Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Antihyperglycemic, Antihyperlipidemic, and Antioxidant Effects of Salvia tingitana in Streptozotocin-Induced Diabetic Rats

Author(s): Amine Azzane and Mohamed Eddouks*

Volume 22, Issue 2, 2022

Published on: 23 August, 2022

Page: [118 - 127] Pages: 10

DOI: 10.2174/1871529X22666220806122012

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: The study aimed to assess the antidiabetic effect of Salvia tingitana (S. tingitana).

Background: S. tingitana is an aromatic plant that belongs to the Lamiaceae family. Phytochemical analysis of the aerial parts of S. tingitana revealed the existence of terpenoids and flavonoids. In addition, S. tingitana possesses antimicrobial activity.

Objective: The goal of the study was to obtain information about the antihyperglycemic, antihyperlipidemic, antioxidant abilities of S. tingitana aqueous extract.

Methods: The effect of an acute and sub-chronic administration of S. tingitana aqueous extract (AEST) at the doses of 60 and 80 mg/kg on glucose, lipid profile, and lipoprotein profile was examined in normoglycemic and hyperglycemic rats. Additionally, a preliminary phytochemical screening and the antioxidant activity using DPPH assay were carried out.

Results: Rats treated with AEST at a dose of 60 mg/kg showed a significant decrease in the serum glucose levels during the single oral administration at the 4th and 6th hour of treatment in both normal and streptozotocin(STZ)-induced hyperglycemic rats. Interestingly, a dose of 80 mg/kg AEST produced a significant lowering effect on blood glucose levels at the 2nd, 4th, and 6th hour of treatment after a single oral administration in both diabetic and normal rats. Both doses of AEST (60 and 80 mg/kg) revealed a significant amelioration of lipid and lipoprotein profile. In addition, the qualitative and quantitative phytochemical analysis proved the presence of polyphenols compounds, flavonoids, and tannins. Results suggest that S. tingitana contains some secondary metabolites like alkaloids, phenols, flavonoids, and saponins. Importantly, the study revealed that the aqueous extract of S. tingitana has a very interesting antioxidant activity (IC50 = 553.21 μg/ml).

Conclusion: The study illustrates the beneficial action of the aqueous extract of S. tingitana as an antihyperglycemic and antihyperlipidemic agent.

Keywords: Diabetes mellitus, Salvia tingitana, lipid abnormalities, antihyperglycemic, antihyperlipidemic, phytochemical compounds.

Graphical Abstract
[1]
Baschetti, R. Diabetes epidemic in newly westernized populations: Is it due to thrifty genes or to genetically unknown foods? J. Royal Soc. Med, 1998, 91(1 2), 622-625.
[http://dx.doi.org/10.1177/014107689809101203]
[2]
Clark, C.M., Jr How should we respond to the worldwide diabetes epidemic? Diabetes Care, 1998, 21(4), 475-476.
[http://dx.doi.org/10.2337/diacare.21.4.475] [PMID: 9571326]
[3]
Mellitus, D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2005, 28(S37)(Suppl. 1), S37-S42.
[PMID: 15618111]
[4]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[5]
Akkati, S.; Sam, K.G.; Tungha, G. Emergence of promising therapies in diabetes mellitus. J. Clin. Pharmacol., 2011, 51(6), 796-804.
[http://dx.doi.org/10.1177/0091270010376972] [PMID: 20705952]
[6]
Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab., 2009, 5(3), 150-159.
[PMID: 19229235]
[7]
Zhao, R.; Lu, Z.; Yang, J.; Zhang, L.; Li, Y.; Zhang, X. Drug delivery system in the treatment of diabetes mellitus. Front. Bioeng. Biotechnol., 2020, 8, 880.
[http://dx.doi.org/10.3389/fbioe.2020.00880] [PMID: 32850735]
[8]
Moradi, B.; Abbaszadeh, S.; Shahsavari, S.; Alizadeh, M.; Beyranvand, F. The most useful medicinal herbs to treat diabetes. Biomed. Res. Ther., 2018, 5(8), 2538-2551.
[http://dx.doi.org/10.15419/bmrat.v5i8.463]
[9]
Ajda, O.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Frontiers in Pharmacology, 2017, 8, 436.
[http://dx.doi.org/10.3389/fphar.2017.00436]
[10]
Tran, N.; Pham, B.; Le, L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel), 2020, 9(9), 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[11]
Foley, M.J.Y.; Hedge, I.C.; Möller, M. The enigmatic Salvia tingitana: A case study in history, taxonomy and cytology. Willdenowia, 2008, 38(1), 41-59.
[http://dx.doi.org/10.3372/wi.38.38102]
[12]
Ravera, S.; Esposito, A.; Degan, P.; Caicci, F.; Manni, L.; Liguori, A.; Bisio, A.; Iobbi, V.; Schito, A.; Traverso, C.E.; Panfoli, I. The diterpene manool extracted from Salvia tingitana lowers free radical production in retinal rod outer segments by inhibiting the extramitochondrial F1 Fo ATP synthase. Cell Biochem. Funct., 2021, 39(4), 528-535.
[http://dx.doi.org/10.1002/cbf.3618] [PMID: 33472276]
[13]
Bisio, A.; Castagnola, P.; Panfoli, I.; Anna, M. S.; Pedrelli, F.; Ruffoni, B.; De Tommasi, N. Biological activities of extracts and constituents of Salvia tingitana Etl. (Lamiaceae). Planta Medica International Open 2017, 4(01).
[14]
Ajebli, M.; Eddouks, M. Buxus sempervirens l improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[15]
Vohnout, B.; Vachulová, A.; Blazícek, P.; Dukát, A.; Fodor, G.; Lietava, J. Evaluation of alternative calculation methods for determining LDL cholesterol. Vnitr. Lek., 2008, 54(10), 961-964.
[PMID: 19009762]
[16]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O. Attenuation of salt-loading induced cardiomegaly and dyslipidemia in Wistar rats by aqueous leaf extract of Chromolaena odorata. Pharmacol. Pharm., 2014, 5(2), 160-170.
[http://dx.doi.org/10.4236/pp.2014.52022]
[17]
Carroll, N.V.; Longley, R.W.; Roe, J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 1956, 220(2), 583-593.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[18]
Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol., 2004, 92(2), 201-208.
[http://dx.doi.org/10.1016/j.biortech.2003.06.002] [PMID: 14693454]
[19]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[http://dx.doi.org/10.1016/j.biopha.2016.12.111] [PMID: 28061406]
[20]
Sezik, E.; Aslan, M.; Yesilada, E.; Ito, S. Hypoglycaemic activity of gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci., 2005, 76(11), 1223-1238.
[http://dx.doi.org/10.1016/j.lfs.2004.07.024] [PMID: 15642593]
[21]
Stalmans, W.; Cadefau, J.; Wera, S.; Bollen, M. New insight into the regulation of liver glycogen metabolism by glucose. Biochem. Soc. Trans., 1997, 25(1), 19-25.
[http://dx.doi.org/10.1042/bst0250019] [PMID: 9056835]
[22]
Ashcroft, F.M.; Rohm, M.; Clark, A.; Brereton, M.F. Is type 2 diabetes a glycogen storage disease of pancreatic β cells? Cell Metab., 2017, 26(1), 17-23.
[http://dx.doi.org/10.1016/j.cmet.2017.05.014] [PMID: 28683284]
[23]
Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia, 2003, 46(6), 733-749.
[http://dx.doi.org/10.1007/s00125-003-1111-y] [PMID: 12774165]
[24]
La Sala, L.; Prattichizzo, F.; Ceriello, A. The link between diabetes and atherosclerosis. Eur. J. Prev. Cardiol., 2019, 26(2)(Suppl.), 15-24.
[http://dx.doi.org/10.1177/2047487319878373] [PMID: 31722564]
[25]
Ashok Kumar, B.S.; Lakshman, K.; Jayaveea, K.N.; Sheshadri Shekar, D. Saleemulla Khan; Thippeswamy, B.S.; Veerapur, V.P. Antidiabetic, antihyperlipidemic and antioxidant activities of methanolic extract of amaranthus viridis linn in alloxan induced diabetic rats. Exp. Toxicol. Pathol., 2012, 64(1-2), 75-79.
[http://dx.doi.org/10.1016/j.etp.2010.06.009] [PMID: 20643534]
[26]
Taskinen, M.R. Lipoprotein lipase in diabetes. Diabetes Metab. Rev., 1987, 3(2), 551-570.
[http://dx.doi.org/10.1002/dmr.5610030208] [PMID: 3552532]
[27]
Sattar, N.; Preiss, D.; Robinson, J.G.; Djedjos, C.S.; Elliott, M.; Somaratne, R.; Wasserman, S.M.; Raal, F.J. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: A meta-analysis of individual patient data. Lancet Diabetes Endocrinol., 2016, 4(5), 403-410.
[http://dx.doi.org/10.1016/S2213-8587(16)00003-6] [PMID: 26868195]
[28]
Strålfors, P.; Honnor, R.C. Insulin-induced dephosphorylation of hormone-sensitive lipase. Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur. J. Biochem., 1989, 182(2), 379-385.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14842.x] [PMID: 2661229]
[29]
Jung, U.J.; Lee, M.K.; Park, Y.B.; Kang, M.A.; Choi, M.S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol., 2006, 38(7), 1134-1145.
[http://dx.doi.org/10.1016/j.biocel.2005.12.002] [PMID: 16427799]
[30]
Lee, J.H.; Seo, W.D.; Jeong, S.H.; Jeong, T.S.; Lee, W.S.; Park, K.H. Human acyl-CoA: Cholesterol acyltransferase inhibitory effect of flavonoids from roots of glycine max (L.). Merr. Agric. Chem. Biotechnol, 2006, 49, 57-61.
[31]
Bahmani, M.; Golshahi, H.; Saki, K.; Rafieian-Kopaei, M.; Delfan, B.; Mohammadi, T. Medicinal plants and secondary metabolites for diabetes mellitus control. Asian Pac. J. Trop. Dis., 2014, 4, S687-S692.
[http://dx.doi.org/10.1016/S2222-1808(14)60708-8]
[32]
Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr., 2010, 140(3), 527-533.
[http://dx.doi.org/10.3945/jn.109.118216] [PMID: 20089785]
[33]
Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr., 2012, 95(4), 925-933.
[http://dx.doi.org/10.3945/ajcn.111.028894] [PMID: 22357723]
[34]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[35]
Sharma, B.; Salunke, R.; Balomajumder, C.; Daniel, S.; Roy, P. Anti-diabetic potential of alkaloid rich fraction from capparis decidua on diabetic mice. J. Ethnopharmacol., 2010, 127(2), 457-462.
[http://dx.doi.org/10.1016/j.jep.2009.10.013] [PMID: 19837152]
[36]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H., Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[37]
Tiganis, T. Reactive oxygen species and insulin resistance: The good, the bad and the ugly. Trends Pharmacol. Sci., 2011, 32(2), 82-89.
[http://dx.doi.org/10.1016/j.tips.2010.11.006] [PMID: 21159388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy