Review Article

酪氨酸激酶及其抑制剂在癌症治疗中的作用:综合综述

卷 30, 期 13, 2023

发表于: 09 September, 2022

页: [1464 - 1481] 页: 18

弟呕挨: 10.2174/0929867329666220727122952

价格: $65

摘要

背景:癌症已被公认为全球范围内新发病例数不断增加、发病率和死亡率较高的非传染性疾病之一。因此,人们一直在不停地寻找新的靶点和小分子,以改善有关效力、选择性、效率、亲和力、ADMET等方面的化疗结果。在抗癌治疗靶点中,酪氨酸激酶已被充分记录并被批准为重要靶点各种临床用药的研制。有几种结构不同的小分子处于不同的临床前和临床开发阶段,它们通过影响癌细胞中的酪氨酸激酶发挥作用。在这里,我们总结了不同的作用于可被视为抗癌剂的酪氨酸激酶的强效分子。 目标:当前的综述集中于不同化学试剂作为抗癌剂抑制酪氨酸激酶的结构方面。 方法:本研究对已发表的酪氨酸激酶抑制剂、它们的结合模式、效力和结构-活性关系的信息进行了总结性回顾。该综述还强调了抑制剂与酪氨酸激酶氨基酸残基之间相互作用的结构方面。此外,它还总结了不同类型的癌症和目前可用的治疗方案。 结果:正在进行多项研究,以使用小分子抑制不同的酪氨酸激酶来治疗癌症。据报道,酪氨酸激酶通过依赖于磷酸化的不同途径参与常规细胞功能、生长和细胞分裂。酪氨酸激酶的过度表达和不受控制的活性已被确定为癌细胞的重要特征。因此,已经报道了多种抑制酪氨酸激酶以阻断癌细胞生长和分裂的小分子。这里总结了30多种酪氨酸激酶的强效抑制剂,它们以嘧啶、吡唑、三嗪、喹唑啉、喹啉、吡嗪、色烯等环为基本骨架,带有不同的取代基。 结论:不同小分子对酪氨酸激酶的抑制是开发新型抗癌药物的公认策略。一些已发表的报告提到了用于设计新型分子抑制剂的酪氨酸激酶中不同结合位点和关键残基的特征。然而,由于存在大约 30 个酪氨酸激酶家族,选择性是化疗药物开发的重要标准。

关键词: 抗癌剂,ATP,癌症,抑制剂,磷酸化,酪氨酸激酶

[1]
Yamashita, S.; Kishino, T.; Takahashi, T.; Shimazu, T.; Charvat, H.; Kakugawa, Y.; Nakajima, T.; Lee, Y-C.; Iida, N.; Maeda, M.; Hattori, N.; Takeshima, H.; Nagano, R.; Oda, I.; Tsugane, S.; Wu, M.S.; Ushijima, T. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc. Natl. Acad. Sci. USA, 2018, 115(6), 1328-1333.
[http://dx.doi.org/10.1073/pnas.1717340115] [PMID: 29358395]
[2]
Takeshima, H.; Ushijima, T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis. Oncol., 2019, 3(1), 7.
[http://dx.doi.org/10.1038/s41698-019-0079-0] [PMID: 30854468]
[3]
Haran, M.; Kumar, G.D.; Garvin, A.F.; Ramesh, S. Hexagonal microstrip patch antenna for early stage skin cancer identification. Telecommun. Radiol. Eng., 2020, 79(7), 555-566.
[4]
Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol., 2005, 17(5), 559-564.
[http://dx.doi.org/10.1016/j.ceb.2005.08.002] [PMID: 16098726]
[5]
Bielenberg, D.R.; Zetter, B.R. The contribution of angiogenesis to the process of metastasis. Cancer J., 2015, 21(4), 267-273.
[http://dx.doi.org/10.1097/PPO.0000000000000138] [PMID: 26222078]
[6]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[7]
Thong, M.S.Y.; van Noorden, C.J.F.; Steindorf, K.; Arndt, V. Cancer-related fatigue: Causes and current treatment options. Curr. Treat. Options Oncol., 2020, 21(2), 17.
[http://dx.doi.org/10.1007/s11864-020-0707-5] [PMID: 32025928]
[8]
Leiter, U.; Keim, U.; Garbe, C. Epidemiology of skin cancer: Update 2019. Adv. Exp. Med. Biol., 2020, 1268, 123-139.
[9]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[10]
Mizrahi, J.D.; Shroff, R.T. New treatment options for advanced biliary tract cancer. Curr. Treat. Options Oncol., 2020, 21(8), 63.
[http://dx.doi.org/10.1007/s11864-020-00767-3] [PMID: 32602010]
[11]
Stahler, A.; Heinemann, V.; Ricard, I.; von Einem, J.C.; Giessen-Jung, C.; Westphalen, C.B.; Michl, M.; Heinrich, K.; Miller-Phillips, L.; Jelas, I.; Stintzing, S.; Modest, D.P. Current treatment options in RAS mutant metastatic colorectal cancer patients: A meta-analysis of 14 randomized phase III trials. J. Cancer Res. Clin. Oncol., 2020, 146(8), 2077-2087.
[http://dx.doi.org/10.1007/s00432-020-03290-y] [PMID: 32561975]
[12]
Ahles, T.A.; Root, J.C. Cognitive effects of cancer and cancer treatments. Annu. Rev. Clin. Psychol., 2018, 14, 425-451.
[http://dx.doi.org/10.1146/annurev-clinpsy-050817-084903] [PMID: 29345974]
[13]
Sami, S.A.; Darwish, N.H.E.; Barile, A.N.M.; Mousa, S.A. Current and future molecular targets for acute myeloid leukemia therapy. Curr. Treat. Options Oncol., 2020, 21(1), 3.
[http://dx.doi.org/10.1007/s11864-019-0694-6] [PMID: 31933183]
[14]
Barcellini, A.; Roccio, M.; Laliscia, C.; Zanellini, F.; Pettinato, D.; Valvo, F.; Mirandola, A.; Orlandi, E.; Gadducci, A. Endometrial cancer: When upfront surgery is not an option. Oncology, 2021, 99(2), 65-71.
[http://dx.doi.org/10.1159/000510690] [PMID: 33032278]
[15]
Sigurdson, S.S.; Vera-Badillo, F.E.; de Moraes, F.Y. Discussion of treatment options for metastatic hormone sensitive prostate cancer patients. Front. Oncol., 2020, 10, 587981.
[http://dx.doi.org/10.3389/fonc.2020.587981] [PMID: 33178613]
[16]
Wu, D.; Pusuluri, A.; Vogus, D.; Krishnan, V.; Shields, C.W., IV; Kim, J.; Razmi, A.; Mitragotri, S. Design principles of drug combinations for chemotherapy. J. Control. Release, 2020, 323, 36-46.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.018] [PMID: 32283210]
[17]
Niederwieser, D. A post-stem cell transplant risk score for Philadelphia-negative acute lymphoblastic leukemia. Haematologica, 2020, 105(5), 1177-1179.
[http://dx.doi.org/10.3324/haematol.2019.246322] [PMID: 32358079]
[18]
Wandrer, F.; Liebig, S.; Marhenke, S.; Vogel, A.; John, K.; Manns, M.P.; Teufel, A.; Itzel, T.; Longerich, T.; Maier, O.; Fischer, R.; Kontermann, R.E.; Pfizenmaier, K.; Schulze-Osthoff, K.; Bantel, H. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis., 2020, 11(3), 212.
[http://dx.doi.org/10.1038/s41419-020-2411-6] [PMID: 32235829]
[19]
Chen, X.; Li, J. Bioinspired by cell membranes: Functional polymeric materials for biomedical applications. Mater. Chem. Front., 2020, 4(3), 750-774.
[http://dx.doi.org/10.1039/C9QM00717B]
[20]
Onyeisi, J.O.S.; Ferreira, B.Z.F.; Nader, H.B.; Lopes, C.C. Heparan sulfate proteoglycans as targets for cancer therapy: A review. Cancer Biol. Ther., 2020, 21(12), 1087-1094.
[http://dx.doi.org/10.1080/15384047.2020.1838034] [PMID: 33180600]
[21]
Prasad, S.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Srivastava, S.K. Cancer cells stemness: A doorstep to targeted therapy. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165424.
[http://dx.doi.org/10.1016/j.bbadis.2019.02.019] [PMID: 30818002]
[22]
Dorff, T.B.; Stein, C.; Kortylewski, M.; Posadas, E.; Synold, T.; Quinn, D. Evaluating changes in immune function and bone microenvironment during radium-223 treatment of patients with castration-resistant prostate cancer. Cancer Biother. Radiopharm., 2020, 35(7), 485-489.
[http://dx.doi.org/10.1089/cbr.2019.3397] [PMID: 32366119]
[23]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[24]
Mele, S.; Johnson, T.K. Receptor tyrosine kinases in development: Insights from drosophila. Int. J. Mol. Sci., 2019, 21(1), 188.
[http://dx.doi.org/10.3390/ijms21010188] [PMID: 31888080]
[25]
Taddei, M.L.; Pardella, E.; Pranzini, E.; Raugei, G.; Paoli, P. Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188442.
[http://dx.doi.org/10.1016/j.bbcan.2020.188442] [PMID: 33017632]
[26]
da Fonseca, L.G.; Reig, M.; Bruix, J. Tyrosine kinase inhibitors and hepatocellular carcinoma. Clin. Liver Dis., 2020, 24(4), 719-737.
[http://dx.doi.org/10.1016/j.cld.2020.07.012] [PMID: 33012455]
[27]
Shawver, L.K.; Slamon, D.; Ullrich, A. Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell, 2002, 1(2), 117-123.
[http://dx.doi.org/10.1016/S1535-6108(02)00039-9] [PMID: 12086869]
[28]
Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). J. Hematol. Oncol., 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[29]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1), 1-6.
[30]
Terman, B.I.; Carrion, M.E.; Kovacs, E.; Rasmussen, B.A.; Eddy, R.L.; Shows, T.B. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene, 1991, 6(9), 1677-1683.
[PMID: 1656371]
[31]
Yamaoka, T.; Kusumoto, S.; Ando, K.; Ohba, M.; Ohmori, T. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci., 2018, 19(11), 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[32]
Abbaspour Babaei, M.; Kamalidehghan, B.; Saleem, M.; Huri, H.Z.; Ahmadipour, F. Receptor tyrosine kinase (c-Kit) inhibitors: A potential therapeutic target in cancer cells. Drug Des. Devel. Ther., 2016, 10, 2443-2459.
[http://dx.doi.org/10.2147/DDDT.S89114] [PMID: 27536065]
[33]
Wu, X.; Zahari, M.S.; Renuse, S.; Kelkar, D.S.; Barbhuiya, M.A.; Rojas, P.L.; Stearns, V.; Gabrielson, E.; Malla, P.; Sukumar, S.; Mahajan, N.P.; Pandey, A. The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer. Oncotarget, 2017, 8(2), 2971-2983.
[http://dx.doi.org/10.18632/oncotarget.13579] [PMID: 27902967]
[34]
Solouki, S.; August, A.; Huang, W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol. Ther., 2019, 201, 39-50.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.008] [PMID: 31082431]
[35]
Altanerova, U.; Jakubechova, J.; Benejova, K.; Priscakova, P.; Repiska, V.; Babelova, A.; Smolkova, B.; Altaner, C. Intracellular prodrug gene therapy for cancer mediated by tumor cell suicide gene exosomes. Int. J. Cancer, 2021, 148(1), 128-139.
[http://dx.doi.org/10.1002/ijc.33188] [PMID: 32621791]
[36]
Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med., 2019, 9(1), 84.
[http://dx.doi.org/10.3390/jcm9010084] [PMID: 31905724]
[37]
Yu, Y.; Suryo Rahmanto, Y.; Shen, Y-A.; Ardighieri, L.; Davidson, B.; Gaillard, S.; Ayhan, A.; Shi, X.; Xuan, J.; Wang, T-L.; Shih, I.M. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBio Med., 2019, 47, 184-194.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.055] [PMID: 31492560]
[38]
Geahlen, R.L. Getting Syk: Spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci., 2014, 35(8), 414-422.
[http://dx.doi.org/10.1016/j.tips.2014.05.007] [PMID: 24975478]
[39]
Heizmann, B.; Reth, M.; Infantino, S. Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18563-18568.
[http://dx.doi.org/10.1073/pnas.1009048107] [PMID: 20940318]
[40]
Lo, H-W.; Hsu, S-C.; Ali-Seyed, M.; Gunduz, M.; Xia, W.; Wei, Y.; Bartholomeusz, G.; Shih, J-Y.; Hung, M-C. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell, 2005, 7(6), 575-589.
[http://dx.doi.org/10.1016/j.ccr.2005.05.007] [PMID: 15950906]
[41]
Tang, C.; Zhu, G. Classic and novel signaling pathways involved in cancer: Targeting the NF-κB and Syk signaling pathways. Curr. Stem Cell Res. Ther., 2019, 14(3), 219-225.
[http://dx.doi.org/10.2174/1574888X13666180723104340] [PMID: 30033874]
[42]
Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol., 2019, 12(1), 27.
[http://dx.doi.org/10.1186/s13045-019-0718-5] [PMID: 30866992]
[43]
Rosti, G.; Castagnetti, F.; Gugliotta, G.; Baccarani, M. Tyrosine kinase inhibitors in chronic myeloid leukaemia: Which, when, for whom? Nat. Rev. Clin. Oncol., 2017, 14(3), 141-154.
[http://dx.doi.org/10.1038/nrclinonc.2016.139] [PMID: 27752053]
[44]
Navara, C.S. The spleen tyrosine kinase (Syk) in human disease, implications for design of tyrosine kinase inhibitor based therapy. Curr. Pharm. Des., 2004, 10(15), 1739-1744.
[http://dx.doi.org/10.2174/1381612043384493] [PMID: 15180536]
[45]
Park, S.R.; Speranza, G.; Piekarz, R.; Wright, J.J.; Kinders, R.J.; Wang, L.; Pfister, T.; Trepel, J.B.; Lee, M-J.; Alarcon, S.; Steinberg, S.M.; Collins, J.; Doroshow, J.H.; Kummar, S. A multi-histology trial of fostamatinib in patients with advanced colorectal, non-small cell lung, head and neck, thyroid, and renal cell carcinomas, and pheochromocytomas. Cancer Chemother. Pharmacol., 2013, 71(4), 981-990.
[http://dx.doi.org/10.1007/s00280-013-2091-3] [PMID: 23404627]
[46]
Liu, D.; Mamorska-Dyga, A. Syk inhibitors in clinical development for hematological malignancies. J. Hematol. Oncol., 2017, 10(1), 145.
[http://dx.doi.org/10.1186/s13045-017-0512-1] [PMID: 28754125]
[47]
Wakeling, A.E. Epidermal growth factor receptor tyrosine kinase inhibitors. Curr. Opin. Pharmacol., 2002, 2(4), 382-387.
[http://dx.doi.org/10.1016/S1471-4892(02)00183-2] [PMID: 12127870]
[48]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[49]
Li, X.; Zuo, Y.; Tang, G.; Wang, Y.; Zhou, Y.; Wang, X.; Guo, T.; Xia, M.; Ding, N.; Pan, Z. Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity. J. Med. Chem., 2014, 57(12), 5112-5128.
[http://dx.doi.org/10.1021/jm4017762] [PMID: 24915291]
[50]
Xue, Y.; Song, P.; Song, Z.; Wang, A.; Tong, L.; Geng, M.; Ding, J.; Liu, Q.; Sun, L.; Xie, H.; Zhang, A. Discovery of 4,7-Diamino-5-(4-phenoxyphenyl)-6- methylene-pyrimido[5,4- b]pyrrolizines as novel Bruton’s Tyrosine Kinase Inhibitors. J. Med. Chem., 2018, 61(10), 4608-4627.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00441] [PMID: 29715023]
[51]
Teng, Y.; Lu, X.; Xiao, M.; Li, Z.; Zou, Y.; Ren, S.; Cheng, Y.; Luo, G.; Xiang, H. Discovery of potent and highly selective covalent inhibitors of Bruton’s tyrosine kinase bearing triazine scaffold. Eur. J. Med. Chem., 2020, 199, 112339.
[http://dx.doi.org/10.1016/j.ejmech.2020.112339] [PMID: 32402933]
[52]
Lamminmaki, U.; Nikolov, D.; Himanen, J. Eph receptors as drug targets: Single-chain antibodies and beyond. Curr. Drug Targets, 2015, 16(10), 1021-1030.
[http://dx.doi.org/10.2174/1389450116666150531154619] [PMID: 26028047]
[53]
Boyd, A.W.; Bartlett, P.F.; Lackmann, M. Therapeutic targeting of EPH receptors and their ligands. Nat. Rev. Drug Discov., 2014, 13(1), 39-62.
[http://dx.doi.org/10.1038/nrd4175] [PMID: 24378802]
[54]
Liang, L-Y.; Patel, O.; Janes, P.W.; Murphy, J.M.; Lucet, I.S. Eph receptor signalling: From catalytic to non-catalytic functions. Oncogene, 2019, 38(39), 6567-6584.
[http://dx.doi.org/10.1038/s41388-019-0931-2] [PMID: 31406248]
[55]
Lafleur, K.; Huang, D.; Zhou, T.; Caflisch, A.; Nevado, C. Structure-based optimization of potent and selective inhibitors of the tyrosine kinase erythropoietin producing human hepatocellular carcinoma receptor B4 (EphB4). J. Med. Chem., 2009, 52(20), 6433-6446.
[http://dx.doi.org/10.1021/jm9009444] [PMID: 19788238]
[56]
Zhao, H.; Dong, J.; Lafleur, K.; Nevado, C.; Caflisch, A. Discovery of a novel chemotype of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics. ACS Med. Chem. Lett., 2012, 3(10), 834-838.
[http://dx.doi.org/10.1021/ml3001984] [PMID: 24900387]
[57]
Lafleur, K.; Dong, J.; Huang, D.; Caflisch, A.; Nevado, C. Optimization of inhibitors of the tyrosine kinase EphB4. 2. Cellular potency improvement and binding mode validation by X-ray crystallography. J. Med. Chem., 2013, 56(1), 84-96.
[http://dx.doi.org/10.1021/jm301187e] [PMID: 23253074]
[58]
Unzue, A.; Jessen-Trefzer, C.; Spiliotopoulos, D.; Gaudio, E.; Tarantelli, C.; Dong, J.; Zhao, H.; Pachmayr, J.; Zahler, S.; Bernasconi, E.; Sartori, G.; Cascione, L.; Bertoni, F.; Śledź, P.; Caflisch, A.; Nevado, C. Understanding the mechanism of action of pyrrolo[3,2-b]quinoxaline-derivatives as kinase inhibitors. RSC Med. Chem., 2020, 11(6), 665-675.
[http://dx.doi.org/10.1039/D0MD00049C] [PMID: 33479666]
[59]
Unzue, A.; Dong, J.; Lafleur, K.; Zhao, H.; Frugier, E.; Caflisch, A.; Nevado, C. Pyrrolo[3,2-b]quinoxaline derivatives as types I1/2 and II Eph tyrosine kinase inhibitors: Structure-based design, synthesis, and in vivo validation. J. Med. Chem., 2014, 57(15), 6834-6844.
[http://dx.doi.org/10.1021/jm5009242] [PMID: 25076195]
[60]
El Newahie, A.M.; Ismail, N.S.; Abou El Ella, D.A.; Abouzid, K.A. Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity. Arch. Pharm., 2016, 349(5), 309-326.
[http://dx.doi.org/10.1002/ardp.201500468]
[61]
Lim, C.J.; Oh, K-S.; Ha, J.D.; Lee, J.H.; Seo, H.W.; Chae, C.H.; Kim, D-G.; Lee, M-J.; Lee, B.H. 4-Substituted quinazoline derivatives as novel EphA2 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4080-4083.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.081] [PMID: 25124116]
[62]
Dong, Q.; Yu, P.; Ye, L.; Zhang, J.; Wang, H.; Zou, F.; Tian, J.; Kurihara, H. PCC0208027, a novel tyrosine kinase inhibitor, inhibits tumor growth of NSCLC by targeting EGFR and HER2 aberrations. Sci. Rep., 2019, 9(1), 5692.
[http://dx.doi.org/10.1038/s41598-019-42245-3] [PMID: 30952931]
[63]
Gravina, G.L.; Mancini, A.; Colapietro, A.; Delle Monache, S.; Sferra, R.; Vitale, F.; Cristiano, L.; Martellucci, S.; Marampon, F.; Mattei, V.; Beirinckx, F.; Pujuguet, P.; Saniere, L.; Lorenzon, G.; van der Aar, E.; Festuccia, C. The small molecule ephrin receptor inhibitor, GLPG1790, reduces renewal capabilities of cancer stem cells, showing anti-tumour efficacy on preclinical glioblastoma models. Cancers (Basel), 2019, 11(3), 359.
[http://dx.doi.org/10.3390/cancers11030359] [PMID: 30871240]
[64]
Chen, J.; Song, W.; Amato, K. Eph receptor tyrosine kinases in cancer stem cells. Cytokine Growth Factor Rev., 2015, 26(1), 1-6.
[http://dx.doi.org/10.1016/j.cytogfr.2014.05.001] [PMID: 24933439]
[65]
Colapietro, A.; Gravina, G.L.; Petragnano, F.; Fasciani, I.; Scicchitano, B.M.; Beirinckx, F.; Pujuguet, P.; Saniere, L.; Van der Aar, E.; Musio, D. Antitumorigenic effects of inhibiting ephrin receptor kinase signaling by glpg1790 against colorectal cancer cell lines in vitro and in vivo. J. Oncol., 2020, 2020, 9342732.
[http://dx.doi.org/10.1155/2020/9342732]
[66]
Qian, Y.; Chen, X. Senescence regulation by the p53 protein family. In: Methods in molecular biology; Lorenzo, Galluzzi, Ed.; Springer: New York, 2013; pp. 37-61.
[http://dx.doi.org/10.1007/978-1-62703-239-1_3]
[67]
Lucas, M.C.; Goldstein, D.M.; Hermann, J.C.; Kuglstatter, A.; Liu, W.; Luk, K.C.; Padilla, F.; Slade, M.; Villaseñor, A.G.; Wanner, J.; Xie, W.; Zhang, X.; Liao, C. Rational design of highly selective spleen tyrosine kinase inhibitors. J. Med. Chem., 2012, 55(23), 10414-10423.
[http://dx.doi.org/10.1021/jm301367c] [PMID: 23151054]
[68]
Kurniawan, D.W.; Storm, G.; Prakash, J.; Bansal, R. Role of spleen tyrosine kinase in liver diseases. World J. Gastroenterol., 2020, 26(10), 1005-1019.
[http://dx.doi.org/10.3748/wjg.v26.i10.1005] [PMID: 32205992]
[69]
Jiang, S.; DiPaolo, J.; Currie, K.; Alderucci, S.; Ramamurthy, A.; Peppers, J.; Qian, X.; Qian, D.; Awad, T.; Velleca, M.; Whitney, J.A. Chemical genetic transcriptional fingerprinting for selectivity profiling of kinase inhibitors. Assay Drug Dev. Technol., 2007, 5(1), 49-64.
[http://dx.doi.org/10.1089/adt.2006.032] [PMID: 17355199]
[70]
Awan, F.T.; Thirman, M.J.; Patel-Donnelly, D.; Assouline, S.; Rao, A.V.; Ye, W.; Hill, B.; Sharman, J.P. Entospletinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia previously treated with B-cell receptor inhibitors: Results of a phase 2 study. Leuk. Lymphoma, 2019, 60(8), 1972-1977.
[http://dx.doi.org/10.1080/10428194.2018.1562180] [PMID: 30633573]
[71]
Kittai, A.; Hashiguchi, T.; Thurlow, B.; Gokcora, B.; Stadnik, A.; MacKinnon, R.; Stephen, M.; Moore, L.; Persky, D.; Park, B.; Spurgeon, S.; Danilov, A. PS1155 a phase I/II study of the syk inhibitor entospletinib in combination with obinutuzumab in patients with relapsed/refractory chronic lymphocytic leukemia (cll). HemaSphere, 2019, 3(S1), 524.
[http://dx.doi.org/10.1097/01.HS9.0000562904.73237.a4]
[72]
Andorsky, D.J.; Kolibaba, K.S.; Assouline, S.; Forero-Torres, A.; Jones, V.; Klein, L.M.; Patel-Donnelly, D.; Smith, M.; Ye, W.; Shi, W.; Yasenchak, C.A.; Sharman, J.P. An open-label phase 2 trial of entospletinib in indolent non-Hodgkin lymphoma and mantle cell lymphoma. Br. J. Haematol., 2019, 184(2), 215-222.
[http://dx.doi.org/10.1111/bjh.15552] [PMID: 30183069]
[73]
Assis, L.C.; Garcia, L.S.; Mancini, D.T.; Assis, T.M.; Silva, D.R.; Cardoso, G.G.; de Castro, A.A.; Ramalho, T.C.; Da Cunha, E.F.F. Structure-based drugs design studies on spleen tyrosine kinase inhibitors. Lett. Drug Des. Discov., 2016, 13(9), 845-858.
[http://dx.doi.org/10.2174/1570180813666160725095118]
[74]
Selig, R.; Goettert, M.; Schattel, V.; Schollmeyer, D.; Albrecht, W.; Laufer, S. A frozen analogue approach to aminopyridinylimidazoles leading to novel and promising p38 MAP kinase inhibitors. J. Med. Chem., 2012, 55(19), 8429-8439.
[http://dx.doi.org/10.1021/jm300852w] [PMID: 22951114]
[75]
Lin, L.G.; Xie, H.; Li, H.L.; Tong, L.J.; Tang, C.P.; Ke, C.Q.; Liu, Q.F.; Lin, L.P.; Geng, M.Y.; Jiang, H.; Zhao, W.M.; Ding, J.; Ye, Y. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. J. Med. Chem., 2008, 51(15), 4419-4429.
[http://dx.doi.org/10.1021/jm701501x] [PMID: 18610999]
[76]
Dinges, J.; Albert, D.H.; Arnold, L.D.; Ashworth, K.L.; Akritopoulou-Zanze, I.; Bousquet, P.F.; Bouska, J.J.; Cunha, G.A.; Davidsen, S.K.; Diaz, G.J.; Djuric, S.W.; Gasiecki, A.F.; Gintant, G.A.; Gracias, V.J.; Harris, C.M.; Houseman, K.A.; Hutchins, C.W.; Johnson, E.F.; Li, H.; Marcotte, P.A.; Martin, R.L.; Michaelides, M.R.; Nyein, M.; Sowin, T.J.; Su, Z.; Tapang, P.H.; Xia, Z.; Zhang, H.Q. 1,4-Dihydroindeno[1,2-c]pyrazoles with acetylenic side chains as novel and potent multitargeted receptor tyrosine kinase inhibitors with low affinity for the hERG ion channel. J. Med. Chem., 2007, 50(9), 2011-2029.
[http://dx.doi.org/10.1021/jm061223o] [PMID: 17425296]
[77]
Dai, Y.; Hartandi, K.; Ji, Z.; Ahmed, A.A.; Albert, D.H.; Bauch, J.L.; Bouska, J.J.; Bousquet, P.F.; Cunha, G.A.; Glaser, K.B.; Harris, C.M.; Hickman, D.; Guo, J.; Li, J.; Marcotte, P.A.; Marsh, K.C.; Moskey, M.D.; Martin, R.L.; Olson, A.M.; Osterling, D.J.; Pease, L.J.; Soni, N.B.; Stewart, K.D.; Stoll, V.S.; Tapang, P.; Reuter, D.R.; Davidsen, S.K.; Michaelides, M.R. Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N′-(2-fluoro-5-methylphenyl) urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor. J. Med. Chem., 2007, 50(7), 1584-1597.
[http://dx.doi.org/10.1021/jm061280h] [PMID: 17343372]
[78]
Klutchko, S.R.; Zhou, H.; Winters, R.T.; Tran, T.P.; Bridges, A.J.; Althaus, I.W.; Amato, D.M.; Elliott, W.L.; Ellis, P.A.; Meade, M.A.; Roberts, B.J.; Fry, D.W.; Gonzales, A.J.; Harvey, P.J.; Nelson, J.M.; Sherwood, V.; Han, H.K.; Pace, G.; Smaill, J.B.; Denny, W.A.; Showalter, H.D. Tyrosine kinase inhibitors. 19. 6-Alkynamides of 4-anilinoquinazolines and 4-anilinopyrido[3,4-d]pyrimidines as irreversible inhibitors of the erbB family of tyrosine kinase receptors. J. Med. Chem., 2006, 49(4), 1475-1485.
[http://dx.doi.org/10.1021/jm050936o] [PMID: 16480284]
[79]
Baindur, N.; Chadha, N.; Brandt, B.M.; Asgari, D.; Patch, R.J.; Schalk-Hihi, C.; Carver, T.E.; Petrounia, I.P.; Baumann, C.A.; Ott, H.; Manthey, C.; Springer, B.A.; Player, M.R. 2-Hydroxy-4,6-diamino-[1,3,5]triazines: A novel class of VEGF-R2 (KDR) tyrosine kinase inhibitors. J. Med. Chem., 2005, 48(6), 1717-1720.
[http://dx.doi.org/10.1021/jm049372z] [PMID: 15771417]
[80]
Kumar, R.; Kumar, N.; Roy, R.K.; Singh, A. 1, 3, 5-Triazine analogs: A potent anticancer scaffold. Curr. Signal. Transduct. Ther., 2019, 14(2), 87-106.
[http://dx.doi.org/10.2174/1574362413666180221113805]
[81]
Smaill, J.B.; Showalter, H.D.; Zhou, H.; Bridges, A.J.; McNamara, D.J.; Fry, D.W.; Nelson, J.M.; Sherwood, V.; Vincent, P.W.; Roberts, B.J.; Elliott, W.L.; Denny, W.A. Tyrosine kinase inhibitors. 18. 6-Substituted 4-anilinoquinazolines and 4-anilinopyrido[3,4-d]pyrimidines as soluble, irreversible inhibitors of the epidermal growth factor receptor. J. Med. Chem., 2001, 44(3), 429-440.
[http://dx.doi.org/10.1021/jm000372i] [PMID: 11462982]
[82]
Thompson, A.M.; Connolly, C.J.; Hamby, J.M.; Boushelle, S.; Hartl, B.G.; Amar, A.M.; Kraker, A.J.; Driscoll, D.L.; Steinkampf, R.W.; Patmore, S.J.; Vincent, P.W.; Roberts, B.J.; Elliott, W.L.; Klohs, W.; Leopold, W.R.; Showalter, H.D.; Denny, W.A. 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and related 2-urea derivatives are potent and selective inhibitors of the FGF receptor-1 tyrosine kinase. J. Med. Chem., 2000, 43(22), 4200-4211.
[http://dx.doi.org/10.1021/jm000161d] [PMID: 11063616]
[83]
Ma, Y.; Carter, E.; Wang, X.; Shu, C.; McMahon, G.; Longley, B.J. Indolinone derivatives inhibit constitutively activated KIT mutants and kill neoplastic mast cells. J. Invest. Dermatol., 2000, 114(2), 392-394.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00888.x] [PMID: 10652004]
[84]
Wipf, P.; Aslan, D.C.; Luci, D.K.; Southwick, E.C.; Lazo, J.S. Synthesis and biological evaluation of a targeted library of protein phosphatase inhibitors. Biotechnol. Bioeng., 2000, 71(1), 58-70.
[http://dx.doi.org/10.1002/(SICI)1097-0290(200024)71:1<58::AID-BIT9>3.0.CO;2-0] [PMID: 10629537]
[85]
Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy