Review Article

用于肠道疾病管理中结肠特异性美沙拉嗪递送的聚合物系统

卷 30, 期 12, 2023

发表于: 03 October, 2022

页: [1351 - 1367] 页: 17

弟呕挨: 10.2174/0929867329666220707102912

价格: $65

摘要

抗炎的5-氨基水杨酸(5-ASA)是用于预防和治疗炎症性肠病的主要治疗选择。当口服给药时,上肠道对这种药物进行快速和几乎完全的吸收,使得发炎的结肠粘膜中分子的局部治疗水平难以达到。微和纳米颗粒系统有望掺入5-ASA,因为这些结构的尺寸减小可以改善药物的药效学,并有助于更有效和局部的治疗。总之,这些系统与聚合物的结合将允许5-ASA通过特定的靶向机制释放到结肠,如美沙拉嗪修饰释放剂型所示。本综述将总结和讨论口服5-ASA的挑战以及使用聚合物的不同结肠特异性递送策略。

关键词: 5-ASA,聚合物系统,结肠输送,纳米颗粒系统,微颗粒系统,改性释放剂型

[1]
Quaresma, A.B.; Kaplan, G.G.; Kotze, P.G. The globalization of inflammatory bowel disease: The incidence and prevalence of inflammatory bowel disease in Brazil. Curr. Opin. Gastroenterol., 2019, 35(4), 259-264.
[http://dx.doi.org/10.1097/MOG.0000000000000534] [PMID: 30973356]
[2]
Kotze, P.G.; Underwood, F.E.; Damião, A.O.M.C.; Ferraz, J.G.P.; Saad-Hossne, R.; Toro, M.; Iade, B.; Bosques-Padilla, F.; Teixeira, F.V.; Juliao-Banos, F.; Simian, D.; Ghosh, S.; Panaccione, R.; Ng, S.C.; Kaplan, G.G. Progression of inflammatory bowel diseases throughout latin america and the caribbean: A systematic review. Clin. Gastroenterol. Hepatol., 2020, 18(2), 304-312.
[http://dx.doi.org/10.1016/j.cgh.2019.06.030] [PMID: 31252191]
[3]
Tavares Junior, A.G.; de Araújo, J.T.C.; Meneguin, A.B.; Chorilli, M. Characteristics, properties and analytical/bioanalytical methods of 5-aminosalicylic acid: A review. Crit. Rev. Anal. Chem., 2022, 52(5), 1000-1014.
[http://dx.doi.org/10.1080/10408347.2020.1848516] [PMID: 33258695]
[4]
Moura, R.M.; Hartmann, R.M.; Licks, F.; Schemitt, E.G.; Colares, J.R.; do Couto Soares, M.; Fillmann, L.S.; Fillmann, H.S.; Marroni, N.P. Antioxidant effect of mesalazine in the experimental colitis model induced by acetic acid. J. Coloproctol. (Rio J.), 2016, 36(3), 139-148.
[http://dx.doi.org/10.1016/j.jcol.2016.03.003]
[5]
Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; Sauk, J.S.; Wilson, R.G.; Stevens, B.W.; Scott, J.M.; Pierce, K.; Deik, A.A.; Bullock, K.; Imhann, F.; Porter, J.A.; Zhernakova, A.; Fu, J.; Weersma, R.K.; Wijmenga, C.; Clish, C.B.; Vlamakis, H.; Huttenhower, C.; Xavier, R.J. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol., 2019, 4(2), 293-305.
[http://dx.doi.org/10.1038/s41564-018-0306-4] [PMID: 30531976]
[6]
Collnot, E-M.; Ali, H.; Lehr, C-M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release, 2012, 161(2), 235-246.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.028] [PMID: 22306429]
[7]
Younis, N.; Zarif, R.; Mahfouz, R. Inflammatory bowel disease: Between genetics and microbiota. Mol. Biol. Rep., 2020, 47(4), 3053-3063.
[http://dx.doi.org/10.1007/s11033-020-05318-5] [PMID: 32086718]
[8]
Dos Santos, A.M.; Carvalho, S.G.; Meneguin, A.B.; Sábio, R.M.; Gremião, M.P.D.; Chorilli, M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J. Control. Release, 2021, 334(January), 353-366.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.026] [PMID: 33901582]
[9]
Flynn, S.; Eisenstein, S. Inflammatory bowel disease presentation and diagnosis. Surg. Clin. North Am., 2019, 99(6), 1051-1062.
[http://dx.doi.org/10.1016/j.suc.2019.08.001] [PMID: 31676047]
[10]
Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life, 2019, 12(2), 113-122.
[http://dx.doi.org/10.25122/jml-2018-0075] [PMID: 31406511]
[11]
Jacob, E.M.; Borah, A.; Pillai, S.C.; Kumar, D.S. Inflammatory bowel disease: The emergence of new trends in lifestyle and nanomedicine as the modern tool for pharmacotherapy. Nanomaterials (Basel), 2020, 10(12), 2460.
[http://dx.doi.org/10.3390/nano10122460] [PMID: 33316984]
[12]
Meneguin, A.B.; Sábio, R.M.; de Souza, M.P.C.; Fernandes, R.P.; de Oliveira, A.G.; Chorilli, M. Cellulose nanofibers improve the performance of retrograded starch/pectin microparticles for colon-specific delivery of 5-ASA. Pharmaceutics, 2021, 13(9), 1515.
[http://dx.doi.org/10.3390/pharmaceutics13091515] [PMID: 34575591]
[13]
Shahdadi Sardo, H.; Saremnejad, F.; Bagheri, S.; Akhgari, A.; Afrasiabi Garekani, H.; Sadeghi, F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int. J. Pharm., 2019, 558(558), 367-379.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.022] [PMID: 30664993]
[14]
Nakagawa, S.; Okaniwa, N.; Mizuno, M.; Sugiyama, T.; Yamaguchi, Y.; Tamura, Y.; Izawa, S.; Hijikata, Y.; Ebi, M.; Ogasawara, N.; Funaki, Y.; Sasaki, M.; Kasugai, K. Treatment adherence in patients with ulcerative colitis is dependent on the formulation of 5-aminosalicylic acid. Digestion, 2019, 99(2), 133-139.
[http://dx.doi.org/10.1159/000489878] [PMID: 30179881]
[15]
van de Meeberg, M.M.; Schultheiss, J.P.D.; Oldenburg, B.; Fidder, H.H.; Huitema, A.D.R. Does the 5-aminosalicylate concentration correlate with the efficacy of oral 5-aminosalicylate and predict response in patients with inflammatory bowel disease? a systematic review. Digestion, 2020, 101(3), 245-261.
[http://dx.doi.org/10.1159/000499331] [PMID: 31013494]
[16]
Sousa, T.; Yadav, V.; Zann, V.; Borde, A.; Abrahamsson, B.; Basit, A.W. On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. J. Pharm. Sci., 2014, 103(10), 3171-3175.
[http://dx.doi.org/10.1002/jps.24103] [PMID: 25091594]
[17]
Frasca, G.; Cardile, V.; Puglia, C.; Bonina, C.; Bonina, F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin. Exp. Gastroenterol., 2012, 5(1), 61-67.
[http://dx.doi.org/10.2147/CEG.S28792] [PMID: 22629114]
[18]
Cottone, M.; Renna, S.; Modesto, I.; Orlando, A. Is 5-ASA still the treatment of choice for ulcerative colitis? Curr. Drug Targets, 2011, 12(10), 1396-1405.
[http://dx.doi.org/10.2174/138945011796818126] [PMID: 21466493]
[19]
Berends, S.E.; Strik, A.S.; Löwenberg, M.; D’Haens, G.R.; Mathôt, R.A.A. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet., 2019, 58(1), 15-37.
[http://dx.doi.org/10.1007/s40262-018-0676-z] [PMID: 29752633]
[20]
Cesar, A.L.A.; Abrantes, F.A.; Farah, L.; Castilho, R.O.; Cardoso, V.; Fernandes, S.O.; Araújo, I.D.; Faraco, A.A.G. New mesalamine polymeric conjugate for controlled release: Preparation, characterization and biodistribution study. Eur. J. Pharm. Sci., 2018, 111(111), 57-64.
[http://dx.doi.org/10.1016/j.ejps.2017.09.037] [PMID: 28958891]
[21]
Karkossa, F.; Klein, S. A biopredictive in vitro comparison of oral locally acting mesalazine formulations by a novel dissolution model for assessing intraluminal drug release in individual subjects. J. Pharm. Sci., 2018, 107(6), 1680-1689.
[http://dx.doi.org/10.1016/j.xphs.2018.02.016] [PMID: 29499277]
[22]
Günter, E.A.; Markov, P.A.; Melekhin, A.K.; Belozerov, V.S.; Martinson, E.A.; Litvinets, S.G.; Popov, S.V. Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery. Int. J. Biol. Macromol., 2018, 120(Pt B), 2225-2233.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.078] [PMID: 30012483]
[23]
Canevari, M.; Castagliuolo, I.; Brun, P.; Cardin, M.; Schiavon, M.; Pasut, G.; Veronese, F.M. Poly(ethylene glycol)-mesalazine conjugate for colon specific delivery. Int. J. Pharm., 2009, 368(1-2), 171-177.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.058] [PMID: 18996458]
[24]
Sharma, N.; Sharma, A.; Bhatnagar, A.; Nishad, D.; Karwasra, R.; Khanna, K.; Sharma, D.; Kumar, N.; Jain, G.K. Novel gum acacia based macroparticles for colon delivery of mesalazine: Development and gammascintigraphy study. J. Drug Deliv. Sci. Technol., 2019, 54(April), 101224.
[http://dx.doi.org/10.1016/j.jddst.2019.101224]
[25]
Foppoli, A.; Maroni, A.; Moutaharrik, S.; Melocchi, A.; Zema, L.; Palugan, L.; Cerea, M.; Gazzaniga, A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int. J. Pharm., 2019, 572, 118723.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118723] [PMID: 31628978]
[26]
Bisharat, L.; Barker, S.A.; Narbad, A.; Craig, D.Q.M. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm., 2019, 556, 311-319.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.021] [PMID: 30557678]
[27]
Michielan, A.; D’Incà, R. Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm., 2015, 2015, 628157.
[http://dx.doi.org/10.1155/2015/628157] [PMID: 26582965]
[28]
Li, X.; Lu, C.; Yang, Y.; Yu, C.; Rao, Y. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed. Pharmacother., 2020, 129(June), 110486.
[http://dx.doi.org/10.1016/j.biopha.2020.110486] [PMID: 32768972]
[29]
Plichta, D.R.; Graham, D.B.; Subramanian, S.; Xavier, R.J. Therapeutic opportunities in inflammatory bowel disease: Mechanistic dissection of host-microbiome relationships. Cell, 2019, 178(5), 1041-1056.
[http://dx.doi.org/10.1016/j.cell.2019.07.045] [PMID: 31442399]
[30]
Kotla, N.G.; Rana, S.; Sivaraman, G.; Sunnapu, O.; Vemula, P.K.; Pandit, A.; Rochev, Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv. Drug Deliv. Rev., 2019, 146, 248-266.
[http://dx.doi.org/10.1016/j.addr.2018.06.021] [PMID: 29966684]
[31]
Vindigni, S.M.; Zisman, T.L.; Suskind, D.L.; Damman, C.J. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: A tripartite pathophysiological circuit with implications for new therapeutic directions. Therap. Adv. Gastroenterol., 2016, 9(4), 606-625.
[http://dx.doi.org/10.1177/1756283X16644242] [PMID: 27366227]
[32]
Zeeshan, M.; Ali, H.; Khan, S.; Khan, S.A.; Weigmann, B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int. J. Pharm., 2019, 558(558), 201-214.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.074] [PMID: 30615925]
[33]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11(April), 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[34]
Meneguin, A.B.; da Silva Barud, H.; Sábio, R.M.; de Sousa, P.Z.; Manieri, K.F.; de Freitas, L.A.P.; Pacheco, G.; Alonso, J.D.; Chorilli, M. Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohydr. Polym., 2020, 249(July), 116838.
[http://dx.doi.org/10.1016/j.carbpol.2020.116838] [PMID: 32933682]
[35]
Zhang, L.; Sang, Y.; Feng, J.; Li, Z.; Zhao, A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target., 2016, 24(7), 579-589.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[36]
Dar, M.J.; Ali, H.; Khan, A.; Khan, G.M. Polymer-based drug delivery: The quest for local targeting of inflamed intestinal mucosa. J. Drug Target., 2017, 25(7), 582-596.
[http://dx.doi.org/10.1080/1061186X.2017.1298601] [PMID: 28277824]
[37]
Shahdadi Sardou, H.; Akhgari, A.; Mohammadpour, A.H.; Kamali, H.; Jafarian, A.H.; Afrasiabi Garekani, H.; Sadeghi, F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int. J. Pharm., 2021, 597, 120347.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120347] [PMID: 33545282]
[38]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics, 2020, 12(1), E68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[39]
de Araújo, J.T.C.; Tavares, A.G., Junior; Di Filippo, L.D.; Duarte, J.L.; Ribeiro, T.; de, C.; Chorilli, M. Overview of chitosan-based nanosystems for prostate cancer therapy. Eur. Polym. J., 2021, 160(September), 1-10.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110812]
[40]
Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Zafar, A.; Alsaidan, O.A.; Alruwaili, N.K.; Gilani, S.J.; Rizwanullah, M. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. Polymers (Basel), 2021, 13(22), 4036.
[http://dx.doi.org/10.3390/polym13224036] [PMID: 34833334]
[41]
Kurakula, M.; Gorityala, S.; Moharir, K. Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: Update 2020. J. Drug Deliv. Sci. Technol., 2021, 64, 102579.
[http://dx.doi.org/10.1016/j.jddst.2021.102579]
[42]
Moreno, J.A.S.; Mendes, A.C.; Stephansen, K.; Engwer, C.; Goycoolea, F.M.; Boisen, A.; Nielsen, L.H.; Chronakis, I.S. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr. Polym., 2018, 190, 240-247.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.062] [PMID: 29628244]
[43]
Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuan, M.; Carda, C.; Ruiz, A.; Manconi, M.; Loy, G.; Fadda, A.M.; Diez-Sales, O. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. Int. J. Pharm., 2011, 416(1), 145-154.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.025] [PMID: 21723929]
[44]
Frade, M.L.; de Annunzio, S.R.; Calixto, G.M.F.; Victorelli, F.D.; Chorilli, M.; Fontana, C.R. Assessment of chitosan-based hydrogel and photodynamic inactivation against propionibacterium acnes. Molecules, 2018, 23(2), E473.
[http://dx.doi.org/10.3390/molecules23020473] [PMID: 29470387]
[45]
Calixto, G.M.F.; Victorelli, F.D.; Dovigo, L.N.; Chorilli, M. Polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems intended for buccal drug delivery. AAPS PharmSciTech, 2018, 19(2), 820-836.
[http://dx.doi.org/10.1208/s12249-017-0890-2] [PMID: 29019033]
[46]
Souza, M.P.C.; Sábio, R.M.; Ribeiro, T.C.; Santos, A.M.D.; Meneguin, A.B.; Chorilli, M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int. J. Biol. Macromol., 2020, 159, 804-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.104] [PMID: 32425271]
[47]
Agüero, L.; Zaldivar-Silva, D.; Peña, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym., 2017, 168, 32-43.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.033] [PMID: 28457455]
[48]
Nidhi; Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J., 2016, 24(4), 458-472.
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[49]
Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuán, M.; Manconi, M.; Loy, G.; Fadda, A.M.; Díez-Sales, O. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf. B Biointerfaces, 2012, 94, 199-205.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.030] [PMID: 22341520]
[50]
Jin, L.; Ding, Y.C.; Zhang, Y.; Xu, X.Q.; Cao, Q. A novel pH-enzyme-dependent mesalamine colon-specific delivery system. Drug Des. Devel. Ther., 2016, 10, 2021-2028.
[http://dx.doi.org/10.2147/DDDT.S107283] [PMID: 27382255]
[51]
Palma, E.; Costa, N.; Molinaro, R.; Francardi, M.; Paolino, D.; Cosco, D.; Fresta, M. Improvement of the therapeutic treatment of inflammatory bowel diseases following rectal administration of mesalazine-loaded chitosan microparticles vs. Asamax®. Carbohydr. Polym., 2019, 212(212), 430-438.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.049] [PMID: 30832877]
[52]
Tapia, C.; Molina, S.; Diaz, A.; Abugoch, L.; Diaz-Dosque, M.; Valenzuela, F.; Yazdani-Pedram, M. The effect of chitosan as internal or external coating on the 5-ASA release from calcium alginate microparticles. AAPS PharmSciTech, 2010, 11(3), 1294-1305.
[http://dx.doi.org/10.1208/s12249-010-9504-y] [PMID: 20717758]
[53]
Mladenovska, K.; Cruaud, O.; Richomme, P.; Belamie, E.; Raicki, R.S.; Venier-Julienne, M.C.; Popovski, E.; Benoit, J.P.; Goracinova, K. 5-ASA loaded chitosan-Ca-alginate microparticles: Preparation and physicochemical characterization. Int. J. Pharm., 2007, 345(1-2), 59-69.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.059] [PMID: 17616284]
[54]
Mladenovska, K.; Raicki, R.S.; Janevik, E.I.; Ristoski, T.; Pavlova, M.J.; Kavrakovski, Z.; Dodov, M.G.; Goracinova, K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int. J. Pharm., 2007, 342(1-2), 124-136.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.028] [PMID: 17590293]
[55]
Walz, M.; Hagemann, D.; Trentzsch, M.; Weber, A.; Henle, T. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine. Carbohydr. Polym., 2018, 199, 102-108.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.015] [PMID: 30143109]
[56]
Urtiga, S.C.D.C.; Alves, V.M.O.; Melo, C.O.; Lima, M.N.; Souza, E.; Cunha, A.P.; Ricardo, N.M.P.S.; Oliveira, E.E.; Egito, E.S.T.D. Xylan microparticles for controlled release of mesalamine: Production and physicochemical characterization. Carbohydr. Polym., 2020, 250(March), 116929.
[http://dx.doi.org/10.1016/j.carbpol.2020.116929] [PMID: 33049843]
[57]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[58]
Banabid, W.; Djerboua, F.; Maiza, A.; El Bahri, Z.; Baitiche, M. Optimization and in-vitro evaluation of poly (lactic acid) /mesalazine microspheres as drug carriers. Indian J. Pharm. Educ. Res., 2017, 51(2s), s46-s53.
[http://dx.doi.org/10.5530/ijper.51.2s.49]
[59]
Thakur, V.; Singh, A.; Joshi, N.; Mishra, N. Spray dried formulation of mesalamine embedded with probiotic biomass for the treatment of ulcerative colitis: In-vitro and in-vivo studies. Drug Dev. Ind. Pharm., 2019, 45(11), 1807-1820.
[http://dx.doi.org/10.1080/03639045.2019.1665059] [PMID: 31489829]
[60]
Balducci, A.G.; Colombo, G.; Corace, G.; Cavallari, C.; Rodriguez, L.; Buttini, F.; Colombo, P.; Rossi, A. Layered lipid microcapsules for mesalazine delayed-release in children. Int. J. Pharm., 2011, 421(2), 293-300.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.043] [PMID: 22001795]
[61]
Jarai, B.M.; Kolewe, E.L.; Stillman, Z.S.; Raman, N.; Fromen, C.A. Polymeric Nanoparticles Elsevier Inc., 2020.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00018-7]
[62]
Krishnamoorthy, K.; Mahalingam, M. Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach. Adv. Pharm. Bull., 2015, 5(1), 57-67.
[http://dx.doi.org/10.5681/apb.2015.008] [PMID: 25789220]
[63]
Meka, V.S.; Sing, M.K.G.; Pichika, M.R.; Nali, S.R.; Kolapalli, V.R.M.; Kesharwani, P. A comprehensive review on polyelectrolyte complexes. Drug Discov. Today, 2017, 22(11), 1697-1706.
[http://dx.doi.org/10.1016/j.drudis.2017.06.008] [PMID: 28683256]
[64]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. & Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[65]
Lima, I.B.C.; Moreno, L.C.G.A.I.; Silva-Filho, E.C.; Irache, J.M.; Veiga, F.J.B.; Rolim, H.M.L.; Nunes, L.C.C. Development of nanostructured systems using natural polymers to optimize the treatment of inflammatory bowel diseases: A prospective study. J. Drug Deliv. Sci. Technol., 2021, 64(February), 102590.
[http://dx.doi.org/10.1016/j.jddst.2021.102590]
[66]
Zu, M.; Ma, Y.; Cannup, B.; Xie, D.; Jung, Y.; Zhang, J.; Yang, C.; Gao, F.; Merlin, D.; Xiao, B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv. Drug Deliv, 2021, 176, 1138870.
[http://dx.doi.org/10.1016/j.addr.2021.113887]
[67]
Ahmad, A.; Ansari, M.M.; Mishra, R.K.; Kumar, A.; Vyawahare, A.; Verma, R.K.; Raza, S.S.; Khan, R. Enteric-coated gelatin nanoparticles mediated oral delivery of 5-aminosalicylic acid alleviates severity of DSS-induced ulcerative colitis. Mater. Sci. Eng. C, 2021, 119(119), 111582.
[http://dx.doi.org/10.1016/j.msec.2020.111582] [PMID: 33321628]
[68]
Akram, W.; Garud, N. Design expert as a statistical tool for optimization of 5-asa-loaded biopolymer-based nanoparticles using box behnken factorial design. Futur. J. Pharm. Sci., 2021, 7(1), 146.
[http://dx.doi.org/10.1186/s43094-021-00299-z]
[69]
Markam, R.; Bajpai, A.K. Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-asa) in treatment of inflammatory bowel diseases: An in vitro study. React. Funct. Polym., 2020, 149(February), 104520.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104520]
[70]
Tang, P.; Sun, Q.; Zhao, L.; Pu, H.; Yang, H.; Zhang, S.; Gan, R.; Gan, N.; Li, H. Mesalazine/hydroxypropyl-β-cyclodextrin/chitosan nanoparticles with sustained release and enhanced anti-inflammation activity. Carbohydr. Polym., 2018, 198(May), 418-425.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.106] [PMID: 30093018]
[71]
Seifirad, S.; Karami, H.; Shahsavari, S.; Mirabbasi, F.; Dorkoosh, F.A. Design and characterization of mesalamine loaded nanoparticles for controlled delivery system. Nanomedicine Res. J., 2016, 1(2), 97-106.
[http://dx.doi.org/10.7508/NMRJ.2016.02.006]
[72]
Mongia, P.; Khatik, R.; Raj, R.; Jain, N.; Pathak, A.K. Ph-sensitive eudragit s-100 coated chitosan nanoparticles of 5-amino salicylic acid for colon delivery. J. Biomater. Tissue Eng., 2014, 4(9), 738-743.
[http://dx.doi.org/10.1166/jbt.2014.1229]
[73]
Mahajan, N.M.; Sakarkar, D.M.; Manmode, A.S. Preparation and characterization of meselamine loaded plga nanoparticles. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 208-214.
[74]
Goyanes, A.; Hatton, G.B.; Merchant, H.A.; Basit, A.W. Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations. Int. J. Pharm., 2015, 484(1-2), 103-108.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.051] [PMID: 25721685]
[75]
Ye, B.; van Langenberg, D.R. Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal? World J. Gastrointest. Pharmacol. Ther., 2015, 6(4), 137-144.
[http://dx.doi.org/10.4292/wjgpt.v6.i4.137] [PMID: 26558148]
[76]
Hawthorne, A. B. A review of multimatrix system (mmx) mesalazine in the management of ulcerative colitis Clinc. Med. Therapeu., 2009, 1.
[http://dx.doi.org/10.4137/CMT.S38]
[77]
Andreas, C.J.; Chen, Y.C.; Markopoulos, C.; Reppas, C.; Dressman, J. In vitro biorelevant models for evaluating modified release mesalamine products to forecast the effect of formulation and meal intake on drug release. Eur. J. Pharm. Biopharm., 2015, 97(Pt A), 39-50.
[http://dx.doi.org/10.1016/j.ejpb.2015.09.002] [PMID: 26391972]
[78]
Leifeld, L.; Pfützer, R.; Morgenstern, J.; Gibson, P.R.; Marakhouski, Y.; Greinwald, R.; Mueller, R.; Kruis, W. Mesalazine granules are superior to Eudragit-L-coated mesalazine tablets for induction of remission in distal ulcerative colitis - a pooled analysis. Aliment. Pharmacol. Ther., 2011, 34(9), 1115-1122.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04840.x] [PMID: 21923715]
[79]
Sun, J.; Yuan, Y. Mesalazine modified-release tablet in the treatment of ulcerative colitis in the active phase: A chinese, multicenter, single-blind, randomized controlled study. Adv. Ther., 2016, 33(3), 400-409.
[http://dx.doi.org/10.1007/s12325-016-0303-z] [PMID: 26898569]
[80]
Forbes, A.; Cartwright, A.; Marchant, S.; McIntyre, P.; Newton, M. Review article: Oral, modified-release mesalazine formulations--proprietary versus generic. Aliment. Pharmacol. Ther., 2003, 17(10), 1207-1214.
[http://dx.doi.org/10.1046/j.1365-2036.2003.01578.x] [PMID: 12755834]
[81]
Xu, M.; Sun, M.; Qiao, H.; Ping, Q.; Elamin, E.S. Preparation and evaluation of colon adhesive pellets of 5-aminosalicylic acid. Int. J. Pharm., 2014, 468(1-2), 165-171.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.040] [PMID: 24746693]
[82]
Déo, S.C.; Andreazza, I.F.; Possamai, J.C. Development of mesalazine pellets coated with methacrylic-derived polymer. Braz. J. Pharm. Sci., 2011, 47(1), 103-109.
[http://dx.doi.org/10.1590/S1984-82502011000100013]
[83]
Vlachou, M.; Siamidi, A.; Dotsikas, Y. Desirability based optimization of new mesalazine modified release formulations: Compression coated tablets and mini tablets in capsules. Lett. Drug Des. Discov., 2020, 17(2), 114-123.
[http://dx.doi.org/10.2174/1570180816666190110125812]
[84]
Mohanta, S.; Singh, S.K.; Kumar, B.; Gulati, M.; Kumar, R.; Yadav, A.K.; Wadhwa, S.; Jyoti, J.; Som, S.; Dua, K.; Pandey, N.K. Efficacy of co-administration of modified apple polysaccharide and probiotics in guar gum-Eudragit S100 based mesalamine mini tablets: A novel approach in treating ulcerative colitis. Int. J. Biol. Macromol., 2019, 126, 427-435.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.154] [PMID: 30572047]
[85]
Gareb, B.; Eissens, A.C.; Kosterink, J.G.W.; Frijlink, H.W. Development of a zero-order sustained-release tablet containing mesalazine and budesonide intended to treat the distal gastrointestinal tract in inflammatory bowel disease. Eur. J. Pharm. Biopharm., 2016, 103, 32-42.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.018] [PMID: 27000751]
[86]
Schellekens, R.C.A.; Baltink, J.H.; Woesthuis, E.M.; Stellaard, F.; Kosterink, J.G.W.; Woerdenbag, H.J.; Frijlink, H.W. Film coated tablets (ColoPulse technology) for targeted delivery in the lower intestinal tract: Influence of the core composition on release characteristics. Pharm. Dev. Technol., 2012, 17(1), 40-47.
[http://dx.doi.org/10.3109/10837450.2010.513986] [PMID: 20923321]
[87]
Trendafilova, I.; Szegedi, Á.; Yoncheva, K.; Shestakova, P.; Mihály, J.; Ristić, A.; Konstantinov, S.; Popova, M. A pH dependent delivery of mesalazine from polymer coated and drug-loaded SBA-16 systems. Eur. J. Pharm. Sci., 2016, 81, 75-81.
[http://dx.doi.org/10.1016/j.ejps.2015.10.003] [PMID: 26453768]
[88]
Bai, X.Y.; Yan, Y.; Wang, L.; Zhao, L.G.; Wang, K. Novel ph-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: In vivo study with ulcerative colitis targeting therapy in mice Drug Deliv, 2016, 23(6), 1926-32.
[http://dx.doi.org/10.3109/10717544.2014.996924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy