2174/2405461503666180413160954]
[194]
Gaikwad, P.S.; Banerjee, R. Nanotechnology-based strategies as novel therapies in gliomas. Ther. Deliv., 2018, 9(8), 571-592.
[http://dx.doi.org/10.4155/tde-2018-0022] [PMID: 30071804]
[195]
Löscher, W.; Friedman, A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: A cause, consequence, or both? Int. J. Mol. Sci., 2020, 21(2), 591.
[http://dx.doi.org/10.3390/ijms21020591] [PMID: 31963328]
[196]
Hartz, A.M.; Bauer, B. Regulation of ABC transporters at the blood-brain barrier: New targets for CNS therapy. Mol. Interv., 2010, 10(5), 293-304.
[http://dx.doi.org/10.1124/mi.10.5.6] [PMID: 21045243]
[197]
Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273.
[PMID: 12935438]
[198]
Abbott, N.J. Drug resistance in epilepsy: The role of the blood-brain barrier. In: Novartis Foundation Symposium; Wiley Online Library., 2002.
[http://dx.doi.org/10.1002/0470846356.ch4]
[199]
Regesta, G.; Tanganelli, P. Clinical aspects and biological bases of drug-resistant epilepsies. Epilepsy Res., 1999, 34(2-3), 109-122.
[http://dx.doi.org/10.1016/S0920-1211(98)00106-5] [PMID: 10210025]
[200]
Ghouri, M.D. Nanomaterials‐mediated structural and physiological modulation of blood brain barrier for therapeutic purposes. Adv. Mater. Interfaces, 2022, 9(1), 2101391.
[http://dx.doi.org/10.1002/admi.202101391]
[201]
Xue, T.; Lu, Z.N. Association between the polymorphisms in the ATP-binding cassette genes ABCB1 and ABCC2 and the risk of drug-resistant epilepsy in a Chinese Han population. Genet. Mol. Res., 2016, 15(4), 1-9.
[http://dx.doi.org/10.4238/gmr15048752] [PMID: 27886333]
[202]
Jiang, L.; Li, S.; Zheng, J.; Li, Y.; Huang, H. Recent progress in microfluidic models of the blood-brain barrier. Micromachines (Basel), 2019, 10(6), E375.
[http://dx.doi.org/10.3390/mi10060375] [PMID: 31195652]
[203]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2018, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[204]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Teleanu, R.I. Neuronanomedicine: An up-to-date overview. Pharmaceutics, 2019, 11(3), 101.
[http://dx.doi.org/10.3390/pharmaceutics11030101] [PMID: 30813646]
[205]
Kumar, A.; Tan, A.; Wong, J.; Spagnoli, J.C.; Lam, J.; Blevins, B.D. G, N.; Thorne, L.; Ashkan, K.; Xie, J.; Liu, H. Nanotechnology for neuroscience: Promising approaches for diagnostics, therapeutics and brain activity mapping. Adv. Funct. Mater., 2017, 27(39), 1700489.
[http://dx.doi.org/10.1002/adfm.201700489] [PMID: 30853878]
[206]
Soni, S.; Ruhela, R.K.; Medhi, B. Nanomedicine in central nervous system (CNS) disorders: A present and future prospective. Adv. Pharm. Bull., 2016, 6(3), 319-335.
[http://dx.doi.org/10.15171/apb.2016.044] [PMID: 27766216]
[207]
Mukherjee, S. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv. Funct. Mater., 2020, 30(35), 2003054.
[http://dx.doi.org/10.1002/adfm.202003054]
[208]
Cano, A.; Sánchez-López, E.; Ettcheto, M.; López-Machado, A.; Espina, M.; Souto, E.B.; Galindo, R.; Camins, A.; García, M.L.; Turowski, P. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine (Lond.), 2020, 15(12), 1239-1261.
[http://dx.doi.org/10.2217/nnm-2019-0443] [PMID: 32370600]
[209]
Mydin, R.B.S.; Moshawih, S. Nanoparticles in nanomedicine application: Lipid-based nanoparticles and their safety concerns. Nanotechnology: Applications in Energy, Drug and Food; Springer, 2019, pp. 227-232.
[http://dx.doi.org/10.1007/978-3-319-99602-8_10]
[210]
Nakhlband, A.; Eskandani, M.; Omidi, Y.; Saeedi, N.; Ghaffari, S.; Barar, J.; Garjani, A. Combating atherosclerosis with targeted nanomedicines: Recent advances and future prospective. Bioimpacts, 2018, 8(1), 59-75.
[http://dx.doi.org/10.15171/bi.2018.08] [PMID: 29713603]
[211]
Kumar, V. Nanotechnology: Nanomedicine, nanotoxicity and future challenges. Nanosci. Nanotechnol. Asia, 2019, 9(1), 64-78.
[http://dx.doi.org/10.2174/2210681208666180125143953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy