Review Article

Redox Interactions in Chemo/Radiation Therapy-induced Lung Toxicity; Mechanisms and Therapy Perspectives

Author(s): Xixi Lai* and Masoud Najafi*

Volume 23, Issue 13, 2022

Published on: 26 August, 2022

Page: [1261 - 1276] Pages: 16

DOI: 10.2174/1389450123666220705123315

Abstract

Lung toxicity is a key limiting factor for cancer therapy, especially lung, breast, and esophageal malignancies. Radiotherapy for chest and breast malignancies can cause lung injury. However, systemic cancer therapy with chemotherapy may also induce lung pneumonitis and fibrosis. Radiotherapy produces reactive oxygen species (ROS) directly via interacting with water molecules within cells. However, radiation and other therapy modalities may induce the endogenous generation of ROS and nitric oxide (NO) by immune cells and some nonimmune cells such as fibroblasts and endothelial cells. There are several ROS generating enzymes within lung tissue. NADPH Oxidase enzymes, cyclooxygenase-2 (COX-2), dual oxidases (DUOX1 and DUOX2), and the cellular respiratory system in the mitochondria are the main sources of ROS production following exposure of the lung to anticancer agents. Furthermore, inducible nitric oxide synthase (iNOS) has a key role in the generation of NO following radiotherapy or chemotherapy. Continuous generation of ROS and NO by endothelial cells, fibroblasts, macrophages, and lymphocytes causes apoptosis, necrosis, and senescence, which lead to the release of inflammatory and pro-fibrosis cytokines. This review discusses the cellular and molecular mechanisms of redox-induced lung injury following cancer therapy and proposes some targets and perspectives to alleviate lung toxicity.

Keywords: Lung, reduction/oxidation (Redox), pneumonitis, fibrosis, reactive oxygen species (ROS), cytokines.

Graphical Abstract
[1]
Marks LB, Yu X, Vujaskovic Z, Small W Jr, Folz R, Anscher MS. Radiation-induced lung injury. Semin Radiat Oncol 2003; 13(3): 333-45.
[http://dx.doi.org/10.1016/S1053-4296(03)00034-1] [PMID: 12903021]
[2]
Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-induced lung injury: Assessment and management. Chest 2019; 156(1): 150-62.
[http://dx.doi.org/10.1016/j.chest.2019.03.033] [PMID: 30998908]
[3]
Soh J, Sugimoto S, Namba K, et al. Chronic lung injury after trimodality therapy for locally advanced non-small cell lung cancer. Ann Thorac Surg 2021; 112(1): 279-88.
[http://dx.doi.org/10.1016/j.athoracsur.2020.07.068] [PMID: 33068542]
[4]
Vasakova M, Selman M, Morell F, Sterclova M, Molina-Molina M, Raghu G. Hypersensitivity pneumonitis: Current concepts of pathogenesis and potential targets for treatment. Am J Respir Crit Care Med 2019; 200(3): 301-8.
[http://dx.doi.org/10.1164/rccm.201903-0541PP] [PMID: 31150272]
[5]
Chen Z, Wu Z, Ning W. Advances in molecular mechanisms and treatment of radiation-induced pulmonary fibrosis. Transl Oncol 2019; 12(1): 162-9.
[http://dx.doi.org/10.1016/j.tranon.2018.09.009] [PMID: 30342294]
[6]
Li L, Mok H, Jhaveri P, et al. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev Anticancer Ther 2018; 18(10): 1041-57.
[http://dx.doi.org/10.1080/14737140.2018.1500180] [PMID: 29996062]
[7]
Jin H, Yoo Y, Kim Y, Kim Y, Cho J, Lee Y-S. Radiation-induced lung fibrosis: Preclinical animal models and therapeutic strategies. Cancers (Basel) 2020; 12(6): 1561.
[http://dx.doi.org/10.3390/cancers12061561] [PMID: 32545674]
[8]
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, et al. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77(16): 3129-59.
[http://dx.doi.org/10.1007/s00018-020-03479-x] [PMID: 32072238]
[9]
Farhood B, Ashrafizadeh M, Khodamoradi E, et al. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci 2020; 250: 117570.
[http://dx.doi.org/10.1016/j.lfs.2020.117570] [PMID: 32205088]
[10]
Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol 2017; 12: 50-7.
[http://dx.doi.org/10.1016/j.redox.2017.01.023] [PMID: 28212523]
[11]
Sakamoto S, Kataoka K, Kondoh Y, et al. Pirfenidone plus inhaled N-acetylcysteine for idiopathic pulmonary fibrosis: A randomised trial. Eur Respir J 2021; 57(1): 2000348.
[http://dx.doi.org/10.1183/13993003.00348-2020] [PMID: 32703779]
[12]
Kulshrestha R, Pandey A, Jaggi A, Bansal S. Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats. Iran J Basic Med Sci 2020; 23(3): 396-405.
[PMID: 32440328]
[13]
Abbas MN, Ayoola A, Padman S, et al. Survival and late toxicities following concurrent chemo-radiotherapy for locally advanced stage III non-small cell lung cancer: Findings of a 10-year Australian single centre experience with long term clinical follow up. J Thorac Dis 2019; 11(10): 4241-8.
[http://dx.doi.org/10.21037/jtd.2019.09.56] [PMID: 31737309]
[14]
Niska JR, Schild SE, Rule WG, Daniels TB, Jett JR. Fatal radiation pneumonitis in patients with subclinical interstitial lung disease. Clin Lung Cancer 2018; 19(4): e417-20.
[http://dx.doi.org/10.1016/j.cllc.2018.02.003] [PMID: 29526532]
[15]
Yumuk PF, Kefeli U, Ceyhan B, et al. Pulmonary toxicity in patients receiving docetaxel chemotherapy. Med Oncol 2010; 27(4): 1381-8.
[http://dx.doi.org/10.1007/s12032-009-9391-9] [PMID: 20035385]
[16]
Dhamija E, Meena P, Ramalingam V, Sahoo R, Rastogi S, Thulkar S. Chemotherapy-induced pulmonary complications in cancer: Significance of clinicoradiological correlation. Indian J Radiol Imaging 2020; 30(1): 20-6.
[http://dx.doi.org/10.4103/ijri.IJRI_178_19] [PMID: 32476746]
[17]
Abdel-Rahman O, Elhalawani H. Risk of fatal pulmonary events in patients with advanced non-small-cell lung cancer treated with EGF receptor tyrosine kinase inhibitors: A comparative meta-analysis. Future Oncol 2015; 11(7): 1109-22.
[http://dx.doi.org/10.2217/fon.15.16] [PMID: 25804125]
[18]
Qi WX, Sun YJ, Shen Z, Yao Y. Risk of interstitial lung disease associated with EGFR-TKIs in advanced non-small-cell lung cancer: A meta-analysis of 24 phase III clinical trials. J Chemother 2015; 27(1): 40-51.
[http://dx.doi.org/10.1179/1973947814Y.0000000189] [PMID: 24724908]
[19]
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708: 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[20]
Suresh K, Voong KR, Shankar B, et al. Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: incidence and risk factors. J Thorac Oncol 2018; 13(12): 1930-9.
[http://dx.doi.org/10.1016/j.jtho.2018.08.2035] [PMID: 30267842]
[21]
Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer. Lung Cancer 2018; 125: 150-6.
[http://dx.doi.org/10.1016/j.lungcan.2018.09.015] [PMID: 30429014]
[22]
Ashrafizadeh M, Farhood B, Eleojo MA, Taeb S, Rezaeyan A, Najafi M. Abscopal effect in radioimmunotherapy. Int Immunopharmacol 2020; 85: 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[23]
Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One 2016; 11(7): e0160221.
[http://dx.doi.org/10.1371/journal.pone.0160221] [PMID: 27472273]
[24]
Ji HH, Tang XW, Dong Z, Song L, Jia YT. Adverse event profiles of anti-CTLA-4 and Anti-PD-1 monoclonal antibodies alone or in combination: analysis of spontaneous reports submitted to FAERS. Clin Drug Investig 2019; 39(3): 319-30.
[http://dx.doi.org/10.1007/s40261-018-0735-0] [PMID: 30674039]
[25]
Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 2019; 20(8): e452-63.
[http://dx.doi.org/10.1016/S1470-2045(19)30171-8] [PMID: 31364597]
[26]
Voong KR, Hazell SZ, Fu W, et al. Relationship between prior radiotherapy and checkpoint-inhibitor pneumonitis in patients with advanced non–small-cell lung cancer. Clin Lung Cancer 2019; 20(4): e470-9.
[http://dx.doi.org/10.1016/j.cllc.2019.02.018] [PMID: 31031204]
[27]
Gutteridge JMC, Halliwell B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem Biophys Res Commun 2018; 502(2): 183-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.045] [PMID: 29752940]
[28]
Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 2010; 1201(1): 183-8.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05634.x] [PMID: 20649555]
[29]
Yang H-Y, Lee T-H. Antioxidant enzymes as redox-based biomarkers: A brief review. BMB Rep 2015; 48(4): 200-8.
[http://dx.doi.org/10.5483/BMBRep.2015.48.4.274] [PMID: 25560698]
[30]
Zinkevich NS, Gutterman DD. ROS-induced ROS release in vascular biology: Redox-redox signaling. Am J Physiol Heart Circ Physiol 2011; 301(3): H647-53.
[http://dx.doi.org/10.1152/ajpheart.01271.2010] [PMID: 21685266]
[31]
Méndez I, Vázquez-Martínez O, Hernández-Muñoz R, Valente-Godínez H, Díaz-Muñoz M. Redox regulation and pro-oxidant reactions in the physiology of circadian systems. Biochimie 2016; 124: 178-86.
[http://dx.doi.org/10.1016/j.biochi.2015.04.014] [PMID: 25926044]
[32]
Kakkar P, Singh BK. Mitochondria: A hub of redox activities and cellular distress control. Mol Cell Biochem 2007; 305(1-2): 235-53.
[http://dx.doi.org/10.1007/s11010-007-9520-8] [PMID: 17562131]
[33]
Mortezaee K, Parwaie W, Motevaseli E, et al. Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76: 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[34]
Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci 2019; 20(4): 959.
[http://dx.doi.org/10.3390/ijms20040959] [PMID: 30813267]
[35]
Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol 2010; 31(4): 363-72.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[36]
Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006; 355(10): 983-91.
[http://dx.doi.org/10.1056/NEJMoa060570] [PMID: 16957145]
[37]
Huang G, Pan S-T. ROS-mediated therapeutic strategy in chemo-/radiotherapy of head and neck cancer. Oxid Med Cell Longev 2020; 2020: 5047987.
[38]
Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 2021; 157: 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[39]
Farhood B, Goradel NH, Mortezaee K, et al. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13(1): 3-16.
[http://dx.doi.org/10.1007/s12079-018-0473-3] [PMID: 29911259]
[40]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int Immunopharmacol 2020; 87: 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[41]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86: 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[42]
Frey B, Rückert M, Deloch L, et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 2017; 280(1): 231-48.
[http://dx.doi.org/10.1111/imr.12572] [PMID: 29027224]
[43]
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2010; 17(3): 381-97.
[http://dx.doi.org/10.1038/cdd.2009.195] [PMID: 20019744]
[44]
Farhood B, Khodamoradi E, Hoseini-Ghahfarokhi M, et al. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155: 104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[45]
Yahyapour R, Motevaseli E, Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm 2018; 11(1): 34-45.
[http://dx.doi.org/10.2174/1874471011666171229123130] [PMID: 29284398]
[46]
Lu L, Sun C, Su Q, et al. Radiation-induced lung injury: Latest molecular developments, therapeutic approaches, and clinical guidance. Clin Exp Med 2019; 19(4): 417-26.
[http://dx.doi.org/10.1007/s10238-019-00571-w] [PMID: 31313081]
[47]
He Y, Thummuri D, Zheng G, et al. Cellular senescence and radiation-induced pulmonary fibrosis. Transl Res 2019; 209: 14-21.
[http://dx.doi.org/10.1016/j.trsl.2019.03.006] [PMID: 30981698]
[48]
Kainthola A, Haritwal T, Tiwari M, et al. Immunological aspect of radiation-induced pneumonitis, current treatment strategies, and future prospects. Front Immunol 2017; 8: 506.
[http://dx.doi.org/10.3389/fimmu.2017.00506] [PMID: 28512460]
[49]
Mortezaee K, Goradel NH, Amini P, et al. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr Mol Pharmacol 2019; 12(1): 50-60.
[http://dx.doi.org/10.2174/1874467211666181010154709] [PMID: 30318012]
[50]
Dao VT-V, Elbatreek MH, Altenhöfer S, et al. Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic Biol Med 2020; 148: 60-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.12.038] [PMID: 31883469]
[51]
Bernard K, Thannickal VJ. NADPH oxidase inhibition in fibrotic pathologies. Antioxid Redox Signal 2020; 33(6): 455-79.
[http://dx.doi.org/10.1089/ars.2020.8032] [PMID: 32129665]
[52]
Zhang X, Dong Y, Li WC, Tang BX, Li J, Zang Y. Roxithromycin attenuates bleomycin-induced pulmonary fibrosis by targeting senescent cells. Acta Pharmacol Sin 2021; 42(12): 2058-68.
[http://dx.doi.org/10.1038/s41401-021-00618-3] [PMID: 33654217]
[53]
Choi SH, Kim M, Lee HJ, Kim EH, Kim CH, Lee YJ. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis. Mol Med Rep 2016; 13(5): 4135-42.
[http://dx.doi.org/10.3892/mmr.2016.5090] [PMID: 27053172]
[54]
Weyemi U, Redon CE, Aziz T, et al. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat Res 2015; 183(3): 262-70.
[http://dx.doi.org/10.1667/RR13799.1] [PMID: 25706776]
[55]
Park S, Ahn J-Y, Lim M-J, et al. Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts. J Mol Med (Berl) 2010; 88(8): 807-16.
[http://dx.doi.org/10.1007/s00109-010-0622-5] [PMID: 20396861]
[56]
Sakai Y, Yamamori T, Yoshikawa Y, et al. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic Res 2018; 52(1): 92-102.
[http://dx.doi.org/10.1080/10715762.2017.1416112] [PMID: 29228832]
[57]
Wang Y, Liu Q, Zhao W, et al. NADPH oxidase activation contributes to heavy ion irradiation-induced cell death. Dose Response 2017; 15(1): 1559325817699697.
[http://dx.doi.org/10.1177/1559325817699697] [PMID: 28473742]
[58]
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Genomic instability and carcinogenesis of heavy charged particles radiation: Clinical and environmental implications. Medicina 2019; 55(9): 591.
[59]
Laube M, Kniess T, Pietzsch J. Development of antioxidant COX-2 inhibitors as radioprotective agents for radiation therapy-a hypothesis-driven review. Antioxidants 2016; 5(2): 14.
[http://dx.doi.org/10.3390/antiox5020014] [PMID: 27104573]
[60]
Elshawi OE, Nabeel AI. Modulatory effect of a new benzopyran derivative via COX-2 blocking and down regulation of NF-κB against γ-radiation induced- intestinal inflammation. J Photochem Photobiol B 2019; 192: 90-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.006] [PMID: 30710830]
[61]
Heeran AB, Berrigan HP, O’Sullivan J. The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer. Radiat Res 2019; 192(6): 668-79.
[http://dx.doi.org/10.1667/RR15489.1] [PMID: 31618121]
[62]
Hu S, Shao C. Research progress of radiation induced bystander and abscopal effects in normal tissue. Radiat Med Prot 2020; 1(2): 69-74.
[http://dx.doi.org/10.1016/j.radmp.2020.04.001]
[63]
Burdak-Rothkamm S, Rothkamm K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. Mutat Res Rev Mutat Res 2018; 778: 13-22.
[http://dx.doi.org/10.1016/j.mrrev.2018.08.001] [PMID: 30454679]
[64]
Chai Y, Lam RK, Calaf GM, Zhou H, Amundson S, Hei TK. Radiation-induced non-targeted response in vivo: Role of the TGFβ-TGFBR1-COX-2 signalling pathway. Br J Cancer 2013; 108(5): 1106-12.
[http://dx.doi.org/10.1038/bjc.2013.53] [PMID: 23412109]
[65]
Hunter NR, Valdecanas D, Liao Z, Milas L, Thames HD, Mason KA. Mitigation and treatment of radiation-induced thoracic injury with a cyclooxygenase-2 inhibitor, celecoxib. Int J Radiat Oncol Biol Phys 2013; 85(2): 472-6.
[http://dx.doi.org/10.1016/j.ijrobp.2012.04.025] [PMID: 22672748]
[66]
Yang S, Zhang M, Chen C, et al. triptolide mitigates radiation-induced pulmonary fibrosis. Radiat Res 2015; 184(5): 509-17.
[http://dx.doi.org/10.1667/RR13831.1] [PMID: 26488756]
[67]
Azmoonfar R, Amini P, Saffar H, et al. Celecoxib a selective Cox-2 inhibitor mitigates fibrosis but not pneumonitis following lung irradiation: A histopathological study. Curr Drug Ther 2020; 15(4): 351-7.
[http://dx.doi.org/10.2174/1574885514666191119124739]
[68]
Pouget J-P, Georgakilas AG, Ravanat J-L. Targeted and off-target (bystander and abscopal) effects of radiation therapy: Redox mechanisms and risk/benefit analysis. Antioxid Redox Signal 2018; 29(15): 1447-87.
[http://dx.doi.org/10.1089/ars.2017.7267] [PMID: 29350049]
[69]
Liu Y, Yan J, Sun C, et al. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway. Redox Biol 2018; 17: 143-57.
[http://dx.doi.org/10.1016/j.redox.2018.04.012] [PMID: 29689442]
[70]
Baulch JE. Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: A dysfunctional ménage a trois? Int J Radiat Biol 2019; 95(4): 516-25.
[http://dx.doi.org/10.1080/09553002.2018.1549757] [PMID: 30451575]
[71]
Hajnóczky G, Csordás G, Das S, et al. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006; 40(5-6): 553-60.
[http://dx.doi.org/10.1016/j.ceca.2006.08.016] [PMID: 17074387]
[72]
Murphy MP. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metab 2013; 18(2): 145-6.
[http://dx.doi.org/10.1016/j.cmet.2013.07.006] [PMID: 23931748]
[73]
Nugent SM, Mothersill CE, Seymour C, McClean B, Lyng FM, Murphy JE. Increased mitochondrial mass in cells with functionally compromised mitochondria after exposure to both direct gamma radiation and bystander factors. Radiat Res 2007; 168(1): 134-42.
[http://dx.doi.org/10.1667/RR0769.1] [PMID: 17722997]
[74]
Li X, Zhang W, Cao Q, et al. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov 2020; 6(1): 80.
[http://dx.doi.org/10.1038/s41420-020-00316-9] [PMID: 32963808]
[75]
Gauter-Fleckenstein B, Fleckenstein K, Owzar K, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med 2010; 48(8): 1034-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.020] [PMID: 20096348]
[76]
Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene 2015; 34(17): 2145-55.
[http://dx.doi.org/10.1038/onc.2014.145] [PMID: 24909163]
[77]
Tian W, Yin X, Wang L, et al. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes. Mutat Res 2015; 780: 77-85.
[http://dx.doi.org/10.1016/j.mrfmmm.2015.08.003] [PMID: 26302379]
[78]
Yin X, Tian W, Wang L, et al. Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes. Sci Rep 2015; 5: 11373.
[http://dx.doi.org/10.1038/srep11373] [PMID: 26080011]
[79]
Wang S, Li J, He Y, et al. Protective effect of melatonin entrapped PLGA nanoparticles on radiation-induced lung injury through the miR-21/TGF-β1/Smad3 pathway. Int J Pharm 2021; 602: 120584.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120584] [PMID: 33887395]
[80]
Kwon O-S, Kim K-T, Lee E, et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS One 2016; 11(5): e0154942.
[http://dx.doi.org/10.1371/journal.pone.0154942] [PMID: 27171163]
[81]
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020; 40(1): 158-89.
[http://dx.doi.org/10.1002/med.21599] [PMID: 31192483]
[82]
Nozaki Y, Hasegawa Y, Takeuchi A, et al. Nitric oxide as an inflammatory mediator of radiation pneumonitis in rats. Am J Physiol 1997; 272(4 Pt 1): L651-8.
[PMID: 9142938]
[83]
McCurdy MR, Wazni MW, Martinez J, McAleer MF, Guerrero T. Exhaled nitric oxide predicts radiation pneumonitis in esophageal and lung cancer patients receiving thoracic radiation. Radiother Oncol 2011; 101(3): 443-8.
[http://dx.doi.org/10.1016/j.radonc.2011.08.035] [PMID: 21981878]
[84]
Farzipour S, Amiri FT, Mihandoust E, et al. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J Bioenerg Biomembr 2020; 52(1): 39-46.
[http://dx.doi.org/10.1007/s10863-019-09820-9] [PMID: 31853753]
[85]
Verma S, Kalita B, Bajaj S, Prakash H, Singh AK, Gupta ML. A combination of podophyllotoxin and rutin alleviates radiation-induced pneumonitis and fibrosis through modulation of lung inflammation in mice. Front Immunol 2017; 8(658): 658.
[http://dx.doi.org/10.3389/fimmu.2017.00658] [PMID: 28649248]
[86]
Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 2001; 61(17): 6388-93.
[PMID: 11522631]
[87]
Zhang S, Li J, Li Y, Liu Y, Guo H, Xu X. Nitric oxide synthase activity correlates with OGG1 in ozone-induced lung injury animal models. Front Physiol 2017; 8: 249.
[88]
Oh Y-T. Radiation induced lung damage: Mechanisms and clinical implications. J Lung Cancer 2008; 7(1): 9-18.
[89]
Mo H, Jazieh KA, Brinzevich D, Abraham J. A review of treatment-induced pulmonary toxicity in breast cancer: Pulmonary toxicity in breast cancer. Clin Breast Cancer 2022; 22(1): 9.
[PMID: 34226162]
[90]
Filderman AE, Genovese LA, Lazo JS. Alterations in pulmonary protective enzymes following systemic bleomycin treatment in mice. Biochem Pharmacol 1988; 37(6): 1111-6.
[http://dx.doi.org/10.1016/0006-2952(88)90518-7] [PMID: 2451525]
[91]
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253: 6-24.
[PMID: 33340831]
[92]
Ongnok B, Chattipakorn N, Chattipakorn SC. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Exp Neurol 2020; 324: 113118.
[http://dx.doi.org/10.1016/j.expneurol.2019.113118] [PMID: 31756316]
[93]
Manoury B, Nenan S, Leclerc O, et al. The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res 2005; 6(1): 11-.
[http://dx.doi.org/10.1186/1465-9921-6-11] [PMID: 15663794]
[94]
Gautam J, Ku J-M, Regmi SC, et al. Dual inhibition of nox2 and receptor tyrosine kinase by bj-1301 enhances anticancer therapy efficacy via suppression of autocrine-stimulatory factors in lung cancer. Mol Cancer Ther 2017; 16(10): 2144-56.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0915] [PMID: 28536313]
[95]
Haegens A, Vernooy JH, Heeringa P, Mossman BT, Wouters EF. Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents. Eur Respir J 2008; 31(2): 252-60.
[http://dx.doi.org/10.1183/09031936.00029307] [PMID: 18057061]
[96]
Unver E, Tosun M, Olmez H, Kuzucu M, Cimen FK, Suleyman Z. The effect of taxifolin on cisplatin-induced pulmonary damage in rats: A biochemical and histopathological evaluation. Mediators Inflamm 2019; 2019: 3740867.
[http://dx.doi.org/10.1155/2019/3740867] [PMID: 30992689]
[97]
Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 2018; 70(3): 291-306.
[http://dx.doi.org/10.1111/jphp.12855] [PMID: 29168173]
[98]
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907: 174365.
[http://dx.doi.org/10.1016/j.ejphar.2021.174365] [PMID: 34302814]
[99]
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021; 98: 107895.
[http://dx.doi.org/10.1016/j.intimp.2021.107895] [PMID: 34171623]
[100]
Iyer SS, Ramirez AM, Ritzenthaler JD, et al. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 296(1): L37-45.
[http://dx.doi.org/10.1152/ajplung.90401.2008] [PMID: 18931052]
[101]
Ghosh P, Bhattacharjee A, Basu A, Singha Roy S, Bhattacharya S. Attenuation of cyclophosphamide-induced pulmonary toxicity in Swiss albino mice by naphthalimide-based organoselenium compound 2-(5-selenocyanatopentyl)-benzo[de]isoquinoline 1,3-dione. Pharm Biol 2015; 53(4): 524-32.
[http://dx.doi.org/10.3109/13880209.2014.931440] [PMID: 25471377]
[102]
Amini P, Saffar H, Nourani MR, et al. Curcumin mitigates radiation-induced lung pneumonitis and fibrosis in rats. Int J Mol Cell Med 2018; 7(4): 212-9.
[PMID: 31516880]
[103]
Vujaskovic Z, Anscher MS, Feng Q-F, et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 2001; 50(4): 851-5.
[104]
Pugliese SC, Kumar S, Janssen WJ, et al. A time-and compartment-specific activation of lung macrophages in hypoxic pulmonary hypertension. J Immunol 2017; 198(12): 4802-12.
[http://dx.doi.org/10.4049/jimmunol.1601692] [PMID: 28500078]
[105]
Rabbani ZN, Mi J, Zhang Y, et al. Hypoxia inducible factor 1alpha signaling in fractionated radiation-induced lung injury: Role of oxidative stress and tissue hypoxia. Radiat Res 2010; 173(2): 165-74.
[http://dx.doi.org/10.1667/RR1816.1] [PMID: 20095848]
[106]
Choi S-H, Hong Z-Y, Nam J-K, et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res 2015; 21(16): 3716-26.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3193] [PMID: 25910951]
[107]
Jackson IL, Chen L, Batinic-Haberle I, Vujaskovic Z. Superoxide dismutase mimetic reduces hypoxia-induced O2*-, TGF-β and VEGF production by macrophages. Free Radic Res 2007; 41(1): 8-14.
[http://dx.doi.org/10.1080/10715760600913150] [PMID: 17164174]
[108]
Cuchet P, Valette X. Radiation pneumonitis and chemotherapy in a patient with multiple myeloma. Lancet 2021; 397(10283): 1484.
[http://dx.doi.org/10.1016/S0140-6736(21)00315-9] [PMID: 33865496]
[109]
Lierova A, Jelicova M, Nemcova M, et al. Cytokines and radiation-induced pulmonary injuries. J Radiat Res 2018; 59(6): 709-53.
[PMID: 30169853]
[110]
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9(877): 877.
[http://dx.doi.org/10.3389/fonc.2019.00877] [PMID: 31555602]
[111]
Warheit-Niemi HI, Hult EM, Moore BB. A pathologic two-way street: How innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunology 2019; 8(6): e1065.
[http://dx.doi.org/10.1002/cti2.1065] [PMID: 31293783]
[112]
Brown M, O’Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 2019; 195(3): 310-21.
[http://dx.doi.org/10.1111/cei.13238] [PMID: 30430560]
[113]
Chung SI, Horton JA, Ramalingam TR, et al. IL-13 is a therapeutic target in radiation lung injury. Sci Rep 2016; 6(1): 39714.
[http://dx.doi.org/10.1038/srep39714] [PMID: 28004808]
[114]
Zhang P, Mak JC, Man RY, Leung SW. Flavonoids reduces lipopolysaccharide-induced release of inflammatory mediators in human bronchial epithelial cells: Structure-activity relationship. Eur J Pharmacol 2019; 865: 172731.
[http://dx.doi.org/10.1016/j.ejphar.2019.172731] [PMID: 31610186]
[115]
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15(1): 207.
[http://dx.doi.org/10.1186/s12967-017-1306-5] [PMID: 29029603]
[116]
Li X, Zhuang X, Qiao T. Role of ferroptosis in the process of acute radiation-induced lung injury in mice. Biochem Biophys Res Commun 2019; 519(2): 240-5.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.165] [PMID: 31493867]
[117]
Moslehi M, Moazamiyanfar R, Dakkali MS, et al. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108: 108890.
[http://dx.doi.org/10.1016/j.intimp.2022.108890] [PMID: 35623297]
[118]
Azmoonfar R, Amini P, Saffar H, et al. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv Pharm Bull 2018; 8(4): 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[119]
Amini P, Kolivand S, Saffar H, et al. Protective effect of selenium-l-methionine on radiation-induced acute pneumonitis and lung fibrosis in rat. Curr Clin Pharmacol 2019; 14(2): 157-64.
[http://dx.doi.org/10.2174/1574884714666181214101917] [PMID: 30556505]
[120]
Yang X, Liu T, Chen B, Wang F, Yang Q, Chen X. Grape seed proanthocyanidins prevent irradiation-induced differentiation of human lung fibroblasts by ameliorating mitochondrial dysfunction. Sci Rep 2017; 7(1): 62.
[http://dx.doi.org/10.1038/s41598-017-00108-9] [PMID: 28246402]
[121]
Rabbani ZN, Salahuddin FK, Yarmolenko P, et al. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 2007; 41(11): 1273-82.
[http://dx.doi.org/10.1080/10715760701689550] [PMID: 17957541]
[122]
Sharma A, Tewari D, Nabavi SF, Nabavi SM, Habtemariam S. Reactive oxygen species modulators in pulmonary medicine. Curr Opin Pharmacol 2021; 57: 157-64.
[http://dx.doi.org/10.1016/j.coph.2021.02.005] [PMID: 33743400]
[123]
Arora A, Bhuria V, Hazari PP, et al. Amifostine Analog, DRDE-30, attenuates bleomycin-induced pulmonary fibrosis in mice. Front Pharmacol 2018; 9(394): 394.
[http://dx.doi.org/10.3389/fphar.2018.00394] [PMID: 29740320]
[124]
Bowler RP, Nicks M, Warnick K, Crapo JD. Role of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2002; 282(4): L719-26.
[http://dx.doi.org/10.1152/ajplung.00058.2001] [PMID: 11880297]
[125]
Van Rheen Z, Fattman C, Domarski S, et al. Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling. Am J Respir Cell Mol Biol 2011; 44(4): 500-8.
[http://dx.doi.org/10.1165/rcmb.2010-0065OC] [PMID: 20539010]
[126]
Kumari KK, Setty O. The protective effect of Berberis aristata against mitochondrial dysfunction induced due to co-administration of mitomycin C and cisplatin. J Cancer Sci Ther 2012; 4: 199-206.
[127]
Klein D, Steens J, Wiesemann A, et al. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal 2017; 26(11): 563-82.
[http://dx.doi.org/10.1089/ars.2016.6748] [PMID: 27572073]
[128]
Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol 2021; 9: 639657.
[http://dx.doi.org/10.3389/fcell.2021.639657] [PMID: 33768094]
[129]
Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol Oncol Stem Cell Res 2015; 9(2): 95-103.
[PMID: 25922650]
[130]
Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2000; 2(4): 811-20.
[http://dx.doi.org/10.1089/ars.2000.2.4-811] [PMID: 11213485]
[131]
Stancill JS, Corbett JA. The role of thioredoxin/peroxiredoxin in the β-cell defense against oxidative damage. Front Endocrinol 2021; 12: 718235.
[http://dx.doi.org/10.3389/fendo.2021.718235] [PMID: 34557160]
[132]
Zhang L, Wang J, Chen Y, et al. Thioredoxin-1 protects bone marrow-derived mesenchymal stromal cells from hyperoxia-induced injury in vitro. Oxid Med Cell Longev 2018; 2018: 1023025.
[http://dx.doi.org/10.1155/2018/1023025] [PMID: 29599892]
[133]
Hu J, Yang Z, Wang J, et al. Infusion of Trx-1-overexpressing hucMSC prolongs the survival of acutely irradiated NOD/SCID mice by decreasing excessive inflammatory injury. PLoS One 2013; 8(11): e78227.
[http://dx.doi.org/10.1371/journal.pone.0078227] [PMID: 24223778]
[134]
Chen H-X, Xiang H, Xu W-H, et al. Manganese superoxide dismutase gene–modified mesenchymal stem cells attenuate acute radiation-induced lung injury. Hum Gene Ther 2017; 28(6): 523-32.
[http://dx.doi.org/10.1089/hum.2016.106] [PMID: 27806643]
[135]
Wei L, Zhang J, Yang Z-L, You H. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis. Cytotherapy 2017; 19(5): 586-602.
[http://dx.doi.org/10.1016/j.jcyt.2017.02.359] [PMID: 28314668]
[136]
Antonadou D, Coliarakis N, Synodinou M, et al. Randomized phase III trial of radiation treatment ± amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys 2001; 51(4): 915-22.

© 2024 Bentham Science Publishers | Privacy Policy