Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Advances in Hybrid Vesicular-based Drug Delivery Systems: Improved Biocompatibility, Targeting, Therapeutic Efficacy and Pharmacokinetics of Anticancer Drugs

Author(s): Aseem Setia, Ram Kumar Sahu*, Supratim Ray, Retno Widyowati, Wiwied Ekasari and Swarnlata Saraf

Volume 23, Issue 9, 2022

Published on: 23 August, 2022

Page: [757 - 780] Pages: 24

DOI: 10.2174/1389200223666220627110049

Price: $65

Open Access Journals Promotions 2
Abstract

Anticancer drugs and diagnostics can be transported in nanoscale vesicles that provide a flexible platform. A hybrid nanoparticle, a nano assembly made up of many types of nanostructures, has the greatest potential to perform these two activities simultaneously. Nanomedicine has shown the promise of vesicular carriers based on lipopolymersomes, lipid peptides, and metallic hybrid nano-vesicle systems. However, there are significant limitations that hinder the clinical implementation of these systems at the commercial scale, such as low productivity, high energy consumption, expensive setup, long process durations, and the current cancer therapies described in this article. Combinatorial hybrid systems can be used to reduce the above limitations. A greater therapeutic index and improved clinical results are possible with hybrid nanovesicular systems, which integrate the benefits of many carriers into a single structure. Due to their unique properties, cell-based drug delivery systems have shown tremendous benefits in the treatment of cancer. Nanoparticles (NPs) can benefit significantly from the properties of erythrocytes and platelets, which are part of the circulatory cells and circulate for a long time. Due to their unique physicochemical properties, nanomaterials play an essential role in cell-based drug delivery. Combining the advantages of different nanomaterials and cell types gives the resulting delivery systems a wide range of desirable properties. NPs are nextgeneration core-shell nanostructures that combine a lipid shell with a polymer core. The fabrication of lipid-polymer hybrid NPs has recently undergone a fundamental shift, moving from a two-step to a one-step technique based on the joint self-assembly of polymers and lipids. Oncologists are particularly interested in this method as a combinatorial drug delivery platform because of its two-in-one structure. This article addresses various preparative methods for the preparation of hybrid nano-vesicular systems. It also discusses the cellular mechanism of hybrid nano-vesicular systems and describes the thorough knowledge of various hybrid vesicular systems.

Keywords: Anticancer hybrid vesicular, preparative method, cellular mechanism, biocompatibility, specific targeting, nanomedicines.

« Previous
Graphical Abstract
[1]
Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric vesicles: From drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res., 2011, 44(10), 1039-1049.
[http://dx.doi.org/10.1021/ar200036k] [PMID: 21608994]
[2]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[3]
Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules, 2021, 26(19), 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[4]
Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical applications of hydrogels in drug delivery system: An update. J. Drug Deliv. Sci. Technol., 2021, 66, 102914.
[http://dx.doi.org/10.1016/j.jddst.2021.102914]
[5]
Zhou, S.; Li, J.; Yu, J.; Yang, L.; Kuang, X.; Wang, Z.; Wang, Y.; Liu, H.; Lin, G.; He, Z.; Liu, D.; Wang, Y. A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharm. Sin. B, 2021, 11(1), 258-270.
[http://dx.doi.org/10.1016/j.apsb.2020.08.001] [PMID: 33532191]
[6]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Pramanik, S.; Mohanto, S.; Manne, R.; Rajendran, R.R.; Deepak, A.; Edapully, S.J.; Patil, T.; Katari, O. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm., 2021, 18(10), 3671-3718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[8]
Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of immunotherapy combination strategies in cancer. Cancer Discov., 2021, 11(6), 1368-1397.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1209] [PMID: 33811048]
[9]
Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.003] [PMID: 33022328]
[10]
Matsumura, Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Sci., 2021, 112(8), 2939-2947.
[http://dx.doi.org/10.1111/cas.14983] [PMID: 34032331]
[11]
Huang, L.; Zhao, S.; Fang, F.; Xu, T.; Lan, M.; Zhang, J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials, 2021, 268, 120557.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120557] [PMID: 33260095]
[12]
Papaioannou, L.; Avgoustakis, K. Responsive nanomedicines enhanced by or enhancing physical modalities to treat solid cancer tumors: Preclinical and clinical evidence of safety and efficacy. Adv. Drug Deliv. Rev., 2022, 181, 114075.
[PMID: 34883140]
[13]
Yang, W.; Yang, L.; Xia, Y.; Cheng, L.; Zhang, J.; Meng, F.; Yuan, J.; Zhong, Z. Lung cancer specific and reduction-responsive chimaeric polymersomes for highly efficient loading of pemetrexed and targeted suppression of lung tumor in vivo. Acta Biomater., 2018, 70, 177-185.
[http://dx.doi.org/10.1016/j.actbio.2018.01.015] [PMID: 29410335]
[14]
Shahriari, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Synthesis of hyaluronic acid-based polymersomes for doxorubi-cin delivery to metastatic breast cancer. Int. J. Pharm., 2019, 572, 118835.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118835] [PMID: 31726198]
[15]
Yang, W.; Wei, Y.; Yang, L.; Zhang, J.; Zhong, Z.; Storm, G.; Meng, F. Granzyme B-loaded, cell-selective penetrating and reduction-responsive polymersomes effectively inhibit progression of orthotopic human lung tumor in vivo. J. Control. Release, 2018, 290, 141-149.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.013] [PMID: 30312720]
[16]
Yoo, J.; Sanoj Rejinold, N.; Lee, D.; Jon, S.; Kim, Y.C. Protease-activatable cell-penetrating peptide possessing ROS-triggered phase transi-tion for enhanced cancer therapy. J. Control. Release, 2017, 264, 89-101.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.026] [PMID: 28842316]
[17]
Nanaki, S.; Tseklima, M.; Terzopoulou, Z.; Nerantzaki, M.; Giliopoulos, D.J.; Triantafyllidis, K.; Kostoglou, M.; Bikiaris, D.N. Use of mesoporous cellular foam (MCF) in preparation of polymeric microspheres for long acting injectable release formulations of paliperidone antipsychotic drug. Eur. J. Pharm. Biopharm., 2017, 117, 77-90.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.016] [PMID: 28389342]
[18]
He, Q.; Zhang, J.; Shi, J.; Zhu, Z.; Zhang, L.; Bu, W.; Guo, L.; Chen, Y. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 2010, 31(6), 1085-1092.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.046] [PMID: 19880176]
[19]
Ribeiro, T.; Coutinho, E.; Rodrigues, A.S.; Baleizão, C.; Farinha, J.P.S. Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release. Nanoscale, 2017, 9(36), 13485-13494.
[http://dx.doi.org/10.1039/C7NR03395H] [PMID: 28862282]
[20]
Jasuja, K.; Linn, J.; Melton, S.; Berry, V. Microwave-reduced uncapped metal nanoparticles on graphene: Tuning catalytic, electrical, and Raman properties. J. Phys. Chem. Lett., 2010, 1(12), 1853-1860.
[http://dx.doi.org/10.1021/jz100580x]
[21]
Zhang, Y.; Liu, S.; Lu, W.; Wang, L.; Tian, J.; Sun, X. In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal. Sci. Technol., 2011, 1(7), 1142-1144.
[http://dx.doi.org/10.1039/c1cy00205h]
[22]
Xu, M.Q.; Wu, J.F.; Zhao, G.C. Direct electrochemistry of hemoglobin at a graphene gold nanoparticle composite film for nitric oxide bio-sensing. Sensors (Basel), 2013, 13(6), 7492-7504.
[http://dx.doi.org/10.3390/s130607492] [PMID: 23748173]
[23]
Qi, J.; Fang, Y.; Kwok, R.T.K.; Zhang, X.; Hu, X.; Lam, J.W.Y.; Ding, D.; Tang, B.Z. Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice. ACS Nano, 2017, 11(7), 7177-7188.
[http://dx.doi.org/10.1021/acsnano.7b03062] [PMID: 28692799]
[24]
Kumar, R.; Singh, A.; Garg, N.; Siril, P.F. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrason. Sonochem.,, 2018, 40((Pt A),), 686-696.http://dx.doi.org/10.1016/j.ultsonch.2017.08.018
[PMID: 28946474]
[25]
Skjolding, L.M.; Sørensen, S.N.; Hartmann, N.B.; Hjorth, R. Hansen, S.F.; Baun, A. Aquatic ecotoxicity testing of nanoparticles-the quest to disclose nanoparticle effects. Angew. Chem. Int. Ed. Engl., 2016, 55(49), 15224-15239.
[http://dx.doi.org/10.1002/anie.201604964] [PMID: 27564250]
[26]
Soltani, F.; Parhiz, H.; Mokhtarzadeh, A.; Ramezani, M. Synthetic and biological vesicular nano-carriers designed for gene delivery. Curr. Pharm. Des., 2015, 21(42), 6214-6235.
[http://dx.doi.org/10.2174/1381612821666151027153410] [PMID: 26503143]
[27]
Gao, H.; Pang, Z.; Jiang, X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm. Res., 2013, 30(10), 2485-2498.
[http://dx.doi.org/10.1007/s11095-013-1122-4] [PMID: 23797465]
[28]
Weissleder, R.; Nahrendorf, M.; Pittet, M.J. Imaging macrophages with nanoparticles. Nat. Mater., 2014, 13(2), 125-138.
[http://dx.doi.org/10.1038/nmat3780] [PMID: 24452356]
[29]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
[30]
Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol., 2020, 17(12), 725-741.
[http://dx.doi.org/10.1038/s41571-020-0413-z] [PMID: 32760014]
[31]
Islam, R.; Maeda, H.; Fang, J. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin. Drug Deliv., 2022, 19(2), 199-212.
[PMID: 33430661]
[32]
Chen, Z.; Farag, M.A.; Zhong, Z.; Zhang, C.; Yang, Y.; Wang, S.; Wang, Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv. Drug Deliv. Rev., 2021, 176, 113870.
[http://dx.doi.org/10.1016/j.addr.2021.113870] [PMID: 34280511]
[33]
Limongi, T.; Susa, F.; Marini, M.; Allione, M.; Torre, B.; Pisano, R.; di Fabrizio, E. Lipid-based nanovesicular drug delivery systems. Nanomaterials (Basel), 2021, 11(12), 3391.
[http://dx.doi.org/10.3390/nano11123391] [PMID: 34947740]
[34]
Kim, M.W.; Kwon, S.H.; Choi, J.H.; Lee, A. A promising biocompatible platform: Lipid-based and bio-inspired smart drug delivery sys-tems for cancer therapy. Int. J. Mol. Sci., 2018, 19(12), 3859.
[http://dx.doi.org/10.3390/ijms19123859] [PMID: 30518027]
[35]
Liu, X.; Li, H.; Chen, Y.; Jin, Q.; Ren, K.; Ji, J. Mixed-charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Adv. Healthc. Mater., 2014, 3(9), 1439-1447.
[http://dx.doi.org/10.1002/adhm.201300617] [PMID: 24550205]
[36]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F. Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin. Cancer Biol., 2017, 46, 205-214.
[http://dx.doi.org/10.1016/j.semcancer.2017.06.010] [PMID: 28673607]
[37]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[38]
Ekkapongpisit, M.; Giovia, A.; Follo, C.; Caputo, G.; Isidoro, C. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: Effects of size and surface charge groups. Int. J. Nanomedicine, 2012, 7, 4147-4158.
[PMID: 22904626]
[39]
Jindal, A.B. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int. J. Pharm., 2017, 532(1), 450-465.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.028] [PMID: 28917985]
[40]
Meyer, R.A.; Sunshine, J.C.; Perica, K.; Kosmides, A.K.; Aje, K.; Schneck, J.P.; Green, J.J. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small, 2015, 11(13), 1519-1525.
[http://dx.doi.org/10.1002/smll.201402369] [PMID: 25641795]
[41]
Patterson, D.P.; Rynda-Apple, A.; Harmsen, A.L.; Harmsen, A.G.; Douglas, T. Biomimetic antigenic nanoparticles elicit controlled protec-tive immune response to influenza. ACS Nano, 2013, 7(4), 3036-3044.
[http://dx.doi.org/10.1021/nn4006544] [PMID: 23540530]
[42]
Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Fut. J. Pharmaceut. Sci., 2018, 4(2), 191-205.
[http://dx.doi.org/10.1016/j.fjps.2018.04.001]
[43]
Sawdon, A.; Peng, C.A. Engineering antiphagocytic biomimetic drug carriers. Ther. Deliv., 2013, 4(7), 825-839.
[http://dx.doi.org/10.4155/tde.13.54] [PMID: 23883126]
[44]
Shemetov, A.A.; Nabiev, I.; Sukhanova, A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano, 2012, 6(6), 4585-4602.
[http://dx.doi.org/10.1021/nn300415x] [PMID: 22621430]
[45]
Cerpnjak, K.; Zvonar, A.; Gašperlin, M. Vre&er, F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm., 2013, 63(4), 427-445.
[http://dx.doi.org/10.2478/acph-2013-0040] [PMID: 24451070]
[46]
Batrakova, E.; Lee, S.; Li, S.; Venne, A.; Alakhov, V.; Kabanov, A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm. Res., 1999, 16(9), 1373-1379.
[http://dx.doi.org/10.1023/A:1018942823676] [PMID: 10496652]
[47]
Benito-Gallo, P.; Gershkovich, P.; Marlow, M.; Zann, V.; Wasan, K.M. Smart lipid-based drug delivery systems. In: Torchilin, V.; 221 Ed.Smart Pharmaceutical Nanocarriers; Imperial College Press, 2016, pp. 309-371.
[48]
Caracciolo, G. Liposome-protein corona in a physiological environment: Challenges and opportunities for targeted delivery of nanomedi-cines. Nanomedicine , 2015, 11(3), 543-557.
[http://dx.doi.org/10.1016/j.nano.2014.11.003] [PMID: 25555353]
[49]
Osaka, T.; Nakanishi, T.; Shanmugam, S.; Takahama, S.; Zhang, H. Effect of surface charge of magnetite nanoparticles on their internaliza-tion into breast cancer and umbilical vein endothelial cells. Colloids Surf. B Biointerfaces, 2009, 71(2), 325-330.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.004] [PMID: 19361963]
[50]
Date, T.; Nimbalkar, V.; Kamat, J.; Mittal, A.; Mahato, R.I.; Chitkara, D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeu-tics. J. Control. Release, 2018, 271, 60-73.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.016] [PMID: 29273320]
[51]
Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core-shell-type lipid-polymer hybrid nano-particles as a drug delivery platform. Nanomedicine, 2013, 9(4), 474-491.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[52]
Bose, R.J.C.; Ravikumar, R.; Karuppagounder, V.; Bennet, D.; Rangasamy, S.; Thandavarayan, R.A. Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery: Advances and challenges. Drug Discov. Today, 2017, 22(8), 1258-1265.
[http://dx.doi.org/10.1016/j.drudis.2017.05.015] [PMID: 28600191]
[53]
Jaradat, E.; Weaver, E.; Meziane, A.; Lamprou, D.A. Microfluidics technology for the design and formulation of nanomedicines. Nanomaterials (Basel), 2021, 11(12), 3440.
[http://dx.doi.org/10.3390/nano11123440] [PMID: 34947789]
[54]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[55]
Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol., 2021, 16(7), 748-759.
[http://dx.doi.org/10.1038/s41565-021-00931-2] [PMID: 34211166]
[56]
Acebes-Fernández, V.; Landeria-Viñuela, A.; Juanes-Velasco, P.; Hernández, A.P.; Otazo-Perez, A.; Manzano-Román, R.; Gongora, R.; Fuentes, M. Nanomedicine and onco-immunotherapy: From the bench to bedside to biomarkers. Nanomaterials (Basel), 2020, 10(7), 1274.
[http://dx.doi.org/10.3390/nano10071274] [PMID: 32610601]
[57]
Witwer, K.W.; Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater., 2021, 6(2), 103-106.
[http://dx.doi.org/10.1038/s41578-020-00277-6]
[58]
Catoni, C.; Di Paolo, V.; Rossi, E.; Quintieri, L.; Zamarchi, R. Cell-secreted vesicles: Novel opportunities in cancer diagnosis, monitoring and treatment. Diagnostics (Basel), 2021, 11(6), 1118.
[http://dx.doi.org/10.3390/diagnostics11061118] [PMID: 34205256]
[59]
Kamal, Z.; Su, J.; Qiu, M. Erythrocytes modified (coated) gold nanoparticles for effective drug delivery. In: Shah, M.R.; Imran, M.; Ullah, S.; Eds.Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier: Amsterdam, Netherlands, 2020, pp. 13-29.
[60]
Ramézani, H.; El-Hraiech, A.; Jeong, J.; Benhamou, C.L. Size effect method application for modeling of human cancellous bone using geometrically exact Cosserat elasticity. Comput. Methods Appl. Mech. Eng., 2012, 237, 227-243.
[http://dx.doi.org/10.1016/j.cma.2012.05.002]
[61]
Lev, R.; Seliktar, D. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies. J. R. Soc. Interface, 2018, 15(138), 20170380.
[http://dx.doi.org/10.1098/rsif.2017.0380] [PMID: 29343633]
[62]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[63]
Wayteck, L.; Dewitte, H.; De Backer, L.; Breckpot, K.; Demeester, J.; De Smedt, S.C.; Raemdonck, K. Hitchhiking nanoparticles: Reversi-ble coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials, 2016, 77, 243-254.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.016] [PMID: 26606450]
[64]
Vaziri, N.D.; Pahl, M.V.; Crum, A.; Norris, K. Effect of uremia on structure and function of immune system. J. Ren. Nutr., 2012, 22(1), 149-156.
[http://dx.doi.org/10.1053/j.jrn.2011.10.020] [PMID: 22200433]
[65]
Haussecker, D. Current issues of RNAi therapeutics delivery and development. J. Control. Release, 2014, 195, 49-54.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.056] [PMID: 25111131]
[66]
Memic, A.; Colombani, T.; Eggermont, L.J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z.J.; Navare, K.J.; Mohammed, H.S.; Bencherif, S.A. Latest advances in cryogel technology for biomedical applications. Adv. Ther. (Weinh.), 2019, 2(4), 1800114.
[http://dx.doi.org/10.1002/adtp.201800114]
[67]
Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized lipo-somes in targeted cancer therapy: Challenges and opportunities. J. Control. Release, 2018, 277, 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[68]
Tong, Q.; Qiu, N.; Ji, J.; Ye, L.; Zhai, G. Research progress in bioinspired drug delivery systems. Expert Opin. Drug Deliv., 2020, 17(9), 1269-1288.
[http://dx.doi.org/10.1080/17425247.2020.1783235] [PMID: 32543953]
[69]
Zhou, H.; Fan, Z.; Lemons, P.K.; Cheng, H. A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics, 2016, 6(7), 1012-1022.
[http://dx.doi.org/10.7150/thno.15095] [PMID: 27217834]
[70]
Cihan, Y.B.; Arslan, A.; Ergul, M.A. Subtypes of white blood cells in patients with prostate cancer or benign prostatic hyperplasia and healthy individuals. Asian Pac. J. Cancer Prev., 2013, 14(8), 4779-4783.
[http://dx.doi.org/10.7314/APJCP.2013.14.8.4779] [PMID: 24083743]
[71]
Cantoni, C.; Wurzer, H.; Thomas, C.; Vitale, M. Escape of tumor cells from the NK cell cytotoxic activity. J. Leukoc. Biol., 2020, 108(4), 1339-1360.
[http://dx.doi.org/10.1002/JLB.2MR0820-652R] [PMID: 32930468]
[72]
Tang, L.; Mei, Y.; Shen, Y.; He, S.; Xiao, Q.; Yin, Y.; Xu, Y.; Shao, J.; Wang, W.; Cai, Z. Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. Int. J. Nanomedicine, 2021, 16, 5811-5829.
[http://dx.doi.org/10.2147/IJN.S321416] [PMID: 34471353]
[73]
Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater., 2021, 6(4), 351-370.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[74]
Gupta, D.; Zickler, A.M.; El Andaloussi, S. Dosing extracellular vesicles. Adv. Drug Deliv. Rev., 2021, 178, 113961.
[http://dx.doi.org/10.1016/j.addr.2021.113961] [PMID: 34481030]
[75]
Yoshioka, Y.; Ochiya, T. Extracellular vesicles as novel nanocarriers for therapeutic delivery.In: Nucleic acid nano theranostics; ,, 2019, pp. 391-407.
[http://dx.doi.org/10.1016/B978-0-12-814470-1.00012-5]
[76]
Murphy, D.E.; de Jong, O.G.; Brouwer, M.; Wood, M.J.; Lavieu, G.; Schiffelers, R.M.; Vader, P. Extracellular vesicle-based therapeutics: Natural versus engineered targeting and trafficking. Exp. Mol. Med., 2019, 51(3), 1-12.
[http://dx.doi.org/10.1038/s12276-019-0223-5] [PMID: 30872574]
[77]
Duan, H.; Liu, Y.; Gao, Z.; Huang, W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm. Sin. B, 2021, 11(1), 55-70.
[http://dx.doi.org/10.1016/j.apsb.2020.09.016] [PMID: 33532180]
[78]
Li, Y.; Wu, H.; Yang, X.; Jia, M.; Li, Y.; Huang, Y.; Lin, J.; Wu, S.; Hou, Z. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol. Pharm., 2014, 11(8), 2915-2927.
[http://dx.doi.org/10.1021/mp500254j] [PMID: 24984984]
[79]
Mohanty, A.; Uthaman, S.; Park, I.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules, 2020, 25(19), 4377.
[http://dx.doi.org/10.3390/molecules25194377] [PMID: 32977707]
[80]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neo-vasculature with a nanoscale delivery system. Nature, 2005, 436(7050), 568-572.
[http://dx.doi.org/10.1038/nature03794] [PMID: 16049491]
[81]
Hu, C.M.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a bio-mimetic delivery platform. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[82]
Mitra, A.K.; Agrahari, V.; Mandal, A.; Cholkar, K.; Natarajan, C.; Shah, S.; Joseph, M.; Trinh, H.M.; Vaishya, R.; Yang, X.; Hao, Y.; Khurana, V.; Pal, D. Novel delivery approaches for cancer therapeutics. J. Control. Release, 2015, 219, 248-268.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.067] [PMID: 26456750]
[83]
Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Sharifpur, M.; Meyer, J.P.; Xu, H.; Ali, H.M.; Karimi, N.; Cheraghian, G. Nanofluids: Physi-cal phenomena, applications in thermal systems and the environment effects-a critical review. J. Clean. Prod., 2021, 320, 128573.
[http://dx.doi.org/10.1016/j.jclepro.2021.128573]
[84]
Garg, N.K.; Tandel, N.; Jadon, R.S.; Tyagi, R.K.; Katare, O.P. Lipid-polymer hybrid nanocarrier-mediated cancer therapeutics: Current status and future directions. Drug Discov. Today, 2018, 23(9), 1610-1621.
[http://dx.doi.org/10.1016/j.drudis.2018.05.033] [PMID: 29857164]
[85]
Zhang, L.; Chan, J.M.; Gu, F.X.; Rhee, J.W.; Wang, A.Z.; Radovic-Moreno, A.F.; Alexis, F.; Langer, R.; Farokhzad, O.C. Self-assembled lipid--polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano, 2008, 2(8), 1696-1702.
[http://dx.doi.org/10.1021/nn800275r] [PMID: 19206374]
[86]
Yang, X.Z.; Dou, S.; Wang, Y.C.; Long, H.Y.; Xiong, M.H.; Mao, C.Q.; Yao, Y.D.; Wang, J. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano, 2012, 6(6), 4955-4965.
[http://dx.doi.org/10.1021/nn300500u] [PMID: 22646867]
[87]
Baghel, Y.S.; Bhattacharya, S. Lipid polymeric hybrid nanoparticles: Formulation techniques and effects on glioblastoma. Pharm. Sci., 2021.
[http://dx.doi.org/10.34172/PS.2021.55]
[88]
Cheow, W.S.; Hadinoto, K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf. B Biointerfaces, 2011, 85(2), 214-220.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.033] [PMID: 21439797]
[89]
Bershteyn, A.; Chaparro, J.; Yau, R.; Kim, M.; Reinherz, E.; Ferreira-Moita, L.; Irvine, D.J. Polymer-supported lipid shells, onions, and flowers. Soft Matter, 2008, 4(9), 1787-1791.
[http://dx.doi.org/10.1039/b804933e] [PMID: 19756178]
[90]
Mohammadi, M.; Taghavi, S.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Hybrid vesicular drug delivery systems for can-cer therapeutics. Adv. Funct. Mater., 2018, 28(36), 1802136.
[http://dx.doi.org/10.1002/adfm.201802136]
[91]
Le Meins, J.F.; Schatz, C.; Lecommandoux, S.; Sandre, O. Hybrid polymer/lipid vesicles: State of the art and future perspectives. Mater. Today, 2013, 16(10), 397-402.
[http://dx.doi.org/10.1016/j.mattod.2013.09.002]
[92]
Discher, D.E.; Ortiz, V.; Srinivas, G.; Klein, M.L.; Kim, Y.; Christian, D.; Cai, S.; Photos, P.; Ahmed, F. Emerging applications of poly-mersomes in delivery: From molecular dynamics to shrinkage of tumors. Prog. Polym. Sci., 2007, 32(8-9), 838-857.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.011] [PMID: 24692840]
[93]
Hu, X.; Zhang, Y.; Xie, Z.; Jing, X.; Bellotti, A.; Gu, Z. Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules, 2017, 18(3), 649-673.
[http://dx.doi.org/10.1021/acs.biomac.6b01704] [PMID: 28212005]
[94]
Zhang, X.Y.; Zhang, P.Y. Polymersomes in nanomedicine-A review. Curr. Nanosci., 2017, 13(2), 124-129.
[http://dx.doi.org/10.2174/1573413712666161018144519]
[95]
Ahmed, F.; Pakunlu, R.I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D.E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control. Release, 2006, 116(2), 150-158.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.012] [PMID: 16942814]
[96]
Zou, Y.; Meng, F.; Deng, C.; Zhong, Z. Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx? J. Control. Release, 2016, 239, 149-158.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.022] [PMID: 27569664]
[97]
Youssef, S.F.; Elnaggar, Y.S.; Abdallah, O.Y. Elaboration of polymersomes versus conventional liposomes for improving oral bioavaila-bility of the anticancer flutamide. Nanomedicine (Lond.), 2018, 13(23), 3025-3036.
[http://dx.doi.org/10.2217/nnm-2018-0238] [PMID: 30507344]
[98]
Zou, Y.; Xia, Y.; Meng, F.; Zhang, J.; Zhong, Z. GE11-directed functional polymersomal doxorubicin as an advanced alternative to clinical liposomal formulation for ovarian cancer treatment. Mol. Pharm., 2018, 15(9), 3664-3671.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00024] [PMID: 29570299]
[99]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[100]
Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev., 2020, 40(4), 1276-1314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[101]
Nejad, A.E.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Javanmard, S.H.; Taherian, M.; Ahmadlou, M.; Salehi, R. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int., 2021, 21(1), 1-26.
[PMID: 33397383]
[102]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[103]
Abdalla, M.A.; McGaw, L.J. Natural cyclic peptides as an attractive modality for therapeutics: A mini review. Molecules, 2018, 23(8), 2080.
[http://dx.doi.org/10.3390/molecules23082080] [PMID: 30127265]
[104]
Böttger, R.; Hoffmann, R.; Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plas-ma and serum. PLoS One, 2017, 12(6), e0178943.
[http://dx.doi.org/10.1371/journal.pone.0178943] [PMID: 28575099]
[105]
Penchala, S.C.; Miller, M.R.; Pal, A.; Dong, J.; Madadi, N.R.; Xie, J.; Joo, H.; Tsai, J.; Batoon, P.; Samoshin, V.; Franz, A.; Cox, T.; Miles, J.; Chan, W.K.; Park, M.S.; Alhamadsheh, M.M. A biomimetic approach for enhancing the in vivo half-life of peptides. Nat. Chem. Biol., 2015, 11(10), 793-798.
[http://dx.doi.org/10.1038/nchembio.1907] [PMID: 26344696]
[106]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[107]
Jin, J.; Krishnamachary, B.; Barnett, J.D.; Chatterjee, S.; Chang, D.; Mironchik, Y.; Wildes, F.; Jaffee, E.M.; Nimmagadda, S.; Bhujwalla, Z.M. Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl. Mater. Interfaces, 2019, 11(8), 7850-7861.
[http://dx.doi.org/10.1021/acsami.8b22309] [PMID: 30707559]
[108]
Ortega, D.F. Design of chimeric neuropeptide analogues based on galanin and substance P to obtain a possible effect in the treatment of Major depressive disorder. Eur. J. Mol. Clin. Med., 2020, 7(2), 4772-4779.
[109]
Kafshgari, M.H.; Harding, F.J.; Voelcker, N.H. Insights into cellular uptake of nanoparticles. Curr. Drug Deliv., 2015, 12(1), 63-77.
[http://dx.doi.org/10.2174/1567201811666140821110631] [PMID: 25146441]
[110]
Zhu, P.; Lu, J.; Zhi, X.; Zhou, Y.; Wang, X.; Wang, C.; Gao, Y.; Zhang, X.; Yu, J.; Sun, Y.; Zhou, P. tRNA-derived fragment tRFLys-CTT-010 promotes triple-negative breast cancer progression by regulating glucose metabolism via G6PC. Carcinogenesis, 2021, 42(9), 1196-1207.
[http://dx.doi.org/10.1093/carcin/bgab058] [PMID: 34216208]
[111]
Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol., 2020, 11(1), 101-123.
[http://dx.doi.org/10.3762/bjnano.11.10] [PMID: 31976201]
[112]
Basukala, O. The Role of HPV E7 in Maintenance of Cell Transformation; Open University: United Kingdom, 2019.
[113]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[114]
Lehto, T.; Ezzat, K.; Wood, M.J.A.; El Andaloussi, S. Peptides for nucleic acid delivery. Adv. Drug Deliv. Rev., , 2016, 106((Pt A),), 172-182.http://dx.doi.org/10.1016/j.addr.2016.06.008
[PMID: 27349594]
[115]
Saleh, T.; Bolhassani, A.; Shojaosadati, S.A.; Hosseinkhani, S. Evaluation of cell penetrating peptide delivery system on HPV16E7 ex-pression in three types of cell line. Iran. J. Biotechnol., 2015, 13(1), 55-62.
[http://dx.doi.org/10.15171/ijb.1115] [PMID: 28959282]
[116]
Leiro, V.; Garcia, J.P.; Tomás, H.; Pêgo, A.P. The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug. Chem., 2015, 26(7), 1182-1197.
[http://dx.doi.org/10.1021/bc5006224] [PMID: 25826129]
[117]
Kanamala, M.; Wilson, W.R.; Yang, M.; Palmer, B.D.; Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug deliv-ery: A review. Biomaterials, 2016, 85, 152-167.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.061] [PMID: 26871891]
[118]
Wei, X.; Luo, Q.; Sun, L.; Li, X.; Zhu, H.; Guan, P.; Wu, M.; Luo, K.; Gong, Q. Enzyme-and pH-sensitive branched polymer-doxorubicin conjugate-based nanoscale drug delivery system for cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(18), 11765-11778.
[http://dx.doi.org/10.1021/acsami.6b02006] [PMID: 27102364]
[119]
Tang, B.; Zaro, J.L.; Shen, Y.; Chen, Q.; Yu, Y.; Sun, P.; Wang, Y.; Shen, W.C.; Tu, J.; Sun, C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J. Control. Release, 2018, 279, 147-156.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.016] [PMID: 29653223]
[120]
Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv., 2017, 14(7), 851-864.
[http://dx.doi.org/10.1080/17425247.2016.1244187] [PMID: 27730820]
[121]
Huang, R.; Qi, W.; Feng, L.; Su, R.; He, Z. Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 2011, 7(13), 6222-6230.
[http://dx.doi.org/10.1039/c1sm05375b]
[122]
Nasrolahi Shirazi, A.; Tiwari, R.K.; Oh, D.; Banerjee, A.; Yadav, A.; Parang, K. Efficient delivery of cell impermeable phosphopeptides by a cyclic peptide amphiphile containing tryptophan and arginine. Mol. Pharm., 2013, 10(5), 2008-2020.
[http://dx.doi.org/10.1021/mp400046u] [PMID: 23537165]
[123]
Liang, X.; Shi, B.; Wang, K.; Fan, M.; Jiao, D.; Ao, J.; Song, N.; Wang, C.; Gu, J.; Li, Z. Development of self-assembling peptide nanovesi-cle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials, 2016, 82, 194-207.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.015] [PMID: 26763734]
[124]
Xu, Z.; Ma, X.; Gao, Y.E.; Hou, M.; Xue, P.; Li, C.M.; Kang, Y. Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Mater. Chem. Front., 2017, 1(7), 1257-1272.
[http://dx.doi.org/10.1039/C7QM00153C]
[125]
Slowing, I.I.; Wu, C.W.; Vivero-Escoto, J.L.; Lin, V.S. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammali-an red blood cells. Small, 2009, 5(1), 57-62.
[http://dx.doi.org/10.1002/smll.200800926] [PMID: 19051185]
[126]
Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev., 2011, 40(2), 696-753.
[http://dx.doi.org/10.1039/c0cs00136h] [PMID: 21229132]
[127]
Pandey, S.; Mishra, S.B. Sol–gel derived organic–inorganic hybrid materials: Synthesis, characterizations and applications. J. Sol-Gel Sci. Technol., 2011, 59(1), 73-94.
[http://dx.doi.org/10.1007/s10971-011-2465-0]
[128]
Santoyo-Gonzalez, F.; Hernandez-Mateo, F. Silica-based clicked hybrid glyco materials. Chem. Soc. Rev., 2009, 38(12), 3449-3462.
[http://dx.doi.org/10.1039/b909363j] [PMID: 20449062]
[129]
Siefker, J.; Karande, P.; Coppens, M.O. Packaging biological cargoes in mesoporous materials: Opportunities for drug delivery. Expert Opin. Drug Deliv., 2014, 11(11), 1781-1793.
[http://dx.doi.org/10.1517/17425247.2014.938636] [PMID: 25016923]
[130]
Levina, A.S.; Repkova, M.N.; Ismagilov, Z.R.; Zarytova, V.F. Methods of the synthesis of silicon-containing nanoparticles intended for nucleic acid delivery. Eurasian Chemico-Technological J., 2018, 20(3), 177-194.
[http://dx.doi.org/10.18321/ectj720]
[131]
He, C.; Lu, J.; Lin, W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release, 2015, 219, 224-236.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.029] [PMID: 26387745]
[132]
Zhao, Z.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev., 2019, 143, 3-21.
[http://dx.doi.org/10.1016/j.addr.2019.01.002] [PMID: 30639257]
[133]
Pusuluri, A.; Krishnan, V.; Wu, D.; Shields, C.W., IV; Wang, L.W.; Mitragotri, S. Role of synergy and immunostimulation in design of chemotherapy combinations: An analysis of doxorubicin and camptothecin. Bioeng. Transl. Med., 2019, 4(2), e10129.
[http://dx.doi.org/10.1002/btm2.10129] [PMID: 31249879]
[134]
Park, W.; Shin, H.; Choi, B.; Rhim, W.K.; Na, K.; Han, D.K. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci., 2020, 114, 100686.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100686]
[135]
Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[136]
Zhou, J.; Tian, G.; Zeng, L.; Song, X.; Bian, X.W. Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy. Adv. Healthc. Mater., 2018, 7(10), e1800022.
[http://dx.doi.org/10.1002/adhm.201800022] [PMID: 29508557]
[137]
Alex, S.; Tiwari, A. Functionalized gold nanoparticles: Synthesis, properties and applications-a review. J. Nanosci. Nanotechnol., 2015, 15(3), 1869-1894.
[http://dx.doi.org/10.1166/jnn.2015.9718] [PMID: 26413604]
[138]
Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. pH-;responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun., 2019, 40(10), e1800917.
[http://dx.doi.org/10.1002/marc.201800917] [PMID: 30835923]
[139]
Amiri, M.; Gholami, T.; Amiri, O.; Pardakhti, A.; Ahmadi, M.; Akbari, A.; Amanatfard, A.; Salavati-Niasari, M. The magnetic inorganic-organic nanocomposite based on ZnFe2O4-Imatinib-liposome for biomedical applications, in vivo and in vitro study. J. Alloys Compd., 2020, 849, 156604.
[http://dx.doi.org/10.1016/j.jallcom.2020.156604]
[140]
Angelakeris, M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(6), 1642-1651.
[http://dx.doi.org/10.1016/j.bbagen.2017.02.022] [PMID: 28219721]
[141]
Dalal, C.; Jana, N.R. Multivalency effect of TAT-peptide-functionalized nanoparticle in cellular endocytosis and subcellular trafficking. J. Phys. Chem. B, 2017, 121(14), 2942-2951.
[http://dx.doi.org/10.1021/acs.jpcb.6b12182] [PMID: 28334537]
[142]
Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 2007, 24(8), 1415-1426.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[143]
Chen, Y.; Xianyu, Y.; Jiang, X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res., 2017, 50(2), 310-319.
[http://dx.doi.org/10.1021/acs.accounts.6b00506] [PMID: 28068053]
[144]
Mahdy, A.E.; Cheng, J.C.; Li, J.; Elojeimy, S.; Meacham, W.D.; Turner, L.S.; Bai, A.; Gault, C.R.; McPherson, A.S.; Garcia, N.; Beckham, T.H.; Saad, A.; Bielawska, A.; Bielawski, J.; Hannun, Y.A.; Keane, T.E.; Taha, M.I.; Hammouda, H.M.; Norris, J.S.; Liu, X. Acid cerami-dase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol. Ther., 2009, 17(3), 430-438.
[http://dx.doi.org/10.1038/mt.2008.281] [PMID: 19107118]
[145]
Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res., 2013, 2(4), 330-342.
[146]
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[147]
Mathiyazhakan, M.; Upputuri, P.K.; Sivasubramanian, K.; Dhayani, A.; Vemula, P.K.; Zou, P.; Pu, K.; Yang, C.; Pramanik, M.; Xu, C. In situ synthesis of gold nanostars within liposomes for controlled drug release and photoacoustic imaging. Sci. China Mater., 2016, 59(11), 892-900.
[http://dx.doi.org/10.1007/s40843-016-5101-3]
[148]
Lin, J.; Wang, S.; Huang, P.; Wang, Z.; Chen, S.; Niu, G.; Li, W.; He, J.; Cui, D.; Lu, G.; Chen, X.; Nie, Z. Photosensitizer-loaded gold vesi-cles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano, 2013, 7(6), 5320-5329.
[http://dx.doi.org/10.1021/nn4011686] [PMID: 23721576]
[149]
Amstad, E.; Kim, S.H.; Weitz, D.A. Photo- and thermoresponsive polymersomes for triggered release. Angew. Chem. Int. Ed. Engl., 2012, 51(50), 12499-12503.
[http://dx.doi.org/10.1002/anie.201206531] [PMID: 23129272]
[150]
Fu, J.; Liang, L.; Qiu, L. In situ generated gold nanoparticle hybrid polymersomes for water-soluble chemotherapeutics: Inhibited leakage and pH-responsive intracellular release. Adv. Funct. Mater., 2017, 27(18), 1604981.
[http://dx.doi.org/10.1002/adfm.201604981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy