Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Perspective

Ferroptosis Inhibitors as New Therapeutic Insights into Radiation-Induced Heart Disease

Author(s): Soghra Farzipour, Fatemeh Jalali, Maryam Alvandi and Zahra Shaghaghi*

Volume 21, Issue 1, 2023

Published on: 26 August, 2022

Page: [2 - 9] Pages: 8

DOI: 10.2174/1871525720666220713101736

Open Access Journals Promotions 2
Abstract

Radiation-induced heart disease (RIHD) is a significant cause of morbidity in breast and other mediastinal cancers. The many molecular and cellular patho-mechanisms that have a role in RIHD are not completely understood. Endothelial injury, oxidative stress, and inflammation, as well as endoplasmic reticulum and mitochondrial damage, are considered the primary causes of RIHD. Ferroptosis is a newly discovered type of cell death that results from irondependent lipid peroxide accumulation. As ferroptosis plays an important role in the pathogenesis of cardiovascular diseases, it seems that it has a significant effect on RIHD. It was recently shown that ionizing radiation (IR) generates severe ferroptosis, which is a critical component of Radiotherapy-mediated normal cell toxicity. These findings support the use of a ferroptosis inhibitor to reduce RIHD. In this perspective review, we summarize the role of ferroptosis in pathogens of cardiovascular disease and radiation toxicity, and we will introduce ferroptosis inhibitors as a new strategy to prevent or reduce RIHD.

Keywords: Ferroptosis, radiotherapy, heart disease, radioprotective, ferrostatin-1, ferroptosis inhibitor.

« Previous
[1]
Cannon, B. Cardiovascular disease: Biochemistry to behaviour. Nature, 2013, 493(7434), S2-S3.
[http://dx.doi.org/10.1038/493S2a] [PMID: 23364768]
[2]
Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation, 1998, 97(18), 1837-1847.
[http://dx.doi.org/10.1161/01.CIR.97.18.1837] [PMID: 9603539]
[3]
Adams, M.J. In Radiation-associated cardiovascular disease: Manifestations and management. Semin. Radiat. Oncol., 2003, 13(3), 346-356.
[4]
Baker, J.E.; Fish, B.L.; Su, J.; Haworth, S.T.; Strande, J.L.; Komorowski, R.A.; Migrino, R.Q.; Doppalapudi, A.; Harmann, L.; Allen Li, X.; Hopewell, J.W.; Moulder, J.E. 10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model. Int. J. Radiat. Biol., 2009, 85(12), 1089-1100.
[http://dx.doi.org/10.3109/09553000903264473] [PMID: 19995235]
[5]
Boerma, M. Experimental radiation-induced heart disease: Past, present, and future. Radiat. Res., 2012, 178(1), 1-6.
[http://dx.doi.org/10.1667/RR2933.1] [PMID: 22663150]
[6]
Tapio, S. Pathology and biology of radiation-induced cardiac disease. J. Radiat. Res. (Tokyo), 2016, 57(5), 439-448.
[http://dx.doi.org/10.1093/jrr/rrw064] [PMID: 27422929]
[7]
Burch, G.E.; Sohal, R.S.; Sun, S.C.; Miller, G.C.; Colcolough, H.L. Effects of radiation on the human heart. An electron microscopic study. Arch. Intern. Med., 1968, 121(3), 230-234.
[http://dx.doi.org/10.1001/archinte.1968.03640030022003] [PMID: 5642742]
[8]
Farzipour, S.; Amiri, F.T.; Mihandoust, E.; Shaki, F.; Noaparast, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J. Bioenerg. Biomembr., 2020, 52(1), 39-46.
[http://dx.doi.org/10.1007/s10863-019-09820-9] [PMID: 31853753]
[9]
Livingston, K.; Schlaak, R.A.; Puckett, L.L.; Bergom, C. The role of mitochondrial dysfunction in radiation-induced heart disease: From bench to bedside. Front. Cardiovasc. Med., 2020, 7, 20.
[http://dx.doi.org/10.3389/fcvm.2020.00020] [PMID: 32154269]
[10]
Ganea, E. Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr. Protein Pept. Sci., 2001, 2(3), 205-225.
[http://dx.doi.org/10.2174/1389203013381107] [PMID: 12369933]
[11]
Azimzadeh, O.; Sievert, W.; Sarioglu, H.; Merl-Pham, J.; Yentrapalli, R.; Bakshi, M.V.; Janik, D.; Ueffing, M.; Atkinson, M.J.; Multhoff, G.; Tapio, S. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J. Proteome Res., 2015, 14(2), 1203-1219.
[http://dx.doi.org/10.1021/pr501141b] [PMID: 25590149]
[12]
Shaghaghi, Z.; Motieian, S.; Alvandi, M.; Yazdi, A.; Asadzadeh, B.; Farzipour, S.; Abbasi, S. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease. Mini Rev. Med. Chem., 2022.
[http://dx.doi.org/10.2174/1389557522666220218123404] [PMID: 35184711]
[13]
Farzipour, S.; Talebpour Amiri, F.; Alvandi, M.; Shaghaghi, Z.; Yazdi, A. Ferroptosis in cardiovascular disease: Basic mechanisms and implications for cardiovascular disease. J. Mazandaran Univ. Med. Sci., 2021, 31(200), 199-214.
[14]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[15]
Yuan, Z.H.; Liu, T.; Wang, H.; Xue, L.X.; Wang, J.J. Fatty acids metabolism: The bridge between ferroptosis and ionizing radiation. Front. Cell Dev. Biol., 2021, 9675617
[http://dx.doi.org/10.3389/fcell.2021.675617] [PMID: 34249928]
[16]
Song, X.; Long, D. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases. Front. Neurosci., 2020, 14, 267.
[http://dx.doi.org/10.3389/fnins.2020.00267] [PMID: 32372896]
[17]
Nebigil, C.G.; Chan, M.W.Y.; Rassaf, T. Editorial: Emerging challenges of cardiovascular and metabolic dysfunctions in cardio-oncology: From bench to bedside. Front. Cardiovasc. Med., 2020, 7, 148.
[http://dx.doi.org/10.3389/fcvm.2020.00148] [PMID: 33005633]
[18]
Azimzadeh, O.; Subramanian, V.; Sievert, W.; Merl-Pham, J.; Oleksenko, K.; Rosemann, M.; Multhoff, G.; Atkinson, M.J.; Tapio, S. Activation of PPARα by fenofibrate attenuates the effect of local heart high dose irradiation on the mouse cardiac proteome. Biomedicines, 2021, 9(12), 1845.
[http://dx.doi.org/10.3390/biomedicines9121845] [PMID: 34944662]
[19]
Mansour, H.H.; Tawfik, S.S. Early treatment of radiation-induced heart damage in rats by caffeic acid phenethyl ester. Eur. J. Pharmacol., 2012, 692(1-3), 46-51.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.037] [PMID: 22771294]
[20]
Azimzadeh, O.; Scherthan, H.; Sarioglu, H.; Barjaktarovic, Z.; Conrad, M.; Vogt, A.; Calzada-Wack, J.; Neff, F.; Aubele, M.; Buske, C.; Atkinson, M.J.; Tapio, S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics, 2011, 11(16), 3299-3311.
[http://dx.doi.org/10.1002/pmic.201100178] [PMID: 21751382]
[21]
Xu, W.; Deng, H.; Hu, S.; Zhang, Y.; Zheng, L.; Liu, M.; Chen, Y.; Wei, J.; Yang, H.; Lv, X. Role of ferroptosis in lung diseases. J. Inflamm. Res., 2021, 14, 2079-2090.
[http://dx.doi.org/10.2147/JIR.S307081] [PMID: 34045882]
[22]
Thermozier, S.; Hou, W.; Zhang, X.; Shields, D.; Fisher, R.; Bayir, H.; Kagan, V.; Yu, J.; Liu, B.; Bahar, I.; Epperly, M.W.; Wipf, P.; Wang, H.; Huq, M.S.; Greenberger, J.S. Anti-ferroptosis drug enhances total-body irradiation mitigation by drugs that block apoptosis and necroptosis. Radiat. Res., 2020, 193(5), 435-450.
[http://dx.doi.org/10.1667/RR15486.1] [PMID: 32134361]
[23]
Zhang, X.; Tian, M.; Li, X.; Zheng, C.; Wang, A.; Feng, J.; Hu, X.; Chang, S.; Zhang, H. Hematopoietic protection and mechanisms of ferrostatin-1 on hematopoietic acute radiation syndrome of mice. Int. J. Radiat. Biol., 2021, 97(4), 464-473.
[http://dx.doi.org/10.1080/09553002.2021.1876956] [PMID: 33464146]
[24]
Han, C.; Liu, Y.; Dai, R.; Ismail, N.; Su, W.; Li, B. Ferroptosis and its potential role in human diseases. Front. Pharmacol., 2020, 11, 239.
[http://dx.doi.org/10.3389/fphar.2020.00239] [PMID: 32256352]

© 2024 Bentham Science Publishers | Privacy Policy