Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Polymeric Systems for Colon-specific Mesalazine Delivery in the Intestinal Bowel Diseases Management

Author(s): Alberto Gomes Tavares Junior, Jennifer Thayanne Cavalcante de Araújo, Jonatas Lobato Duarte, Amanda Letícia Polli Silvestre, Leonardo Delello Di Filippo and Marlus Chorilli*

Volume 30, Issue 12, 2023

Published on: 03 October, 2022

Page: [1351 - 1367] Pages: 17

DOI: 10.2174/0929867329666220707102912

Price: $65

Abstract

The anti-inflammatory 5-aminosalicylic acid (5-ASA) is the main therapeutic option used to prevent and treat inflammatory bowel diseases. The upper intestinal tract performs rapid and almost complete absorption of this drug when administered orally, making local therapeutic levels of the molecule in the inflamed colonic mucosa difficult to achieve. Micro and nanoparticle systems are promising for 5-ASA incorporation because the reduced dimensions of these structures can improve the drug's pharmacodynamics and contribute to more efficient and localized therapy. Together, the association of these systems with polymers will allow the release of 5-ASA through specific targeting mechanisms to the colon, as demonstrated in the mesalazine modified-release dosage form. This review will summarize and discuss the challenges for the oral administration of 5-ASA and the different colon-specific delivery strategies using polymers.

Keywords: 5-ASA, polymeric systems, colonic delivery, nanoparticles systems, microparticles systems, modified- release dosage forms.

[1]
Quaresma, A.B.; Kaplan, G.G.; Kotze, P.G. The globalization of inflammatory bowel disease: The incidence and prevalence of inflammatory bowel disease in Brazil. Curr. Opin. Gastroenterol., 2019, 35(4), 259-264.
[http://dx.doi.org/10.1097/MOG.0000000000000534] [PMID: 30973356]
[2]
Kotze, P.G.; Underwood, F.E.; Damião, A.O.M.C.; Ferraz, J.G.P.; Saad-Hossne, R.; Toro, M.; Iade, B.; Bosques-Padilla, F.; Teixeira, F.V.; Juliao-Banos, F.; Simian, D.; Ghosh, S.; Panaccione, R.; Ng, S.C.; Kaplan, G.G. Progression of inflammatory bowel diseases throughout latin america and the caribbean: A systematic review. Clin. Gastroenterol. Hepatol., 2020, 18(2), 304-312.
[http://dx.doi.org/10.1016/j.cgh.2019.06.030] [PMID: 31252191]
[3]
Tavares Junior, A.G.; de Araújo, J.T.C.; Meneguin, A.B.; Chorilli, M. Characteristics, properties and analytical/bioanalytical methods of 5-aminosalicylic acid: A review. Crit. Rev. Anal. Chem., 2022, 52(5), 1000-1014.
[http://dx.doi.org/10.1080/10408347.2020.1848516] [PMID: 33258695]
[4]
Moura, R.M.; Hartmann, R.M.; Licks, F.; Schemitt, E.G.; Colares, J.R.; do Couto Soares, M.; Fillmann, L.S.; Fillmann, H.S.; Marroni, N.P. Antioxidant effect of mesalazine in the experimental colitis model induced by acetic acid. J. Coloproctol. (Rio J.), 2016, 36(3), 139-148.
[http://dx.doi.org/10.1016/j.jcol.2016.03.003]
[5]
Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; Sauk, J.S.; Wilson, R.G.; Stevens, B.W.; Scott, J.M.; Pierce, K.; Deik, A.A.; Bullock, K.; Imhann, F.; Porter, J.A.; Zhernakova, A.; Fu, J.; Weersma, R.K.; Wijmenga, C.; Clish, C.B.; Vlamakis, H.; Huttenhower, C.; Xavier, R.J. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol., 2019, 4(2), 293-305.
[http://dx.doi.org/10.1038/s41564-018-0306-4] [PMID: 30531976]
[6]
Collnot, E-M.; Ali, H.; Lehr, C-M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release, 2012, 161(2), 235-246.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.028] [PMID: 22306429]
[7]
Younis, N.; Zarif, R.; Mahfouz, R. Inflammatory bowel disease: Between genetics and microbiota. Mol. Biol. Rep., 2020, 47(4), 3053-3063.
[http://dx.doi.org/10.1007/s11033-020-05318-5] [PMID: 32086718]
[8]
Dos Santos, A.M.; Carvalho, S.G.; Meneguin, A.B.; Sábio, R.M.; Gremião, M.P.D.; Chorilli, M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J. Control. Release, 2021, 334(January), 353-366.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.026] [PMID: 33901582]
[9]
Flynn, S.; Eisenstein, S. Inflammatory bowel disease presentation and diagnosis. Surg. Clin. North Am., 2019, 99(6), 1051-1062.
[http://dx.doi.org/10.1016/j.suc.2019.08.001] [PMID: 31676047]
[10]
Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life, 2019, 12(2), 113-122.
[http://dx.doi.org/10.25122/jml-2018-0075] [PMID: 31406511]
[11]
Jacob, E.M.; Borah, A.; Pillai, S.C.; Kumar, D.S. Inflammatory bowel disease: The emergence of new trends in lifestyle and nanomedicine as the modern tool for pharmacotherapy. Nanomaterials (Basel), 2020, 10(12), 2460.
[http://dx.doi.org/10.3390/nano10122460] [PMID: 33316984]
[12]
Meneguin, A.B.; Sábio, R.M.; de Souza, M.P.C.; Fernandes, R.P.; de Oliveira, A.G.; Chorilli, M. Cellulose nanofibers improve the performance of retrograded starch/pectin microparticles for colon-specific delivery of 5-ASA. Pharmaceutics, 2021, 13(9), 1515.
[http://dx.doi.org/10.3390/pharmaceutics13091515] [PMID: 34575591]
[13]
Shahdadi Sardo, H.; Saremnejad, F.; Bagheri, S.; Akhgari, A.; Afrasiabi Garekani, H.; Sadeghi, F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int. J. Pharm., 2019, 558(558), 367-379.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.022] [PMID: 30664993]
[14]
Nakagawa, S.; Okaniwa, N.; Mizuno, M.; Sugiyama, T.; Yamaguchi, Y.; Tamura, Y.; Izawa, S.; Hijikata, Y.; Ebi, M.; Ogasawara, N.; Funaki, Y.; Sasaki, M.; Kasugai, K. Treatment adherence in patients with ulcerative colitis is dependent on the formulation of 5-aminosalicylic acid. Digestion, 2019, 99(2), 133-139.
[http://dx.doi.org/10.1159/000489878] [PMID: 30179881]
[15]
van de Meeberg, M.M.; Schultheiss, J.P.D.; Oldenburg, B.; Fidder, H.H.; Huitema, A.D.R. Does the 5-aminosalicylate concentration correlate with the efficacy of oral 5-aminosalicylate and predict response in patients with inflammatory bowel disease? a systematic review. Digestion, 2020, 101(3), 245-261.
[http://dx.doi.org/10.1159/000499331] [PMID: 31013494]
[16]
Sousa, T.; Yadav, V.; Zann, V.; Borde, A.; Abrahamsson, B.; Basit, A.W. On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. J. Pharm. Sci., 2014, 103(10), 3171-3175.
[http://dx.doi.org/10.1002/jps.24103] [PMID: 25091594]
[17]
Frasca, G.; Cardile, V.; Puglia, C.; Bonina, C.; Bonina, F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin. Exp. Gastroenterol., 2012, 5(1), 61-67.
[http://dx.doi.org/10.2147/CEG.S28792] [PMID: 22629114]
[18]
Cottone, M.; Renna, S.; Modesto, I.; Orlando, A. Is 5-ASA still the treatment of choice for ulcerative colitis? Curr. Drug Targets, 2011, 12(10), 1396-1405.
[http://dx.doi.org/10.2174/138945011796818126] [PMID: 21466493]
[19]
Berends, S.E.; Strik, A.S.; Löwenberg, M.; D’Haens, G.R.; Mathôt, R.A.A. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet., 2019, 58(1), 15-37.
[http://dx.doi.org/10.1007/s40262-018-0676-z] [PMID: 29752633]
[20]
Cesar, A.L.A.; Abrantes, F.A.; Farah, L.; Castilho, R.O.; Cardoso, V.; Fernandes, S.O.; Araújo, I.D.; Faraco, A.A.G. New mesalamine polymeric conjugate for controlled release: Preparation, characterization and biodistribution study. Eur. J. Pharm. Sci., 2018, 111(111), 57-64.
[http://dx.doi.org/10.1016/j.ejps.2017.09.037] [PMID: 28958891]
[21]
Karkossa, F.; Klein, S. A biopredictive in vitro comparison of oral locally acting mesalazine formulations by a novel dissolution model for assessing intraluminal drug release in individual subjects. J. Pharm. Sci., 2018, 107(6), 1680-1689.
[http://dx.doi.org/10.1016/j.xphs.2018.02.016] [PMID: 29499277]
[22]
Günter, E.A.; Markov, P.A.; Melekhin, A.K.; Belozerov, V.S.; Martinson, E.A.; Litvinets, S.G.; Popov, S.V. Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery. Int. J. Biol. Macromol., 2018, 120(Pt B), 2225-2233.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.078] [PMID: 30012483]
[23]
Canevari, M.; Castagliuolo, I.; Brun, P.; Cardin, M.; Schiavon, M.; Pasut, G.; Veronese, F.M. Poly(ethylene glycol)-mesalazine conjugate for colon specific delivery. Int. J. Pharm., 2009, 368(1-2), 171-177.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.058] [PMID: 18996458]
[24]
Sharma, N.; Sharma, A.; Bhatnagar, A.; Nishad, D.; Karwasra, R.; Khanna, K.; Sharma, D.; Kumar, N.; Jain, G.K. Novel gum acacia based macroparticles for colon delivery of mesalazine: Development and gammascintigraphy study. J. Drug Deliv. Sci. Technol., 2019, 54(April), 101224.
[http://dx.doi.org/10.1016/j.jddst.2019.101224]
[25]
Foppoli, A.; Maroni, A.; Moutaharrik, S.; Melocchi, A.; Zema, L.; Palugan, L.; Cerea, M.; Gazzaniga, A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int. J. Pharm., 2019, 572, 118723.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118723] [PMID: 31628978]
[26]
Bisharat, L.; Barker, S.A.; Narbad, A.; Craig, D.Q.M. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm., 2019, 556, 311-319.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.021] [PMID: 30557678]
[27]
Michielan, A.; D’Incà, R. Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm., 2015, 2015, 628157.
[http://dx.doi.org/10.1155/2015/628157] [PMID: 26582965]
[28]
Li, X.; Lu, C.; Yang, Y.; Yu, C.; Rao, Y. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed. Pharmacother., 2020, 129(June), 110486.
[http://dx.doi.org/10.1016/j.biopha.2020.110486] [PMID: 32768972]
[29]
Plichta, D.R.; Graham, D.B.; Subramanian, S.; Xavier, R.J. Therapeutic opportunities in inflammatory bowel disease: Mechanistic dissection of host-microbiome relationships. Cell, 2019, 178(5), 1041-1056.
[http://dx.doi.org/10.1016/j.cell.2019.07.045] [PMID: 31442399]
[30]
Kotla, N.G.; Rana, S.; Sivaraman, G.; Sunnapu, O.; Vemula, P.K.; Pandit, A.; Rochev, Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv. Drug Deliv. Rev., 2019, 146, 248-266.
[http://dx.doi.org/10.1016/j.addr.2018.06.021] [PMID: 29966684]
[31]
Vindigni, S.M.; Zisman, T.L.; Suskind, D.L.; Damman, C.J. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: A tripartite pathophysiological circuit with implications for new therapeutic directions. Therap. Adv. Gastroenterol., 2016, 9(4), 606-625.
[http://dx.doi.org/10.1177/1756283X16644242] [PMID: 27366227]
[32]
Zeeshan, M.; Ali, H.; Khan, S.; Khan, S.A.; Weigmann, B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int. J. Pharm., 2019, 558(558), 201-214.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.074] [PMID: 30615925]
[33]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11(April), 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[34]
Meneguin, A.B.; da Silva Barud, H.; Sábio, R.M.; de Sousa, P.Z.; Manieri, K.F.; de Freitas, L.A.P.; Pacheco, G.; Alonso, J.D.; Chorilli, M. Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohydr. Polym., 2020, 249(July), 116838.
[http://dx.doi.org/10.1016/j.carbpol.2020.116838] [PMID: 32933682]
[35]
Zhang, L.; Sang, Y.; Feng, J.; Li, Z.; Zhao, A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target., 2016, 24(7), 579-589.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[36]
Dar, M.J.; Ali, H.; Khan, A.; Khan, G.M. Polymer-based drug delivery: The quest for local targeting of inflamed intestinal mucosa. J. Drug Target., 2017, 25(7), 582-596.
[http://dx.doi.org/10.1080/1061186X.2017.1298601] [PMID: 28277824]
[37]
Shahdadi Sardou, H.; Akhgari, A.; Mohammadpour, A.H.; Kamali, H.; Jafarian, A.H.; Afrasiabi Garekani, H.; Sadeghi, F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int. J. Pharm., 2021, 597, 120347.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120347] [PMID: 33545282]
[38]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics, 2020, 12(1), E68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[39]
de Araújo, J.T.C.; Tavares, A.G., Junior; Di Filippo, L.D.; Duarte, J.L.; Ribeiro, T.; de, C.; Chorilli, M. Overview of chitosan-based nanosystems for prostate cancer therapy. Eur. Polym. J., 2021, 160(September), 1-10.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110812]
[40]
Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Zafar, A.; Alsaidan, O.A.; Alruwaili, N.K.; Gilani, S.J.; Rizwanullah, M. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. Polymers (Basel), 2021, 13(22), 4036.
[http://dx.doi.org/10.3390/polym13224036] [PMID: 34833334]
[41]
Kurakula, M.; Gorityala, S.; Moharir, K. Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: Update 2020. J. Drug Deliv. Sci. Technol., 2021, 64, 102579.
[http://dx.doi.org/10.1016/j.jddst.2021.102579]
[42]
Moreno, J.A.S.; Mendes, A.C.; Stephansen, K.; Engwer, C.; Goycoolea, F.M.; Boisen, A.; Nielsen, L.H.; Chronakis, I.S. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr. Polym., 2018, 190, 240-247.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.062] [PMID: 29628244]
[43]
Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuan, M.; Carda, C.; Ruiz, A.; Manconi, M.; Loy, G.; Fadda, A.M.; Diez-Sales, O. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. Int. J. Pharm., 2011, 416(1), 145-154.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.025] [PMID: 21723929]
[44]
Frade, M.L.; de Annunzio, S.R.; Calixto, G.M.F.; Victorelli, F.D.; Chorilli, M.; Fontana, C.R. Assessment of chitosan-based hydrogel and photodynamic inactivation against propionibacterium acnes. Molecules, 2018, 23(2), E473.
[http://dx.doi.org/10.3390/molecules23020473] [PMID: 29470387]
[45]
Calixto, G.M.F.; Victorelli, F.D.; Dovigo, L.N.; Chorilli, M. Polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems intended for buccal drug delivery. AAPS PharmSciTech, 2018, 19(2), 820-836.
[http://dx.doi.org/10.1208/s12249-017-0890-2] [PMID: 29019033]
[46]
Souza, M.P.C.; Sábio, R.M.; Ribeiro, T.C.; Santos, A.M.D.; Meneguin, A.B.; Chorilli, M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int. J. Biol. Macromol., 2020, 159, 804-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.104] [PMID: 32425271]
[47]
Agüero, L.; Zaldivar-Silva, D.; Peña, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym., 2017, 168, 32-43.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.033] [PMID: 28457455]
[48]
Nidhi; Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J., 2016, 24(4), 458-472.
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[49]
Mura, C.; Nácher, A.; Merino, V.; Merino-Sanjuán, M.; Manconi, M.; Loy, G.; Fadda, A.M.; Díez-Sales, O. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf. B Biointerfaces, 2012, 94, 199-205.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.030] [PMID: 22341520]
[50]
Jin, L.; Ding, Y.C.; Zhang, Y.; Xu, X.Q.; Cao, Q. A novel pH-enzyme-dependent mesalamine colon-specific delivery system. Drug Des. Devel. Ther., 2016, 10, 2021-2028.
[http://dx.doi.org/10.2147/DDDT.S107283] [PMID: 27382255]
[51]
Palma, E.; Costa, N.; Molinaro, R.; Francardi, M.; Paolino, D.; Cosco, D.; Fresta, M. Improvement of the therapeutic treatment of inflammatory bowel diseases following rectal administration of mesalazine-loaded chitosan microparticles vs. Asamax®. Carbohydr. Polym., 2019, 212(212), 430-438.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.049] [PMID: 30832877]
[52]
Tapia, C.; Molina, S.; Diaz, A.; Abugoch, L.; Diaz-Dosque, M.; Valenzuela, F.; Yazdani-Pedram, M. The effect of chitosan as internal or external coating on the 5-ASA release from calcium alginate microparticles. AAPS PharmSciTech, 2010, 11(3), 1294-1305.
[http://dx.doi.org/10.1208/s12249-010-9504-y] [PMID: 20717758]
[53]
Mladenovska, K.; Cruaud, O.; Richomme, P.; Belamie, E.; Raicki, R.S.; Venier-Julienne, M.C.; Popovski, E.; Benoit, J.P.; Goracinova, K. 5-ASA loaded chitosan-Ca-alginate microparticles: Preparation and physicochemical characterization. Int. J. Pharm., 2007, 345(1-2), 59-69.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.059] [PMID: 17616284]
[54]
Mladenovska, K.; Raicki, R.S.; Janevik, E.I.; Ristoski, T.; Pavlova, M.J.; Kavrakovski, Z.; Dodov, M.G.; Goracinova, K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int. J. Pharm., 2007, 342(1-2), 124-136.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.028] [PMID: 17590293]
[55]
Walz, M.; Hagemann, D.; Trentzsch, M.; Weber, A.; Henle, T. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine. Carbohydr. Polym., 2018, 199, 102-108.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.015] [PMID: 30143109]
[56]
Urtiga, S.C.D.C.; Alves, V.M.O.; Melo, C.O.; Lima, M.N.; Souza, E.; Cunha, A.P.; Ricardo, N.M.P.S.; Oliveira, E.E.; Egito, E.S.T.D. Xylan microparticles for controlled release of mesalamine: Production and physicochemical characterization. Carbohydr. Polym., 2020, 250(March), 116929.
[http://dx.doi.org/10.1016/j.carbpol.2020.116929] [PMID: 33049843]
[57]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[58]
Banabid, W.; Djerboua, F.; Maiza, A.; El Bahri, Z.; Baitiche, M. Optimization and in-vitro evaluation of poly (lactic acid) /mesalazine microspheres as drug carriers. Indian J. Pharm. Educ. Res., 2017, 51(2s), s46-s53.
[http://dx.doi.org/10.5530/ijper.51.2s.49]
[59]
Thakur, V.; Singh, A.; Joshi, N.; Mishra, N. Spray dried formulation of mesalamine embedded with probiotic biomass for the treatment of ulcerative colitis: In-vitro and in-vivo studies. Drug Dev. Ind. Pharm., 2019, 45(11), 1807-1820.
[http://dx.doi.org/10.1080/03639045.2019.1665059] [PMID: 31489829]
[60]
Balducci, A.G.; Colombo, G.; Corace, G.; Cavallari, C.; Rodriguez, L.; Buttini, F.; Colombo, P.; Rossi, A. Layered lipid microcapsules for mesalazine delayed-release in children. Int. J. Pharm., 2011, 421(2), 293-300.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.043] [PMID: 22001795]
[61]
Jarai, B.M.; Kolewe, E.L.; Stillman, Z.S.; Raman, N.; Fromen, C.A. Polymeric Nanoparticles Elsevier Inc., 2020.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00018-7]
[62]
Krishnamoorthy, K.; Mahalingam, M. Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach. Adv. Pharm. Bull., 2015, 5(1), 57-67.
[http://dx.doi.org/10.5681/apb.2015.008] [PMID: 25789220]
[63]
Meka, V.S.; Sing, M.K.G.; Pichika, M.R.; Nali, S.R.; Kolapalli, V.R.M.; Kesharwani, P. A comprehensive review on polyelectrolyte complexes. Drug Discov. Today, 2017, 22(11), 1697-1706.
[http://dx.doi.org/10.1016/j.drudis.2017.06.008] [PMID: 28683256]
[64]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. & Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[65]
Lima, I.B.C.; Moreno, L.C.G.A.I.; Silva-Filho, E.C.; Irache, J.M.; Veiga, F.J.B.; Rolim, H.M.L.; Nunes, L.C.C. Development of nanostructured systems using natural polymers to optimize the treatment of inflammatory bowel diseases: A prospective study. J. Drug Deliv. Sci. Technol., 2021, 64(February), 102590.
[http://dx.doi.org/10.1016/j.jddst.2021.102590]
[66]
Zu, M.; Ma, Y.; Cannup, B.; Xie, D.; Jung, Y.; Zhang, J.; Yang, C.; Gao, F.; Merlin, D.; Xiao, B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv. Drug Deliv, 2021, 176, 1138870.
[http://dx.doi.org/10.1016/j.addr.2021.113887]
[67]
Ahmad, A.; Ansari, M.M.; Mishra, R.K.; Kumar, A.; Vyawahare, A.; Verma, R.K.; Raza, S.S.; Khan, R. Enteric-coated gelatin nanoparticles mediated oral delivery of 5-aminosalicylic acid alleviates severity of DSS-induced ulcerative colitis. Mater. Sci. Eng. C, 2021, 119(119), 111582.
[http://dx.doi.org/10.1016/j.msec.2020.111582] [PMID: 33321628]
[68]
Akram, W.; Garud, N. Design expert as a statistical tool for optimization of 5-asa-loaded biopolymer-based nanoparticles using box behnken factorial design. Futur. J. Pharm. Sci., 2021, 7(1), 146.
[http://dx.doi.org/10.1186/s43094-021-00299-z]
[69]
Markam, R.; Bajpai, A.K. Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-asa) in treatment of inflammatory bowel diseases: An in vitro study. React. Funct. Polym., 2020, 149(February), 104520.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104520]
[70]
Tang, P.; Sun, Q.; Zhao, L.; Pu, H.; Yang, H.; Zhang, S.; Gan, R.; Gan, N.; Li, H. Mesalazine/hydroxypropyl-β-cyclodextrin/chitosan nanoparticles with sustained release and enhanced anti-inflammation activity. Carbohydr. Polym., 2018, 198(May), 418-425.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.106] [PMID: 30093018]
[71]
Seifirad, S.; Karami, H.; Shahsavari, S.; Mirabbasi, F.; Dorkoosh, F.A. Design and characterization of mesalamine loaded nanoparticles for controlled delivery system. Nanomedicine Res. J., 2016, 1(2), 97-106.
[http://dx.doi.org/10.7508/NMRJ.2016.02.006]
[72]
Mongia, P.; Khatik, R.; Raj, R.; Jain, N.; Pathak, A.K. Ph-sensitive eudragit s-100 coated chitosan nanoparticles of 5-amino salicylic acid for colon delivery. J. Biomater. Tissue Eng., 2014, 4(9), 738-743.
[http://dx.doi.org/10.1166/jbt.2014.1229]
[73]
Mahajan, N.M.; Sakarkar, D.M.; Manmode, A.S. Preparation and characterization of meselamine loaded plga nanoparticles. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 208-214.
[74]
Goyanes, A.; Hatton, G.B.; Merchant, H.A.; Basit, A.W. Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations. Int. J. Pharm., 2015, 484(1-2), 103-108.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.051] [PMID: 25721685]
[75]
Ye, B.; van Langenberg, D.R. Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal? World J. Gastrointest. Pharmacol. Ther., 2015, 6(4), 137-144.
[http://dx.doi.org/10.4292/wjgpt.v6.i4.137] [PMID: 26558148]
[76]
Hawthorne, A. B. A review of multimatrix system (mmx) mesalazine in the management of ulcerative colitis Clinc. Med. Therapeu., 2009, 1.
[http://dx.doi.org/10.4137/CMT.S38]
[77]
Andreas, C.J.; Chen, Y.C.; Markopoulos, C.; Reppas, C.; Dressman, J. In vitro biorelevant models for evaluating modified release mesalamine products to forecast the effect of formulation and meal intake on drug release. Eur. J. Pharm. Biopharm., 2015, 97(Pt A), 39-50.
[http://dx.doi.org/10.1016/j.ejpb.2015.09.002] [PMID: 26391972]
[78]
Leifeld, L.; Pfützer, R.; Morgenstern, J.; Gibson, P.R.; Marakhouski, Y.; Greinwald, R.; Mueller, R.; Kruis, W. Mesalazine granules are superior to Eudragit-L-coated mesalazine tablets for induction of remission in distal ulcerative colitis - a pooled analysis. Aliment. Pharmacol. Ther., 2011, 34(9), 1115-1122.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04840.x] [PMID: 21923715]
[79]
Sun, J.; Yuan, Y. Mesalazine modified-release tablet in the treatment of ulcerative colitis in the active phase: A chinese, multicenter, single-blind, randomized controlled study. Adv. Ther., 2016, 33(3), 400-409.
[http://dx.doi.org/10.1007/s12325-016-0303-z] [PMID: 26898569]
[80]
Forbes, A.; Cartwright, A.; Marchant, S.; McIntyre, P.; Newton, M. Review article: Oral, modified-release mesalazine formulations--proprietary versus generic. Aliment. Pharmacol. Ther., 2003, 17(10), 1207-1214.
[http://dx.doi.org/10.1046/j.1365-2036.2003.01578.x] [PMID: 12755834]
[81]
Xu, M.; Sun, M.; Qiao, H.; Ping, Q.; Elamin, E.S. Preparation and evaluation of colon adhesive pellets of 5-aminosalicylic acid. Int. J. Pharm., 2014, 468(1-2), 165-171.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.040] [PMID: 24746693]
[82]
Déo, S.C.; Andreazza, I.F.; Possamai, J.C. Development of mesalazine pellets coated with methacrylic-derived polymer. Braz. J. Pharm. Sci., 2011, 47(1), 103-109.
[http://dx.doi.org/10.1590/S1984-82502011000100013]
[83]
Vlachou, M.; Siamidi, A.; Dotsikas, Y. Desirability based optimization of new mesalazine modified release formulations: Compression coated tablets and mini tablets in capsules. Lett. Drug Des. Discov., 2020, 17(2), 114-123.
[http://dx.doi.org/10.2174/1570180816666190110125812]
[84]
Mohanta, S.; Singh, S.K.; Kumar, B.; Gulati, M.; Kumar, R.; Yadav, A.K.; Wadhwa, S.; Jyoti, J.; Som, S.; Dua, K.; Pandey, N.K. Efficacy of co-administration of modified apple polysaccharide and probiotics in guar gum-Eudragit S100 based mesalamine mini tablets: A novel approach in treating ulcerative colitis. Int. J. Biol. Macromol., 2019, 126, 427-435.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.154] [PMID: 30572047]
[85]
Gareb, B.; Eissens, A.C.; Kosterink, J.G.W.; Frijlink, H.W. Development of a zero-order sustained-release tablet containing mesalazine and budesonide intended to treat the distal gastrointestinal tract in inflammatory bowel disease. Eur. J. Pharm. Biopharm., 2016, 103, 32-42.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.018] [PMID: 27000751]
[86]
Schellekens, R.C.A.; Baltink, J.H.; Woesthuis, E.M.; Stellaard, F.; Kosterink, J.G.W.; Woerdenbag, H.J.; Frijlink, H.W. Film coated tablets (ColoPulse technology) for targeted delivery in the lower intestinal tract: Influence of the core composition on release characteristics. Pharm. Dev. Technol., 2012, 17(1), 40-47.
[http://dx.doi.org/10.3109/10837450.2010.513986] [PMID: 20923321]
[87]
Trendafilova, I.; Szegedi, Á.; Yoncheva, K.; Shestakova, P.; Mihály, J.; Ristić, A.; Konstantinov, S.; Popova, M. A pH dependent delivery of mesalazine from polymer coated and drug-loaded SBA-16 systems. Eur. J. Pharm. Sci., 2016, 81, 75-81.
[http://dx.doi.org/10.1016/j.ejps.2015.10.003] [PMID: 26453768]
[88]
Bai, X.Y.; Yan, Y.; Wang, L.; Zhao, L.G.; Wang, K. Novel ph-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: In vivo study with ulcerative colitis targeting therapy in mice Drug Deliv, 2016, 23(6), 1926-32.
[http://dx.doi.org/10.3109/10717544.2014.996924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy